Datasheet HFA1112 Datasheet (Intersil Corporation)

Page 1
HFA1112
September 1998 File Number 2992.5
850MHz, Low Distortion Programmable Gain Buffer Amplifier
The HFA1112 is a closed loop Buffer featuring user programmable gain and ultra high speed performance. Manufactured on Intersil’s proprietary complementary bipolar UHF-1 process, the HFA1112 offers a wide -3dB bandwidth of 850MHz, very fast slew rate, excellent gain flatness, low distortion and high output current.
A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the “Application Information” section. The result is a more flexible product, fewerpart types in inventory, and more efficient use of board space.
Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.
This amplifier is available with programmable output limiting as the HFA1113.Forapplications requiring a standard buffer pinout, please refer to the HFA1110 datasheet. For Military product, refer to the HFA1112/883 data sheet.
Pinout
HFA1112
(PDIP, SOIC)
TOP VIEW
300
300
-
+
8
NC
V+
7
OUT
6
NC
5
NC
-IN
+IN
1
2
3
V-
4
Features
• User Programmable for Closed-Loop Gains of +1, -1 or +2 without Use of External Resistors
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . .850MHz
• Very Fast Slew Rate. . . . . . . . . . . . . . . . . . . . . . 2400V/µs
• Fast Settling Time (0.1%). . . . . . . . . . . . . . . . . . . . . 11ns
• High Output Current. . . . . . . . . . . . . . . . . . . . . . . . .60mA
• Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . . 0.99V/V
• Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . . <10ns
• Standard Operational Amplifier Pinout
Applications
• RF/IF Processors
• Driving Flash A/D Converters
• High-Speed Communications
• Impedance Transformation
• Line Driving
• Video Switching and Routing
• Radar Systems
• Medical Imaging Systems
• Related Literature
- AN9507, Video Cable Drivers Save Board Space
Ordering Information
PART NUMBER
(BRAND)
HFA1112IP -40 to 85 8 Ld PDIP E8.3 HFA1112IB
(H1112I) HFA11XXEVAL High Speed Op Amp DIP Evaluation Board
TEMP.
RANGE (oC) PACKAGE
-40 to 85 8 Ld SOIC M8.15
PKG.
NO.
Pin Description
PIN
NAME
NC 1, 5, 8 No Connection
-IN 2 Inverting Input +IN 3 Non-Inverting Input
V- 4 Negative Supply
OUT 6 Output
V+ 7 Positive Supply
NUMBER DESCRIPTION
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
Page 2
HFA1112
Absolute Maximum Ratings Thermal Information
Voltage Between V+ and V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60mA
SUPPLY
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . 98 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Electrical Specifications V
PARAMETER TEST CONDITIONS TEMP (oC) MIN TYP MAX UNITS
INPUT CHARACTERISTICS
Output Offset Voltage 25 - 8 25 mV
Output Offset Voltage Drift Full - 10 - µV/oC PSRR 25 39 45 - dB
Input Noise Voltage (Note 3) 100kHz 25 - 9 - nV/Hz Non-Inverting Input Noise Current (Note 3) 100kHz 25 - 37 - pA/Hz Non-Inverting Input Bias Current 25 - 25 40 µA
Non-Inverting Input Resistance 25 25 50 - k Inverting Input Resistance (Note 2) 25 240 300 360 Input Capacitance 25 - 2 - pF Input Common Mode Range Full ±2.5 ±2.8 - V
TRANSFER CHARACTERISTICS
Gain AV = +1, VIN = +2V 25 0.980 0.990 1.02 V/V
