Datasheet HD155121F Datasheet (HIT)

Page 1
HD155121F
RF Transceiver IC for GSM and PCN Dual band cellular systems
ADE-207-265A (Z)
2nd Edition
May 1999
Description
The HD155121F is a RF transceiver IC for GSM and PCN dual band cellular systems, and integrates most of the low power silicon functions of a transceiver. The HD155121F incorporates two bias circuits for RF LNAs, two first mixers, a second mixer, a programmable gain amplifier, and an IQ demodulator for the receiver, and an IQ modulator and offset PLL for the transmitter. Also, on chip are dividers for the phase splitter. Moreover the HD155121F includes control circuits to implement power saving modes. These functions can operate down to 2.7 V and are housed in a 48-pin LQFP SMD package.
Hence the HD155121F can form a small size transceiver handset for dual band by adding a dual PLL frequency synthesizer IC, power amplifiers and some external components.
The HD155121F is fabricated using a 0.6 µm double-polysilicon Bi-CMOS process.
Functions
Receiver(Rx)
Low Noise Amplifier (LNA) bias circuit
First mixer
IF amplifier and second mixer
Programmable Gain Amplifier (PGA)
IQ demodulator with 90 degree phase splitter
Transmitter(Tx)
IQ modulator with 90 degree phase splitter
Offset PLLDown converterPhase comparatorTXVCO driver
Others
IF dividers
Power saving control circuit
IFVCO
Page 2
HD155121F
Features
Highly integrated RF processing for hand-portables
Operating supply voltageVCC : 2.7 to 3.6 V  Phase comparator and TXVCO driver circuit : 2.7 to 5.25 V
Current consumptionRx mode (GSM) : 53 mA + LNA currentRx mode (PCN) : 52 mA + LNA currentTx mode (GSM) : 36 mATx mode (PCN) : 37 mAIdle mode :1 µA
Operating temperature : –20 to +75 degree
LQFP 48pin SMD (Low Profile Quad Flat Package)
Wide operating frequenciesRx RF GSM : 925 - 960 MHz
PCN : 1805 - 1880 MHz 1st IF : 225 MHz 2nd IF : 45 MHz
Tx RF GSM : 880 - 915 MHz
PCN : 1710 - 1785 MHz IF GSM : 270 MHz
PCN : 135 MHz
Offset PLL architecture for Transmitter
High dynamic range Programmable Gain Amplifier (PGA)
2
Page 3
Pin Arrangement
MIX1INB1
1
MIX1IN2
MIX1INB2
POONTX
POONRX2
POONRX1
MIX1OUTB
MIX1OUT
VCCMIX1
GNDMIX1
RFLOIN
VCCDIV
GNDDIV
373839404142434445464748
36
HD155121F
IFLO
MIX1IN1
RFOUT
RFIN1
RFIN2 VCCPLL GNDPLL
VCOIN2 VCOIN1
VCCCOMP
PLLOUT
ICURAD
2 3 4 5 6 7 8 9 10 11 12
1413 24232221201918171615
QINB
QIN
IINB
IIN
VCCIQ
MODLB
(Top View)
GNDIQ
QOUTB
QOUT
IOUTB
IOUT
35 34 33 32 31 30 29 28 27 26 25
MIX2OB
BAND IFVCOO IFVCOI VCCIF GNDIF IFIN IFINB LE SDATA CLK MIX2O
3
Page 4
HD155121F
Pin Description
Pin No. Pin Name Description
1 MIX1INB1 Negative input for Mixer1 (GSM) 2 MIX1IN1 Positive input for Mixer1 (GSM) 3 RFOUT Bias for the collector of LNA transistor 4 RFIN1 Bias for the base of LNA transistor (GSM) 5 RFIN2 Bias for the base of LNA transistor (PCN) 6 VCCPLL VCC for OPLL 7 GNDPLL GND for OPLL 8 VCOIN2 TxVCO signal input (PCN) 9 VCOIN1 TxVCO signal input (GSM) 10 VCCCOMP VCC for phase comparator 11 PLLOUT Current output to control and modulate the TxVCO 12 ICURAD Phase comparator output current setting 13 QINB Negative input of Q signal for modulator 14 QIN Positive input of Q signal for modulator 15 IINB Negative input of I signal for modulator 16 IIN Positive input of I signal for modulator 17 MODLB VCC for modulator load bias 18 VCCIQ VCC for IQ modulator and demodulator 19 GNDIQ GND for IQ modulator and demodulator 20 QOUTB Negative output of Q signal for modulator 21 QOUT Positive output of Q signal for modulator 22 IOUTB Negative output of I signal for modulator 23 IOUT Positive output of I signal for modulator 24 MIX2OB Negative output for Mixer2 25 MIX2O Positive output for Mixer2 26 CLK Clock for serial data 27 SDATA Serial data for Gain control 28 LE Load enable for serial data 29 IFINB Negative input for Mixer2 30 IFIN Positive input for Mixer2 31 GNDIF GND for Mixer2 and PGA 32 VCCIF VCC for Mixer2 and PGA 33 IFVCOI Base of IFVCO transistor 34 IFVCOO Emitter of IFVCO transistor
4
Page 5
Pin Description (cont)
Pin No. Pin Name Description
35 BAND Band control (Low: GSM, High: PCN) 36 IFLO Output of IFVCO or Input of IF Local 37 GNDDIV GND for Divider and IFVCO 38 VCCDIV VCC for Divider and IFVCO 39 RFLOIN Input for RF Local 40 GNDMIX1 GND for Mixer1 41 VCCMIX1 VCC for Mixer1 42 MIX1OUT Positive output for Mixer1 (GSM/PCN) 43 MIX1OUTB Negative output for Mixer1 (GSM/PCN) 44 POONRX1 Power save control for LNA and Mixer1 45 POONRX2 Power save control for Mixer2, PGA and demodulator 46 POONTX Power save control for modulator and OPLL 47 MIX1INB2 Negative input for Mixer1 (PCN) 48 MIX1IN2 Positive input for Mixer1 (PCN)
HD155121F
5
Page 6
HD155121F
Block Diagram
Tune
GNDDIV
VCCDIV
1172MHz
(Rx: 1580MHz, Tx: 1575MHz)
from VCO
GNDMIX1
VCCMIX1
MIX1OUT
MIX1OUTB
