Datasheet HEF4015BU, HEF4015BT, HEF4015BPB, HEF4015BDB, HEF4015BD Datasheet (Philips)

...
Page 1
DATA SH EET
Product specification File under Integrated Circuits, IC04
January 1995
INTEGRATED CIRCUITS
HEF4015B MSI
For a complete data sheet, please also download:
The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC
Page 2
January 1995 2
Philips Semiconductors Product specification
Dual 4-bit static shift register
HEF4015B
MSI
DESCRIPTION
The HEF4015B is a dual edge-triggered 4-bit static shift register (serial-to-parallel converter). Each shift register has a serial data input (D), a clock input (CP), four fully buffered parallel outputs (O0to O3) and an overriding asynchronous master reset input (MR). Information
present on D is shifted to the first register position, and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of CP. A HIGH on MR clears the register and forces O
0
to O3to LOW, independent of CP and D. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.
Fig.1 Functional diagram.
HEF4015BP(N): 16-lead DIL; plastic
(SOT38-1)
HEF4015BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF4015BT(D): 16-lead SO; plastic
(SOT109-1)
( ): Package Designator North America
Fig.2 Pinning diagram.
PINNING
APPLICATION INFORMATION
Some examples of applications for the HEF4015B are:
Serial-to-parallel converter
Buffer stores
General purpose register
D
A
, D
B
serial data input
MR
A
, MR
B
master reset input (active HIGH)
CP
A
, CP
B
clock input (LOW-to-HIGH edge-triggered)
O
0A
, O1A, O2A, O
3A
parallel outputs
O
0B
, O1B, O2B, O
3B
parallel outputs
FAMILY DATA, I
DD
LIMITS category MSI
See Family Specifications
Page 3
January 1995 3
Philips Semiconductors Product specification
Dual 4-bit static shift register
HEF4015B
MSI
LOGIC DIAGRAM (one register)
Fig.3 Logic diagram.
FUNCTION TABLE
INPUTS OUTPUTS
n CP D MR O
0
O
1
O2O
3
1D
1
LD1XXX
2D
2
LD2D1XX
3D
3
LD3D2D1X
4D
4
LD4D3D2D
1
X L no change
XXH L L LL
Note
1. H = HIGH state (the more positive voltage)
2. L = LOW state (the less positive voltage)
3. X = state is immaterial
4. = positive-going transition
5. = negative-going transition
6. D
n
= either HIGH or LOW
7. n = number of clock pulse transitions
Page 4
January 1995 4
Philips Semiconductors Product specification
Dual 4-bit static shift register
HEF4015B
MSI
AC CHARACTERISTICS
V
SS
= 0 V; T
amb
=25°C; CL= 50 pF; input transition times 20 ns
V
DD
V
SYMBOL MIN. TYP. MAX.
TYPICAL EXTRAPOLATION
FORMULA
Propagation delays
CP O
n
5 130 260 ns 103 ns + (0,55 ns/pF) C
L
HIGH to LOW 10 t
PHL
55 110 ns 44 ns + (0,23 ns/pF) C
L
15 40 80 ns 32 ns + (0,16 ns/pF) C
L
5 120 240 ns 93 ns + (0,55 ns/pF) C
L
LOW to HIGH 10 t
PLH
55 110 ns 44 ns + (0,23 ns/pF) C
L
15 40 80 ns 32 ns + (0,16 ns/pF) C
L
MR O
n
5 105 210 ns 78 ns + (0,55 ns/pF) C
L
HIGH to LOW 10 t
PHL
45 90 ns 34 ns + (0,23 ns/pF) C
L
15 35 70 ns 27 ns + (0,16 ns/pF) C
L
Output transition times 5 60 120 ns 10 ns + (1,0 ns/pF) C
L
HIGH to LOW 10 t
THL
30 60 ns 9 ns + (0,42 ns/pF) C
L
15 20 40 ns 6 ns + (0,28 ns/pF) C
L
5 60 120 ns 10 ns + (1,0 ns/pF) C
L
LOW to HIGH 10 t
TLH
30 60 ns 9 ns + (0,42 ns/pF) C
L
15 20 40 ns 6 ns + (0,28 ns/pF) C
L
Set-up time 5 25 15 ns
        see waveforms Figs 4 and 5         
D CP 10 t
su
25 10 ns
15 20 5ns
Hold time 5 40 20 ns
D CP 10 t
hold
20 10 ns
15 15 8 ns
Minimum clock 5 60 30 ns
pulse width; LOW 10 t
WCPL
30 15 ns
15 20 10 ns
Minimum MR 5 80 40 ns
pulse width; HIGH 10 t
WMRH
30 15 ns
15 24 12 ns
Recovery time 5 50 20 ns
for MR 10 t
RMR
30 10 ns
15 20 5 ns
Maximum clock 5 7 15 MHz
pulse frequency 10 f
max
15 30 MHz
15 22 44 MHz
Page 5
January 1995 5
Philips Semiconductors Product specification
Dual 4-bit static shift register
HEF4015B
MSI
V
DD
V
TYPICAL FORMULA FOR P (µW)
Dynamic power 5 1 500 f
i
+∑(foCL) × V
DD
2
where
dissipation per 10 6 300 f
i
+∑(foCL) × V
DD
2
fi= input freq. (MHz)
package (P) 15 17 000 f
i
+∑(foCL) × V
DD
2
fo= output freq. (MHz) C
L
= load capacitance (pF)
(f
oCL
) = sum of outputs
V
DD
= supply voltage (V)
Fig.4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are
shown as positive values but may be specified as negative values.
Fig.5 Waveforms showing recovery time for MR and minimum MR pulse width.
Loading...