Gain AV = +2, VIN = +1V 25 1.96 1.98 2.04 V/V
DC Non-Linearity (Note 3) AV = +2, ±2V Full Scale 25 - 0.02 - %
OUTPUT CHARACTERISTICS
Output Voltage (Note 3) AV = -1 25 ±3.0 ±3.3 - V
Output Current (Note 3) RL = 50 25, 85 50 60 - mA
Closed Loop Output Impedance DC, AV = +2 25 - 0.3 -
POWER SUPPLY CHARACTERISTICS
Supply Voltage Range Full ±4.5 - ±5.5 V Supply Current (Note 3) 25 - 21 26 mA
= ±5V, AV = +1, RL = 100, Unless Otherwise Specified
SUPPLY
Full - - 35 mV
Full 35 - - dB
Full - - 65 µA
Full 0.975 - 1.025 V/V
Full 1.95 - 2.05 V/V
Full ±2.5 ±3.0 - V
-40 35 50 - mA
Full - - 33 mA
2
Page 3
HFA1112
Electrical Specifications V
PARAMETER TEST CONDITIONS TEMP (oC) MIN TYP MAX UNITS
AC CHARACTERISTICS
-3dB Bandwidth (V
= 0.2V
OUT
Slew Rate (V
= 5V
OUT
Full Power Bandwidth (V
= 5V
OUT
Gain Flatness (to 30MHz, Notes 2, 3)
Gain Flatness (to 50MHz, Notes 2, 3)
Gain Flatness (to 100MHz, Notes 2, 3)
Linear Phase Deviation (to 100MHz, Note 3)
2nd Harmonic Distortion (30MHz, V
3rd Harmonic Distortion (30MHz, V
2nd Harmonic Distortion (50MHz, V
3rd Harmonic Distortion (50MHz, V
2nd Harmonic Distortion (100MHz, V
3rd Harmonic Distortion (100MHz, V
P-P
P-P
P-P
OUT
OUT
OUT
OUT
OUT
OUT
, Notes 2, 3)
, Note 2)
, Note 3)
= 2V
P-P
= 2V
P-P
= 2V
P-P
= 2V
P-P
= 2V
P-P
= 2V
P-P
, Notes 2, 3)
, Notes 2, 3)
, Notes 2, 3)
, Notes 2, 3)
, Notes 2, 3)
, Notes 2, 3)
= ±5V, AV = +1, RL = 100, Unless Otherwise Specified (Continued)
SUPPLY
AV = -1 25 450 800 - MHz AV = +1 25 500 850 - MHz AV = +2 25 350 550 - MHz AV = -1 25 1500 2400 - V/µs AV = +1 25 800 1500 - V/µs AV = +2 25 1100 1900 - V/µs AV = -1 25 - 300 - MHz AV = +1 25 - 150 - MHz AV = +2 25 - 220 - MHz AV = -1 25 - ±0.02 - dB AV = +1 25 - ±0.1 - dB AV = +2 25 - ±0.015 ±0.04 dB AV = -1 25 - ±0.05 - dB AV = +1 25 - ±0.2 - dB AV = +2 25 - ±0.036 ±0.08 dB AV = -1 25 - ±0.10 - dB AV = +2 25 - ±0.07 ±0.22 dB AV = -1 25 - ±0.13 - Degrees AV = +1 25 - ±0.83 - Degrees AV = +2 25 - ±0.05 - Degrees AV = -1 25 - -52 - dBc AV = +1 25 - -57 - dBc AV = +2 25 - -52 -45 dBc AV = -1 25 - -71 - dBc AV = +1 25 - -73 - dBc AV = +2 25 - -72 -65 dBc AV = -1 25 - -47 - dBc AV = +1 25 - -53 - dBc AV = +2 25 - -47 -40 dBc AV = -1 25 - -63 - dBc AV = +1 25 - -68 - dBc AV = +2 25 - -65 -55 dBc AV = -1 25 - -41 - dBc AV = +1 25 - -50 - dBc AV = +2 25 - -42 -35 dBc AV = -1 25 - -55 - dBc AV = +1 25 - -49 - dBc AV = +2 25 - -62 -45 dBc
3
Page 4
HFA1112
Electrical Specifications V
PARAMETER TEST CONDITIONS TEMP (oC) MIN TYP MAX UNITS
3rd Order Intercept (AV = +2, Note 3)
1dB Compression (AV = +2, Note 3)
Reverse Isolation (S12, Note 3)
TRANSIENT CHARACTERISTICS
Rise Time (V
= 0.5V Step, Note 2)
OUT
Rise Time (V
= 2V Step)
OUT
Overshoot (V
= 0.5V Step, Input tR/tF = 200ps,
OUT
Notes 2, 3, 4)
0.1% Settling Time (Note 3) V
0.05% Settling Time V Overdrive Recovery Time VIN = 5V Differential Gain AV = +1, 3.58MHz, RL = 150 25 - 0.03 - %
Differential Phase AV = +1, 3.58MHz, RL = 150 25 - 0.05 - Degrees
NOTES:
2. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
3. See Typical Performance Curves for more information.
4. Overshoot decreases as input transition times increase, especially for AV = +1. Please refer to Typical Performance Curves.