POONRX1
POONRX2
RFLOIN
225MHz
(225MHz)
from
System controller
IFLO
BAND
IFVCOO
36
35
540
MHz
Vref
(IFVCO)
Vref
(Div.Rx)
(Div.Tx)
Vref
34
from
(Mix1)
IFVCOI
33
1/2 1/6
Band
SW
VCCIF
GNDIF
32
1/2
(1580/1575MHz) 1172MHz
GSM: 270MHz
225MHz
(225MHz)
IFIN
IFINB
31
30
1/2
(90deg)
(90deg)
45MHz
270MHz
(135MHz)
PCN: 135MHz
from System controller
LE
SDATA
CLK
29
28
27
26
Serial
interface
Vref
(PGA)
(IF)
Vref
(45MHz)
Vref
(Mod)
45MHz
(45MHz)
Vref
MIX2O
25
(Demod)
MIX2OB
23
IOUT
IOUTB
QOUT
QOUTB
GNDIQ
VCCIQ
MODB
IIN
45MHz
to Base bandfrom Base band
driver
ICURAD
IINB
QIN
13 14 15 16 17 18 19 20 21 22 24
12
RICURAD
from System controller
POONTX
MIX1INB2
MIX1IN2 QINB
(1805MHz)
47 46 45 44 43 42 41 40 39 38 37
48
947MHz
1
2
MIX1IN1
MIX1INB1
Vref
(LNA)
LNA
Bias
circuit
3
4
RFIN1
RFOUT
947MHz
from Antenna
1172MHz
(1580/
1575MHz)
Vref
5
RFIN2
VCCPLL
(1805MHz)
(PLL)
6
7
VCOIN2
GNDPLL
(1710MHz)
8
270MHz
(135MHz)
9
VCOIN1
902MHz
Tx.VCO1Tx.VCO2
mode
Current
10
11
PLLOUT
VCCCOMP
6
Page 7
Configuration
HD155121F
B.B.
I
Q
Block
I
Q
LC
45 MHz
Mixer2
225 MHz
Mixer1
RF
SAW
LNA
925 to 960 MHz
filter
IF
I & Q
PGA
SAW
bias
RF
Demo.
filter
Mixer1
circuit
filter
270 MHz
RF
SAW
LNA
1805 to
1880 MHz
45 MHz
interface
Serial data
: 1150 to 1185 MHz GSM
filter
bias
circuit
RF
filter
÷2
Shift
90 deg
HD155121F
÷2
: Rx. 1580 to 1655 MHz
/Tx. 1575 to 1650 MHz
PCN
RF VCO
PLL1
Dual
synth.
90 deg
÷6
PCN: 270 MHz
IFVCO
GSM: 540 MHz
PLL2
HD155017T
S/W
÷2
Shift
GSM: 270 MHz
PCN: 135 MHz
GSM: 540 MHz
GSM: 270 MHz
PCN: 135 MHz
PCN: 540 MHz
LPF
LPF
Mod
I & Q
Phase
Detector
filter
Loop
880 to 915 MHz
880 to 915 MHz
1710 to 1785 MHz
1710 to 1785 MHz
PA Module
7
Page 8
HD155121F
Functional Operation
The HD155121F has been designed from system stand point and incorporated a large number of the circuit blocks necessary in the design of a digital cellular handset.
Receiver Operation
The HD155121F incorporates two LNA bias circuits for external RF transistors, whose NF and power gain can be better selected.
This circuit amplifies the RF signal after selection by the antenna filter before the signal enters the first mixer section. The RF signal is combined with a local oscillator (LO) signal to generate a wanted first IF signal in the 130 - 300 MHz range. The first mixer circuit uses a double-balanced Gilbert cell architecture, which has open collector differential outputs. If, at 225 MHz, a 800 LC load is connected to the mixer’s outputs then a SSB NF of 9.0 dB (GSM), 9.1 dB (PCN) with a gain of 9.5 dB (GSM), 8.5 dB (PCN) is realizable. The corresponding input compression point is –10.5 dBm (GSM), –12.5 dBm (PCN), which allows the device to be used within a GSM and EGSM and PCN system.
A filter is used after the first mixer to provide image rejection and the conditioned signal is then passed through an intermediate amplifier, before being down converted to a second IF in the range of 26 - 60 MHz.
The second mixer can generate a 45 MHz second IF, if a 270 MHz second local signal is used. The second mixer also uses the Gilbert cell architecture, but with internal resistive differential outputs of 300 . If amplifier and second mixer has a SSB NF of 6.0 dB, a power gain of 13 dB and a input compression point of –22 dBm. In order to improve the blocking characteristics of the device an external LC resonator across the differential outputs of the second mixer is recommended.
First mixer and second mixer can switch the power gain. Switching gain step of first mixer is 12 dB, and such step of second mixer is 16 dB.
The signal is then passed to the PGA circuit, which has a dynamic range of more than 80 dB (–42 dB - +56 dB typ.) and is controlled by digital serial data, which is generated by the microprocessor. This gain step is 2 dB.
The signal is then down converted by a demodulator to I and Q. Internal divider circuits convert the IFLO signal to the same frequency as the second IF before passing this local signal through a phase splitter / shifter in order to generate the in phase and quadrature phase IQ components. The phase accuracy of the IQ demodulator is less than +/–1 degree and the amplitude mismatch is less than +/–0.5 dB. In order to accommodate different baseband interfaces the HD155121F IQ differential outputs have a voltage swing of
1.6 Vpp and DC offset of less than +/–60 mV. Within each output stage a second order Butterworth filter (fc = 210 kHz) is used to improve the blocking performance of the device.
In order to allow flexibility in circuit implementation the HD155121F can configured to use either a single­ended or balanced external circuitry and components.
8
Page 9
HD155121F
Transmitter Operation
The transmitter chain converts differential IQ baseband signals to a suitable format for transmission by a power amplifier.
The common mode voltage range of the modulator inputs is 0.8 V to 1.2 V and they have 2.0 Vpp differential swing. The modulator circuit uses double-balanced mixers for the I and Q paths. The Local signals are generated by dividing the IFLO signals by 2, and then passed to the modulator through a phase splitter / shifter. The IF signals generated are then summed to produce a single modulated IF signal which is amplified and fed into the offset PLL block. Carrier suppression due to the mixer circuit is better than 31 dBc. If the common mode DC voltage of the I and Q inputs is adjusted, carrier suppression is better than 40 dBc easily. Side band suppression is better than 35 dBc without adjustment.
Within the offset PLL block there are a down converter, a phase comparator and a VCO driver. The down converter mixes the first local signal and the TXVCO signal to create a reference local signal for use in the offset PLL circuit. The phase comparator and the VCO driver generate an error current, which is proportional to the phase differential between the reference IF and the modulated IF signals. This current is used in a second order loop filter to generate a voltage, which in turn modulates the TXVCO. In order to optimize the PLL loop gain, the error current value can be modified by changing the value of an external resistor - ICURAD. In order to accommodate various control range of TXVCOs, the offset PLL circuit has been designed to operate with a supply voltage up to 5.25 V.
9
Page 10
HD155121F
Operation Modes
The HD155121F has necessary control circuitry to implement the necessary states within the dual band system. Also provided is a power saving mode which reduces the current consumption of the device by powering down unnecessary function blocks. Three pins are assigned for power saving mode control, POONRX1, POONRX2 and POONTX. Also one pin is assigned for switching operational band, BAND. Table 1 shows the relationship between the pins and the required operating mode. These pins are controlled by the system controller.
As per GSM requirements the Tx and Rx sections do not operate simultaneously. For the receiver there is a calibration mode in which the LNA bias circuit and first mixer are switched off. During this period the gain of the PGA can be adjusted. Also the DC offsets of the IQ demodulator are measured and subsequently canceled.
In order to change between the Rx and Tx modes a state called “warm-up” is used to ensure that the local signals are not unduly affected. This method of switching between Tx and Rx ensures that lock is achieved first time.
Power saving is implemented through use of the idle mode. All function blocks of the HD155121F are switched off until such time as the system controller commands the device to power up again.
Table 1 Operating Modes with Power Saving
Mode Receive Calibrate Warm-up Transmit Idle Band GSM PCN GSM PCN
POONRX1 (44) H H L L L L H POONRX2 (45) H H H L L L L POONTX (46) L L L L H H Don’t care BAND (35) L H Don’t care Don’t care L H Don’t care Rx block LNA bias (GSM) ON OFF OFF OFF OFF OFF OFF
LNA bias (PCN) OFF ON OFF OFF OFF OFF OFF 1st Mixer (GSM) ON OFF OFF OFF OFF OFF OFF 1st Mixer (PCN) OFF ON OFF OFF OFF OFF OFF 2nd Mixer ON ON ON OFF OFF OFF OFF PGA ON ON ON OFF OFF OFF OFF I/Q demodulator ON ON ON OFF OFF OFF OFF
Tx block Offset PLL OFF OFF OFF OFF ON ON OFF
I/Q modulator OFF OFF OFF OFF ON ON OFF Oscillator IF VCO ON ON ON ON ON ON OFF block Divider (Rx) ON ON ON OFF OFF OFF OFF
Divider (Tx) OFF OFF OFF OFF ON ON OFF
1st local buffer ON ON ON ON ON ON OFF
IF local buffer ON ON ON ON ON ON OFF Total current 53 mA 52 mA 34 mA 9.0 mA 36 mA 37 mA 1 µA
10
Page 11
HD155121F
Absolute Maximum Ratings
Any stress in excess of the absolute maximum ratings can cause permanent damage to the HD155121F.
Item Symbol Rating Unit
Power supply voltage (V Power supply voltage (V Pin voltage V Maximum power dissipation P Operating temperature Topr –20 to +75 °C Storage temperature Tstg –55 to +125 °C
)VCC–0.3 to +4.0 V
CC
)V
CCCOMP
CCCOMP
T
T
–0.3 to +5.5 V –0.3 to VCC+0.3 (4.0 Max) V 400 mW
11
Page 12
HD155121F
CCCO
Electrical Characteristics
DC Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified.)
Item Mode Min Typ Max Unit Test Condition Note
Power supply voltage (VCC) 2.7 3.0 3.6 V Power supply voltage (V Power supply current (Rx.) GSM 53.0 74.0 mA VCC = 3.0V, V
Power supply current (Tx.) GSM 36.0 50.0 mA VCC = 3.0V, V
Power supply current (Warm-up) 9.0 12.5 mA VCC = 3.0V, V Power saving mode supply current 1.0 10.0 µAVCC = 3.0V, V
Power up time (Rx.) 1.5 5.0 µsec from PS mode 1 Power up time (Tx.) 0.2 0.5 µsec from PS mode 1 Power on control voltage range
(POONRX1, POONRX2, POONTX) Power off control voltage range
(POONRX1, POONRX2, POONTX) I/Q common-mode output voltage 1.15 1.35 1.55 V I/Q maximum output swing
(Single ended) I/Q output DC offset voltage –60 0 60 mV VIOUTDC – VIOUTBDC,
I/Q common-mode input voltage 0.8 1.0 1.2 V 1 I/Q input swing (Single ended) 0.8 1.0 1.2 Vp-p VIIN, VIINB, VQIN, VQINB 1 Serial data VH (CLK, SDATA, LE) 2.3 V Serial data VL (CLK, SDATA, LE) 0.8 V Band control VH (BAND) 2.3 V Band control VL (BAND) 0.8 V Input current
(POONRX1, POONRX2, POONTX, BAND, CLK, SDATA, LE)
Note: 1. These values are not tested in mass production.
2. Power supply current does not include the LNA bias current.
) 2.7 3.0 5.25 V
CCCOMP
PCN 52.0 73.0 mA Mixer1, 2 = Gain1,
PCN 37.0 52.0 mA
2.3 V
0.8 V
0.8 1.06 Vp-p VIOUT, VIOUTB,
–10 0 10 µA
= 3.0V, 2
CCCOMP
PGA = bitNo26
= 3.0V 2
CCCOMP
= 3.0V 2
CCCOMP
= 3.0V
MP
High level = VCC, Low level = 0V at mode control pin and serial data pin (POONRX1, RX2, TX, BAND, CLK (no clock signal), SDATA, LE)
VQOUT, VQOUTB
VQOUTDC, VQOUTBDC
2
12
Page 13
HD155121F
AC Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified.)