= ±5V, AV = +1, RL = 100, Unless Otherwise Specified (Continued)
SUPPLY
100MHz 25 - 28 - dBm 300MHz 25 - 13 - dBm 100MHz 25 - 19 - dBm 300MHz 25 - 12 - dBm 40MHz 25 - -70 - dB 100MHz 25 - -60 - dB 600MHz 25 - -32 - dB
AV = -1 25 - 500 800 ps AV = +1 25 - 480 750 ps AV = +2 25 - 700 1000 ps AV = -1 25 - 0.82 - ns AV = +1 25 - 1.06 - ns AV = +2 25 - 1.00 - ns AV = -1 25 - 12 30 % AV = +1 25 - 45 65 % AV = +2 25 - 6 20 %
= 2V to 0V 25 - 11 - ns
OUT
= 2V to 0V 25 - 15 - ns
OUT
P-P
AV = +2, 3.58MHz, RL = 150 25 - 0.02 - %
AV = +2, 3.58MHz, RL = 150 25 - 0.04 - Degrees
25 - 8.5 - ns
Application Information
Closed Loop Gain Selection
The HFA1112 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexibleproduct, fewer part types in inventory, and more efficient use of board space.
This “buffer” operates in closed loop gains of -1, +1, or +2, and gain selection is accomplished via connections to the ±inputs. Applying the input signal to +IN and floating -IN selects a gain of +1, while grounding -IN selects a gain of +2. A gain of -1 is obtained by applying the input signal to -IN with +IN grounded.
4
The table below summarizes these connections:
GAIN (ACL)
-1 GND Input +1 Input NC (Floating) +2 Input GND
+INPUT (PIN 3) -INPUT (PIN 2)
CONNECTIONS
Page 5
HFA1112
PC Board Layout
The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The
use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value (10µF) tantalum in parallel with a small value (0.1µF) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.
For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier’s inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well.
An example of a good high frequency layout is the Evaluation Board shown in Figure 2.
overdampedresponse, while pointsbelow or left of the curve indicate areas of underdamped performance.
R
and CLform a low pass network at the output, thus
S
limiting system bandwidth well below the amplifier bandwidth of 850MHz. By decreasing R
as CLincreases
S
(as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at A
= +1, RS=50Ω,CL= 30pF, the overall
V
bandwidth is limited to 300MHz, and bandwidth drops to 100MHz at A
50 45 40 35 30
()
25
S
20
R
15 10
5 0
FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs
= +1, RS = 5, CL = 340pF.
V
AV = +1
AV = +2
0 40 80 120 160 200 240 280 320 360 400
LOAD CAPACITANCE
LOAD CAPACITANCE (pF)
Driving Capacitive Loads
Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier’s phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (R prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the R combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an
(A
= +1)
V
or 0 (A
IN
10µF
R
0.1µF
1
50
= +2)
V
1 2 3 4
-5V
) in series with the output
S
and C
S
V
H
8 7
50
6 5
GND
GND
OUT V
L
L
10µF0.1µF
+5V
Evaluation Board
The performance of the HFA1112 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows:
1. Removethe 500feedback resistor (R connection open.
1. a. For A b. For A
= +1 evaluation, remove the 500gain setting
V
resistor (R
), and leave pin 2 floating.
1
= +2, replace the 500gainsetting resistor with
V
a 0 resistor to GND.
The layout and modified schematic of the board are shown in Figure 2.
To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.
TOP LAYOUT BOTTOM LAYOUT
V
H
1
+IN
OUT
V+
V
L
V-
GND
), and leave the
2
FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT
5
Page 6
HFA1112
Typical Performance Curves
200
AV = +2
150
100
50
0
-50
OUTPUT VOLTAGE (mV)
-100
-150
-200 TIME (5ns/DIV.)
FIGURE 3. SMALL SIGNAL PULSE RESPONSE FIGURE 4. LARGE SIGNAL PULSE RESPONSE
200
AV = +1
150
100
50
V
SUPPLY
= ±5V, TA = 25oC, RL = 100, Unless Otherwise Specified
2.0 AV = +2
1.5
1.0
0.5
0
-0.5
OUTPUT VOLTAGE (V)
-1.0
-1.5
-2.0 TIME (5ns/DIV.)