LNA Bias circuit specifications
Item Mode Min Typ Max Unit Test Condition Note
LNA transistor bias current GSM 4.7 5.6 mA
PCN 4.7 5.6 mA
Frequency GSM 925 960 MHz 1
PCN 1805 1880 MHz
Power gain GSM 19.4 dB RF = 940 MHz 1
PCN 13.4 dB RF = 1842 MHz
Noise figure GSM 1.6 dB RF = 940 MHz 1
PCN 1.6 dB RF = 1842 MHz
3rd order input intercept point GSM –6.0 dBm 1
PCN –2.0 dBm
3rd order output intercept point GSM 13 dBm 1
PCN 11 dBm
1dB input compression point GSM –14.5 dBm 1
PCN –9.5 dBm
1dB output compression point GSM 3.9 dBm 1
PCN 2.9 dBm
Output (RF) Z GSM 50 Output (GSM RF) 1
PCN 50 Output (PCN RF)
Input (RF) Z GSM 50 Input (GSM RF) 1
PCN 50 Input (PCN RF)
Note: 1. These AC characteristics are shown for reference only and do not form part of the HD155121F
component specification.
13
Page 14
HD155121F
Mixer1 specifications (Differential output load between pin42 and pin43 = 800 Ω)
Item Mode Min Typ Max Unit Test Condition Note
Frequency (RF) GSM 925 960 MHz 1
PCN 1805 1880 MHz
Frequency (LO) GSM 1125 1260 MHz 1
PCN 1505 1680 MHz Frequency (IF) 200 225 300 MHz 1 RFLO input level –8.0 dBm Conversion gain 1 GSM 6.5 9.5 12.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 2
PCN 5.5 8.5 11.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz Conversion gain 2 GSM –5.5 –2.5 0.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 2
PCN –6.5 –3.5 –0.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz Noise figure 1 GSM 9.0 10.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2
PCN 9.1 10.6 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz Noise figure 2 GSM 15.0 16.5 dB RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2
PCN 16.0 17.5 dB RF = 1842MHz, LO = 1617MHz, IF = 225MHz 3rd order input
intercept point 1
3rd order input intercept point 2
3rd order output intercept point 1
3rd order output intercept point 2
1dB input GSM –12.5 –10.5 dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 2 compression point 1 PCN –14.5 –12.5 dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz 1dB input GSM –8.5 –6.5 dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 2 compression point 2 PCN –10.5 –8.5 dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz 1dB output GSM –4.0 –2.0 dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2 compression point 1 PCN –7.0 –5.0 dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz 1dB output GSM –12.0 –10.0 dBm RF = 940MHz, LO = 1165MHz, IF = 225MHz 1, 2 compression point 2 PCN –15.0 –13.0 dBm RF = 1842MHz, LO = 1617MHz, IF = 225MHz
Note: 1. These values are not tested in mass production.
2. The loss (2.2 dB) of test circuit at Mixer1 output is calculated.
GSM –3.0 –1.0 dBm RF1 = 940.8MHz, RF2 = 941.6MHz,
LO = 1165MHz, IF = 225MHz
PCN –6.0 –4.0 dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,
LO = 1617MHz, IF = 225MHz
GSM 1.0 3.0 dBm RF1 = 940.8MHz, RF2 = 941.6MHz,
LO = 1165MHz, IF = 225MHz
PCN –3.0 –1.0 dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,
LO = 1617MHz, IF = 225MHz
GSM 6.5 8.5 dBm RF1 = 940.8MHz, RF2 = 941.6MHz,
LO = 1165MHz, IF = 225MHz
PCN 2.5 4.5 dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,
LO = 1617MHz, IF = 225MHz
GSM –1.5 0.5 dBm RF1 = 940.8MHz, RF2 = 941.6MHz,
LO = 1165MHz, IF = 225MHz
PCN –6.5 –4.5 dBm RF1 = 1842.8MHz, RF2 = 1843.6MHz,
LO = 1617MHz, IF = 225MHz
1, 2
1, 2
1, 2
1, 2
14
Page 15
HD155121F
Mixer2 specifications
Item Mode Min Typ Max Unit Test Condition Note
Frequency (IF1) 200 225 300 MHz 1 Frequency (LO2) 240 270 360 MHz LO2 = IFLO/2 1 Frequency (IF2) 40 45 60 MHz 1 IFLO input level –10 dBm Conversion gain 1 10.5 13.0 15.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2 Conversion gain 2 –5.5 –3.0 –0.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2 Noise figure 1 6.0 7.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2 Noise figure 2 12.0 13.5 dB IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2 3rd order input
intercept point 1 3rd order input
intercept point 2 3rd order output
intercept point 1 3rd order output
intercept point 2 1dB input
compression point 1 1dB input
compression point 2 1dB output
compression point 1 1dB output
compression point 2 Isolation 50 dB between Mixer1 output and Mixer2 input 1, 2
Note: 1. These values are not tested in mass production.
2. The loss (3.6 dB) of test circuit at Mixer2 output is calculated.
–15.0 –13.0 dBm IF1 = 225.8MHz, IF2 = 226.6MHz,
LO = 540MHz, 2ndIF = 45MHz
–11.0 –9.0 dBm IF1 = 225.8MHz, IF2 = 226.6MHz,
LO = 540MHz, 2ndIF = 45MHz
–2.0 0.0 dBm IF1 = 225.8MHz, IF2 = 226.6MHz,
LO = 540MHz, 2ndIF = 45MHz
–14.0 –12.0 dBm IF1 = 225.8MHz, IF2 = 226.6MHz,
LO = 540MHz, 2ndIF = 45MHz
–24.0 –22.0 dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2
–21.0 –19.0 dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 2
–12.0 –10.0 dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2
–24.0 –22.0 dBm IF1 = 225MHz, IFLO = 540MHz, IF2 = 45MHz 1, 2
1, 2
1, 2
1, 2
1, 2
15
Page 16
HD155121F
PGA and IQ Demodulator specifications (terminated by 10 kΩ at IQ demodulator output)
Item Mode Min Typ Max Unit Test Condition Note
Input frequency 40 45 60 MHz 1 Gain range 98 dB 1 Gain linearity –0.8 0.8 dB (in any 20dB window) 1 Gain step 2 dB 1 Noise figure 1 10.9 14 dB IF2 = 45MHz, bitNo46 1, 2 Noise figure 2 21.2 24 dB IF2 = 45MHz, bitNo26 1, 2 Noise figure 3 53.4 60 dB IF2 = 45MHz, bitNo6 1, 2 Gain 1 47.0 51.5 56.0 dB IF2 = 45MHz, bitNo46 2 Gain 2 7.0 11.5 16.0 dB IF2 = 45MHz, bitNo26 2 Gain 3 –33.0 –28.5 –24.0 dB IF2 = 45MHz, bitNo6 2 i/p CP 1 –70.5 –66 dBm IF2 = 45MHz, bitNo46 2 i/p CP 2 –37 –34 dBm IF2 = 45MHz, bitNo26 2 i/p CP 3 –14 –11 dBm IF2 = 45MHz, bitNo6 2 IQ phase accuracy 0.2 1.0 deg. Baseband = 67.7kHz IQ amplitude mismatch 0.1 0.5 dB Baseband = 67.7kHz 2 Output DC offset voltage 0 | 60 | mV | IOUT–IOUTB | and
| QOUT–QOUTB | Load out = 10k
IQ maximum output swing (Single ended)
I/Q common mode output voltage
Note: 1. These values are not tested in mass production.
2. The loss (3.6 dB) of test circuit at PGA input is calculated.
0.8 1.06 Vp-p Baseband = 67.7kHz IOUT, IOUTB, QOUT, QOUTB Load out = 10k
1.15 1.35 1.55 V
16
Page 17
HD155121F
IQ Modulator and Offset PLL specifications (IFLO is supplied by signal generator equipment)
Item Mode Min Typ Max Unit Test Condition Note
Frequency (RF) GSM 880 915 MHz 1
PCN 1710 1785 MHz
Frequency (LO) GSM 1150 1185 MHz 1
PCN 1530 1665 MHz
Frequency (IF) GSM 270 MHz
PCN 135 MHz RFLO input level –8 dBm IFLO input level –20 –10 dBm VCOIN1 & VCOIN2 input level –25 –15 –10 dBm 1 Carrier suppression ratio 31 40 dBc All ‘1’ GMSK (Differential encode: off)
(Baseband = 67.7kHz)
Side-band suppression ratio 35 40 dBc I/Q input swing = 1.0Vp-p,
I/Q common mode input voltage = 1.0Vdc
Phase accuracy GSM 1.0 2.5 RMS 200kHz BW 1
GSM 3.0 7.5 peak 200kHz BW
PCN 1.0 2.4 RMS 200kHz BW
PCN 3.0 7.0 peak 200kHz BW Modulation spectrum GSM –34.0 dB 200kHz offset 1
PCN –34.5 dB 30kHz bandwidth Spectrum analyzer condition GSM –68.0 dB 400kHz offset 1 Detector mode: positive peak PCN –67.0 dB 30kHz bandwidth
GSM –71.0 dB 600kHz to 1.8MHz offset 1
PCN –70.0 dB 30kHz bandwidth
GSM –71.5 dB 1.8MHz to 3MHz offset 1
PCN –72.0 dB 100kHz bandwidth
GSM –74.0 dB 3MHz to 6MHz offset 1
PCN –74.0 dB 100kHz bandwidth
GSM –76.0 dB 6MHz upward offset 1
PCN –76.0 dB 100kHz bandwidth Isolation of the 1st local input to
TxVCO input IQ input swing (Single ended) 0.8 1.0 1.2 Vp-p IIN, IINB, QIN, QINB 1 I/Q common mode input voltage 0.8 1.0 1.2 V IIN, IINB, QIN, QINB 1 PLLOUT output current ratio 1:0.5 IPLLOUT GSM : IPLLOUT PCN 1 Phase detector
offset current ratio
Note: 1. These values are not tested in mass production.
43 dB 1
0.30 0.35 0.45 offset current / output current IIN = 1.5V (DC), IINB = 0.5V (DC) QIN = 1.5V (DC), QINB = 0.5V (DC)
1
17
Page 18
HD155121F
IQ Modulator and Offset PLL specifications (IFLO is supplied by signal generator equipment) (cont)
Item Mode Min Typ Max Unit Test Condition Note
Tx noise in Rx band
Lock up time GSM 35 80 µsec 1
Note: 1. These values are not tested in mass production.
IFVCO specifications
Item Mode Min Typ Max Unit Test Condition
Bias current 0.9 2.0 2.5 mA
GSM –155.1 dBc/Hz 925MHz to 935MHz
- 10MHz up from Txband
GSM –164.1 dBc/Hz 935MHz to 960MHz
- 20MHz up from Txband PCN –156 dBc/Hz 1805MHz - 20MHz up from Txband PCN –162 dBc/Hz 1850MHz - 65MHz up from Txband
PCN 65 80 µsec
1
18
Page 19
HD155121F
Rx Gain Control Stage
The PGA amplifier of the HD155121F is the main Rx gain control stage. However, Mixer1 and Mixer2 gain level can switched as an optional function in order to optimize system performance.
Mixer1
LNA
LNA
bias circuit
bias circuit
Mixer1
Bit allocation
Mixer2
X6 X5 X4 X3 X2 X1 X0
X7
Serial data
X7 : for Mixer1 gain X6 : for Mixer2 gain X5 : X4 : X3 :
for PGA gain
X2 : X1 : X0 :
PGA
Decoder
I&Q Demo.