2.0 A
= +1
V
1.5
1.0
0.5
0
-50
OUTPUT VOLTAGE (mV)
-100
-150
-200 TIME (5ns/DIV.)
0
-0.5
OUTPUT VOLTAGE (V)
-1.0
-1.5
-2.0 TIME (5ns/DIV.)
FIGURE 5. SMALL SIGNAL PULSE RESPONSE FIGURE 6. LARGE SIGNAL PULSE RESPONSE
200
150
100
50
0
-50
-100
OUTPUT VOLTAGE (mV)
-150
AV = -1
2.0
1.5
1.0
0.5
-0.5
OUTPUT VOLTAGE (V)
-1.0
-1.5
AV = -1
0
-200 TIME (5ns/DIV.)
-2.0 TIME (5ns/DIV.)
FIGURE 7. SMALL SIGNAL PULSE RESPONSE FIGURE 8. LARGE SIGNAL PULSE RESPONSE
6
Page 7
HFA1112
Typical Performance Curves
6
V
= 200mV
OUT
3 0
-3
-6
-9
NORMALIZED GAIN (dB)
PHASE
0.3 1 10 100 1000
P-P
GAIN
FREQUENCY (MHz)
AV = +1
AV = +2
AV = -1
AV = -1
AV = +2
AV = +1
V
SUPPLY
= ±5V, TA = 25oC, RL = 100, Unless Otherwise Specified (Continued)
0
-90
-180
-270
-360
FIGURE 9. FREQUENCY RESPONSE FIGURE10. FREQUENCY RESPONSE FOR VARIOUS LOAD
6
AV = +1, V
3 0
GAIN
-3
GAIN (dB)
-6
-9
PHASE
0.3 1 10 100 1000
= 200mV
OUT
FREQUENCY (MHz)
P-P
RL = 1k
RL = 100
RL = 50
RL = 100
RL = 50
RL = 1k
FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS LOAD
RESISTORS
9 6
3
GAIN (dB)
0
NORMALIZED PHASE (DEGREES)
0.3 1 10 100 1000
6
AV = -1, V
3 0
-3
GAIN (dB)
-6
-9
0
-90
-180
-270 PHASE (DEGREES)
-360
0.3 1 10 100 1000
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD
AV = +2, V
GAIN
PHASE
RESISTORS
PHASE
RESISTORS
OUT
OUT
GAIN
= 200mV
= 200mV
P-P
RL = 50
RL = 100
RL = 100
RL = 50
FREQUENCY (MHz)
P-P
FREQUENCY (MHz)
RL = 1k
RL = 1k
RL = 1k
RL = 100
RL = 50
RL = 50
RL = 1k
RL = 100
0
-90
-180
-270 PHASE (DEGREES)
-360
180 90 0
-90
-180
PHASE (DEGREES)
12
AV = +2
9 6
GAIN
3
GAIN (dB)
4.0V
2.5V 1V
4.0V
2.5V
P-P
P-P
P-P
0
PHASE
0.3 1 10 100 1000 FREQUENCY (MHz)
P-P
P-P
1V
P-P
0
-90
-180
-270
-360
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS OUTPUT
VOLTAGES
7
6 3 0
-3
GAIN (dB)
-6
PHASE (DEGREES)
0.3 1 10 100 1000
FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT
AV = +1
GAIN
PHASE
VOLTAGES
V
= 4V
OUT
V
= 2.5V
OUT
V
OUT
V
= 4V
OUT
V
= 2.5V
OUT
V
OUT
FREQUENCY (MHz)
P-P
= 1V
P-P
= 1V
P-P
P-P
P-P
P-P
0
-90
-180
-270
-360
PHASE (DEGREES)
Page 8
HFA1112
Typical Performance Curves
6
AV = -1
3
GAIN
0
-3
GAIN (dB)
-6 PHASE
0.3 1 10 100 1000 FREQUENCY (MHz)
V
OUT
V
V
V
OUT
V
OUT
OUT
= 4V
= 2.5V
OUT
= 2.5V
= 4V
V
OUT
P-P
= 1V
P-P
= 1V
P-P
P-P
P-P
V
SUPPLY
P-P
= ±5V, TA = 25oC, RL = 100, Unless Otherwise Specified (Continued)
180 90 0
-90
-180
FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT
VOLTAGES
900
850
800
750
700
650
BANDWIDTH (MHz)
600
550
500
-50 -25 0 25 50 75 100 125
AV = +1
AV = -1
AV = +2
TEMPERATURE (
o
C)
NORMALIZED GAIN (dB)
PHASE (DEGREES)
NORMALIZED GAIN (dB)
15
V
= 5V
OUT
12
9 6 3 0
-3
-6
-9
-12
-15
0.3 1 10 100 1000
P-P
AV = -1 AV = +2
AV = +1
FREQUENCY (MHz)
FIGURE 16. FULL POWER BANDWIDTH
0.35
0.30
0.25
0.20
0.15
0.10
0.05 0
-0.05
-0.10
-0.15 1 10 100
FREQUENCY (MHz)
AV = +1
AV = -1
AV = +2
FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE FIGURE 18. GAIN FLATNESS
4 3 2 1 0
-1
-2
-3
DEVIATION (DEGREES)
-4
-5
-6 0 15 30 45 60 75 90 105 120 135
FREQUENCY (MHz)
AV = +1
AV = -1
A
= +2
V
150
AV = +2, V
0.6
0.4
0.2
0.1 0
-0.1
-0.2
-0.4
SETTLING ERROR (%)
-0.6
-2 3 8 13 18 23 28 33 38 43 48
= 2V
OUT
TIME (ns)
FIGURE 19. DEVIATION FROM LINEAR PHASE FIGURE 20. SETTLING RESPONSE
8
Page 9
HFA1112
Typical Performance Curves
-24
-30
-36
-42
-48
-54
GAIN (dB)
-60
-66
-72
-78
-84
AV = -1
AV = +2
20 40 60 80 100 120 140 160 180 200
0
FREQUENCY (MHz)
V
SUPPLY
AV = +1
AV = +2
= ±5V, TA = 25oC, RL = 100, Unless Otherwise Specified (Continued)
AV = -1
PHASE
AV = -1
-24
-30
-36
-42
-48
GAIN (dB)
-54
-60 100 190 280 370 460 550 640 730 820 910 1000
AV = +2
AV = -1
FREQUENCY (MHz)
AV = +1
AV = +2
GAIN
AV = +1
FIGURE 21. LOW FREQUENCY REVERSE ISOLATION (S12) FIGURE 22. HIGH FREQUENCY REVERSE ISOLATION (S12)
20 18 16 14 12 10
8 6 4 2 0
OUTPUT POWER AT 1dB COMPRESSION (dBm)
100 200 300 400 500
AV = +1
AV = -1
AV = +2
FREQUENCY (MHz)
30
20
10
INTERCEPT POINT (dBm)
0
100 200 300 400
2 - TONE
AV = -1
AV = +2
AV = +1
FREQUENCY (MHz)
235 180 90 45 0
PHASE (DEGREES)
FIGURE 23. 1dB GAIN COMPRESSION vs FREQUENCY FIGURE 24. 3rd ORDER INTERMODULATIONINTERCEPTvs
FREQUENCY
-20 AV = +2
-30
-40
-50
-60
-70
DISTORTION (dBc)
-80
-90
-100
-6 -3 0 3 6 9 12 15
100MHz
OUTPUT POWER (dBm)
50MHz
30MHz
FIGURE 25. 2nd HARMONIC DISTORTION vs P
OUT
-20 AV = +2
-30
-40
-50
-60
-70
DISTORTION (dBc)
-80
-90
-100
-6 -3 0 3 6 9 12 15 18
100MHz
50MHz
OUTPUT POWER (dBm)
30MHz
FIGURE 26. 3rd HARMONIC DISTORTION vs P
OUT
9
Page 10
HFA1112
Typical Performance Curves
-20 AV = +1
-30
-40
-50
-60
-70
DISTORTION (dBc)
-80
-90
-100
-6 -3 0 3 6 9 12 15
100MHz
50MHz
OUTPUT POWER (dBm)
FIGURE 27. 2nd HARMONIC DISTORTION vs P
-20 AV = -1
-30
-40
-50
-60
100MHz
-70
DISTORTION (dBc)
-80
-90
-100
-6 -3 0 3 6 9 12 15
50MHz
OUTPUT POWER (dBm)
30MHz
30MHz