Figure 1
Table 2 First Mixer Gain Control Table (as optional function)
Item Band Gain (typ) X7
Gain 1 (normal gain) GSM 9.5 dB 0
PCN 8.5 dB 0
Gain 2 (low gain) GSM –2.5 dB 1
PCN –3.5 dB 1
I Q
CLK (26) SDATA (27) LE (28)
Table 3 Second Mixer Gain Control Table (as optional function)
Item Gain (Typ) X6
Gain 1 (normal gain) 13.0 dB 0 Gain 2 (low gain) –3.0 dB 1
19
Page 20
HD155121F
Table 4 PGA and IQ Demodulator Block Gain Control
bitNo
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
9 8 7 6 5 4 3 2 1 0
Gain (dB)
(Typ)
57.5
55.5
53.5
51.5
49.5
47.5
45.5
43.5
41.5
39.5
37.5
35.5
33.5
31.5
29.5
27.5
25.5
23.5
21.5
19.5
17.5
15.5
13.5
11.5
9.5
7.5
5.5
3.5
1.5
0.5
2.5
4.5
6.5
8.5
10.5
12.5
14.5
16.5
18.5
20.5
22.5
24.5
26.5
28.5
30.5
32.5
34.5
36.5
38.5
40.5
X5
Bit Allocation
X4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X3
X2
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
X1
X0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
20
Page 21
Serial Data Interface
HD155121F
tcyc
CLK
thldtstup
X6 X5 X4 X3 X2 X1 X0X7SDATA
LE
tsule
LSBMSB
twle
Figure 2 Three-Wire Bus Timing Diagram
Serial Data Interface Specifications (VCC = 3 V, Ta = 25°C unless otherwise specified)
Item Symbol Min Typ Max Unit Test Condition Note
Cycle time tcyc 50 nsec 1 Setup time tstup 10 nsec 1 Hold time thld 10 nsec 1 LE setup time tsule 25 nsec 1 LE width twle 25 nsec 1
Note: 1. These values are not tested in mass production.
2. User can program the data for the PGA, while in any state.
21
Page 22
HD155121F
Test Circuit
1000p
0
VHS LO
IN/OUT(J11)
4p
15n
no fit
0
no fit
VTUNE
no fit
no fitno fitno fit
no fit
BAND
VCC
1000p
MIX2 IF
0
INPUT(J5)
IOUT
IOUTB
QOUT
UHF LO
INPUT(J10)
VCC
VCC
MIX1 IF
OUTPUT(J6)
POONRX1POONTX
POONRX2
RFIN(J7)
DCS MIX1
1000p
1000p
1000p
TOKO
617PT-1206
5
4
3p
12n
no fit
8p
8p
100n
1000p
10k
10k
10k
33p
33p 1p
1000p 1000p
100
68
100
560p
10
10k
1000p
MURATA
MQE9P7-897
6800p 33
390
321
OUT VCC
GND GND
456
Kv=30MHz/V
MIX2 OUTPUT
/PGA INPUT(J1)
IOUT
IOUTB
QOUT
QOUTB
VCC IIN
IINB
QIN
QINB
MOD CON
TX VCO1
47
3635343332313029282726
IFLO
37 38 39 40
(Q>40)
220n
3 2 1
0.5p
1000p
41 42 43 44 45 46 47 48
0.1µ
2p4.7n
BAND GNDDIV VCCDIV RFLOIN GNDMIX1 VCCMIX1 MIX1OUT MIX1OUTB POONRX1 POONRX2 POONTX MIX1INB2 MIX1IN2
MIX1INB1
MIX1IN1
123456789
IFIN
VCCIF
GNDIF
IFVCOI
IFVCOO
HD155121F
RFOUT
RFIN1
RFIN2
VCCPLL
GNDPLL
6p
47p
47p
10pno fit
10n
820
2p
2p
Siemens: BFP420
22p
6.8n
0 10k
3.3n
2p
1p
10pno fit
2.7n
1p
Siemens: BFP420
10p
0 10k
1000p
IFINB
VCOIN2
no fit
LE
VCOIN1
101112
25
CLK
SDATA
VCCCOMP
PLLOUT
1000p
MIX2O
MIX2OB
IOUT IOUTB QOUT
QOUTB
GNDIQ VCCIQ
MODLB
QINB
ICURAD
33p33p 1p
IINB
24 23 22 21 20 19 18 17 16
IIN
15 14
QIN
13
22k
68
MURATA
10
100 100
1000p
1000p
321
456
Kv=47MHz/V
MQE9P7-1747
TOKO
617DB-1018
3 2 145
0 0 0 0
0 0 0 0
390
OUT VCC
GND GND
MOD CON
TX VCO2
22
RFIN(J3)
GSM MIX1
GSM LNA
RFOUT(J2)
RFIN(J4)
GSM LNA
DCS LNA
RFOUT(J8)
RFIN(J9)
DCS LNA
VCC
VCCCOMP
(J14)
OUTPUT
TX_VCO2
VCCVCO2
(J12)
OUTPUT
TX_VCO1
VCCVCO1
Page 23
Typical Performance
Power Supply Current Typical Performance
6
3
4
Active bias circuit
5 26
for GSM
for PCN
LNA bias current [mA] = (Vb Va) / 10
b
a
b
a
TRS: Siemens
no fit
10
4.7k
no fit
10
4.7k
BFP420
10p
10p
10p
10 17 18 32 38
+
+
7 19 31 37 40
41 42 43
POONRX1 POONRX2
POONTX
BAND
LE
SDATA
CLK
HD155121F
ICC [mA]
AVCC = 3.0V
Rx
Unit:
High
Low High for PCN
Low for GSM
R : C : F
44 45 High 46
35 28 27 Bit number 26
Tx Low Low High
Figure 3
Power supply current does not include the LNA bias current calculated by below formula.