V
SUPPLY
= ±5V, TA = 25oC, RL = 100, Unless Otherwise Specified (Continued)
-20 AV = +1
-30
-40
-50
-60
OUT
-70
DISTORTION (dBc)
-80
-90
-100
-6 -3 0 3 6 9 12 15
FIGURE 28. 3rd HARMONIC DISTORTION vs P
-20
AV = -1
-30
-40
-50
-60
-70
DISTORTION (dBc)
-80
-90
-100
-6 -3 0 3 6 9 12 15
100MHz
50MHz
OUTPUT POWER (dBm)
100MHz
OUTPUT POWER (dBm)
30MHz
50MHz
30MHz
OUT
FIGURE 29. 2nd HARMONIC DISTORTION vs P
0.04
0.02
0
PERCENT ERROR (%)
-0.02
-0.04
-3.0
-2.0 -1.0 0 1.0 2.0 3.0 INPUT VOLTAGE (V)
OUT
FIGURE 30. 3rd HARMONIC DISTORTION vs P
60
V
= 0.5V
OUT
50
40
30
OVERSHOOT (%)
20
AV = -1
10
AV = +2
0
100 300 500 700 900 1100 1300
AV = +1
INPUT RISE TIME (ps)
FIGURE 31. INTEGRAL LINEARITY ERROR FIGURE 32. OVERSHOOT vs INPUT RISE TIME
10
OUT
Page 11
HFA1112
Typical Performance Curves
60
V
= 1V
OUT
50
40
30
20
OVERSHOOT (%)
10
AV = +2
0
100 300 500 700 900 1100 1300
INPUT RISE TIME (ps)
AV = -1
V
SUPPLY
AV = +1
= ±5V, TA = 25oC, RL = 100, Unless Otherwise Specified (Continued)
FIGURE 33. OVERSHOOT vs INPUT RISE TIME FIGURE 34. OVERSHOOT vs INPUT RISE TIME
22 21 20 19 18 17 16 15 14 13 12 11 10
SUPPLY CURRENT (mA)
9 8 7 6 5
59
678 10
TOTAL SUPPLY VOLTAGE (V+ - V-, V)
60
V
= 2V
OUT
50
40
AV = +2
AV = -1
AV = +1
o
C)
30
20
OVERSHOOT (%)
10
0
100 300 500 700 900 1100 1300
INPUT RISE TIME (ps)
25 24 23 22 21 20 19 18
SUPPLY CURRENT (mA)
17 16 15
-50 -25 0 25 50 75 100 125 TEMPERATURE (
FIGURE 35. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 36. SUPPLY CURRENT vs TEMPERATURE
3.6
3.5
3.4
3.3
3.2
3.1
3.0
2.9
OUTPUT VOLTAGE (V)
2.8
2.7
2.6
AV = -1
+V
(RL= 50Ω)
OUT
+V
(RL= 100Ω)
OUT
|-V
| (RL= 100Ω)
OUT
|-V
| (RL= 50Ω)
OUT
-50 -25 0 25 50 75 100 125 TEMPERATURE (
o
C)
50
40
30
20
E
NOISE VOLTAGE (nV/Hz)
10
0
0.1 1 10 100 FREQUENCY (kHz)
NI
I
NI
FIGURE 37. OUTPUT VOLTAGE vs TEMPERATURE FIGURE 38. INPUT NOISE CHARACTERISTICS
11
130
110
90
70
50
30
NOISE CURRENT (pA/Hz)
Page 12
Die Characteristics
HFA1112
DIE DIMENSIONS:
63 mils x 44 mils x 19 mils 1600µm x 1130µm 483µm
METALLIZATION:
Type: Metal 1: AlCu (2%)/TiW Thickness: Metal 1: 8k
Å ±0.4kÅ
Type: Metal 2: AlCu (2%) Thickness: Metal 2: 16k
Å ±0.8kÅ
Metallization Mask Layout
PASSIVATION:
Type: Nitride Thickness: 4k
Å ±0.5kÅ
TRANSISTOR COUNT:
52
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)
HFA1112
NC
+IN
V-
NC
NC
OUT
-IN
NC
V+
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
12
Loading...