Power supply current [mA] = ICC [mA] – LNA Bias current [mA]
23
Page 24
HD155121F
Power Supply Current Typical Performance (cont)
Receive mode Power supply current vs. V GSM mode, Gain1 (Normal gain), Bit No.26
and Temperature
CC
70
Operating voltage range
65
60
55
50
Power supply current (mA)
45
40
32.52 V
(V)
CC
Transmit mode Power supply current vs. V GSM mode
and Temperature
CC
55
50
45
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Receive mode Power supply current vs. V PCN mode, Gain1 (Normal gain), Bit No.26
70
Operating voltage range
65
and Temperature
CC
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
60
55
50
Power supply current (mA)
45
40
54.543.5
32.52 V
(V)
CC
54.543.5
Transmit mode Power supply current vs. VCC and Temperature PCN mode
55
Operating voltage rangeOperating voltage range
50
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
45
40
35
Power supply current (mA)
30
25
32.52
24
40
35
Power supply current (mA)
30
25
54.543.5
(V)
V
CC
32.52 V
(V)
CC
54.543.5
Page 25
LNA Bias Circuit Typical Performance
Bias current [mA] = (Vb Va) / 10
no fit
no fit
10p
3
4
10p
5 26
10p
for GSM
for PCN
b
10
a
4.7k
b
10
a
4.7k
TRS: Siemens
BFP420
6 17 18 32 38
+
Active bias circuit
7 19 31 37 40
41 42 43
POONRX1 POONRX2
POONTX
+
BAND
SDATA
= 3.0V
V
CC
44
High
45 High
Low High for PCN
Low for GSM
LE
46
35 28 27 all bit = 0 (no care)
CLK
R :
Unit:
C : F
HD155121F
Figure 4
Bias current vs. V
6.4
Operating voltage range
6.2
6.0
5.8
5.6
5.4
Bias current (mA) @Ext. TRS
5.2
5.0
and Temperature
CC
32.52 V
(V)
CC
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
4.543.5
25
Page 26
HD155121F
Mixer1 Typical Performance
1000p
Input (GSM_RF) 940MHz: 30dBm (50)
Input (PCN_RF) 1842MHz: 30dBm (50)
Input (Lo) GSM: 1165MHz, 8dBm PCN: 1617MHz, 8dBm
Note: 1.2.Mixer1 is open collector type.
Please tune this LC resonant circuit to get the maximum conversion gain at 225MHz.
2p
12n
2.5p 6p
4.7n
1.5p
1000p1000p
47
V
= 3.0V
CC
6
10 17 18 32 38
2
1 43
48
47
39
7 46 31 37 40
Mixer1
Mixer1
TOKO 617PT-1206, insertion loss 2.2dB 800 : 50
41 44 45
*1
BAND
CLK
SDATA
Figure 5
LE
42
35 26 27 28
V
= 3.0V
CC
*2
0.5p
220n
(Q>40)
GSM: "Low" PCN: "High"
Gain1: X7 = 0 for High gain Gain2: X7 = 1 for Low gain other bit is no care
1000p
1000p
1000p
Unit: R :
C : F
Output (IF) 225MHz (50)
Item Mode Min Typ Max Unit Test Condition Note
Input (RF) Z GSM 50 RF = 940MHz 1
PCN 50 RF = 1842MHz
Differential output load
800 IF = 225MHz 1
between pin42 and pin43 Output (IF) Z 50 IF = 225MHz 1 Input (LO) Z 50 LO = 1165, 1617MHz 1 Input (RF) VSWR GSM 2 RF = 940MHz 1
PCN 2 RF = 1842MHz
Input (LO) VSWR GSM 2 LO = 1150 to 1185MHz 1
PCN 4 LO = 1580 to 1655MHz
Note: 1. These values are not tested in mass production.
26
Page 27
Mixer1 Typical Performance (cont)
Mixer1 S parameters Port1: pin2 (MIX1IN1) Port2: pin1 (MIX1INB1)
HD155121F
Frequency
(MHz)
895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990
Mag.(mU)
754.62
752.44
752.00
750.32
749.06
748.42
748.51
747.39
747.02
747.44
747.37
747.45
747.73
746.74
745.30
743.28
740.18
737.01
734.02
732.70
Ang.(degree)
82.557
82.957
83.314
83.658
84.053
84.440
84.849
85.213
85.626
86.053
86.488
87.054
87.535
88.119
88.735
89.301
89.825
90.247
90.646
90.928
Mag.(mU)
S21S11 S22S12
Ang.(degree)
109.41
111.75
114.04
116.14
117.73
119.37
120.64
121.21
121.81
121.93
121.22
119.98
118.34
116.90
116.23
116.77
118.14
120.72
123.00
124.32
91.89
91.71
91.39
90.76
90.14
89.31
88.41
87.64
86.90
85.90
85.11
84.55
84.32
84.63
85.41
86.34
87.31
87.54
87.15
86.51
Mag.(mU)
107.94
110.03
112.02
113.69
115.37
116.73
118.02
118.93
119.54
119.78
119.74
119.01
117.70
116.32
116.29
116.94
119.06
121.81
124.35
125.87
Ang.(degree)
90.73
90.71
90.57
90.19
89.68
89.03
88.48
87.72
87.08
86.27
85.56
85.13
84.95
85.38
86.13
87.04
87.75
87.96
87.64
86.67
Mixer1 S parameters Port1: pin48 (MIX1IN2) Port2: pin47 (MIX1INB2)
Frequency
(MHz)
1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890
Mag.(mU)
522.87
523.98
525.39
526.77
527.49
528.26
529.92
531.15
532.28
533.43
534.27
535.62
536.47
537.71
538.84
539.18
540.41
541.22
541.78
542.05
Ang.(degree)
137.31
137.67
138.01
138.39
138.68
139.03
139.36
139.75
140.13
140.54
140.93
141.23
141.66
142.01
142.45
142.85
143.27
143.76
144.18
144.59
Mag.(mU)
S21S11 S22S12
Ang.(degree)
173.99
174.59
174.84
175.19
175.11
175.97
175.84
175.93
176.03
175.87
175.65
175.01
174.36
173.43
172.32
170.91
169.63
167.87
166.42
164.56
54.38
54.42
54.36
54.40
54.23
54.08
53.85
53.54
53.25
52.85
52.50
52.14
51.65
51.37
51.08
50.76
50.55
50.28
50.26
50.29
Mag.(mU)
179.98
178.85
178.30
177.57
176.49
176.09
175.23
174.88
174.18
173.91
172.74
172.61
171.73
171.48
170.72
170.10
169.55
168.56
168.32
167.81
Ang.(degree)
56.40
56.36
56.29
56.30
56.34
56.40
56.38
56.61
56.57
56.55
56.68
56.61
56.67
56.79
56.84
56.93
56.99
56.99
57.05
57.13
Mag.(mU)
739.46
737.07
735.32
733.45
732.38
731.16
730.91
729.92
729.54
729.38
730.05
730.63
730.78
730.02
728.56
724.68
721.14
717.34
713.39
711.49
Mag.(mU)
601.94
601.55
600.91
600.89
599.30
599.71
598.92
598.29
597.93
597.23
596.37
596.30
594.72
594.24
592.85
592.38
591.02
590.16
589.17
588.64
Ang.(degree)
79.502
79.884
80.164
80.543
80.877
81.223
81.544
81.910
82.283
82.668
83.100
83.532
84.137
84.752
85.411
86.052
86.574
86.974
87.278
87.564
Ang.(degree)
158.40
158.76
159.11
159.53
159.93
160.34
160.88
161.22
161.63
162.11
162.53
163.01
163.49
163.88
164.40
164.88
165.30
165.77
166.18
166.65
27
Page 28
HD155121F
Mixer1 Typical Performance (cont)
Mixer1 S parameters Port1: pin42 (MIX1OUT) Port2: pin43 (MIX1OUTB)
Frequency
(MHz)
200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295
Mag.(mU)
979.93
979.30
978.24
977.43
976.58
976.18
975.31
975.16
974.11
973.55
972.26
972.06
970.73
970.76
970.42
969.30
968.44
967.83
967.14
966.09
Ang.(degree)
21.27
21.81
22.34
22.87
23.40
23.92
24.52
25.09
25.63
26.17
26.73
27.26
27.84
28.39
28.96
29.53
30.07
30.62
31.22
31.81
Mag.(mU)
S21S11 S22S12
Ang.(degree)
39.05
39.96
40.89
41.69
42.67
43.57
44.53
45.42
46.28
47.20
48.11
49.00
49.94
50.80
51.86
52.79
53.69
54.68
55.62
56.58
71.100
70.994
70.756
70.563
70.378
70.299
70.052
69.956
69.759
69.519
69.336
69.190
68.994
68.729
68.590
68.259
68.041
67.840
67.524
67.183
Mixer1 S parameters Port1: pin39 (RFLOIN)
Frequency
(MHz)
1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215
Mag.(mU)
831.05
829.47
827.93
827.36
825.87
825.65
823.25
823.08
821.69
820.33
820.23
818.66
817.64
816.39
815.89
813.73
813.55
812.42
811.32
810.04
S11 S11
Ang.(degree)
71.478
71.805
72.134
72.485
72.816
73.101
73.414
73.701
74.035
74.371
74.659
75.064
75.335
75.674
76.100
76.425
76.784
77.127
77.471
77.885
Frequency
(MHz)
1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665
Mag.(mU)
690.53
689.12
686.98
685.49
683.72
682.04
679.93
677.68
675.71
674.24
671.69
669.77
667.97
664.89
663.02
661.31
658.60
656.49
653.78
651.73
Mag.(mU)
39.14
40.15
41.05
41.89
42.91
43.78
44.63
45.54
46.48
47.37
48.19
49.14
50.02
50.89
51.76
52.69
53.58
54.51
55.43
56.32
Ang.(degree)
101.924
102.299
102.703
103.040
103.392
103.758
104.098
104.415
104.781
105.128
105.454
105.790
106.114
106.415
106.713
107.018
107.243
107.590
107.769
108.016
Ang.(degree)
71.494
71.345
71.132
70.953
70.816
70.541
70.304
70.236
69.980
69.706
69.524
69.408
69.103
68.995
68.833
68.558
68.427
68.220
67.966
67.699
Mag.(mU)
979.20
978.83
977.99
977.11
977.38
975.97
974.84
974.52
974.24
972.84
972.50
971.62
971.00
970.58
969.11
968.29
967.22
966.67
965.98
965.50
Ang.(degree)
21.64
22.17
22.73
23.29
23.85
24.42
25.00
25.58
26.15
26.77
27.34
27.92
28.50
29.05
29.65
30.23
30.82
31.40
32.00
32.63
28
Page 29
Mixer1 Typical Performance (cont)
HD155121F
Conversion gain vs. V GSM mode. Gain1 (Normal gain)
15 14
Operating voltage range
and Temperature
CC
13 12 11
10
9 8
Conversion gain (dB)
7 6 5
32.52 V
(V)
CC
Conversion gain vs. VCC and Temperature PCN mode. Gain1 (Normal gain)
15 14
Operating voltage range
13 12 11
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Conversion gain vs. V GSM mode. Gain2 (Low gain)
3 2
Operating voltage range
1 0
and Temperature
CC
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
1
2
3
4
Conversion gain (dB)
5
6
7
4.543.5
Conversion gain vs. V PCN mode. Gain2 (Low gain)
3 2
32.52 V
(V)
CC
and Temperature
CC
Operating voltage range
1 0
4.543.5
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
1
10
9 8
Conversion gain (dB)
7 6 5
2
3
4
Conversion gain (dB)
5
6
7
32.52 (V)
V
CC
4.543.5
32.52 V
(V)
CC
4.543.5
29
Page 30
HD155121F
Mixer1 Typical Performance (cont)
Noise figure(SSB) vs. VCC and Temperature GSM mode. Gain1 (Normal gain)
15 14
Operating voltage range
13 12 11
10
9
NF SSB (dB)
8 7 6 5
32.52 V
(V)
CC
Noise figure(SSB) vs. VCC and Temperature PCN mode. Gain1 (Normal gain)
15 14
Operating voltage range
13 12 11
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Noise figure(SSB) vs. VCC and Temperature GSM mode. Gain2 (Low gain)
20 19 18 17
Operating voltage range
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
16 15
14
NF SSB (dB)
13 12 11 10
4.543.5
32.52 V
(V)
CC
4.543.5
Noise figure(SSB) vs. VCC and Temperature PCN mode. Gain2 (Low gain)
20 19 18 17
Operating voltage range
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
16
10
9
NF SSB (dB)
8 7 6 5
30
15 14
NF SSB (dB)
13 12 11 10
32.52 (V)
V
CC
4.543.5
32.52 V
(V)
CC
4.543.5
Page 31
Mixer1 Typical Performance (cont)
HD155121F
1dB Input compression point vs. V
and Temperature
CC
GSM mode. Gain1 (Normal gain)
5
6
Operating voltage range
7
8
9
10
11
12
13
14
1dB Input compression point (dBm)
15
32.52 V
(V)
CC
1dB Input compression point vs. V
and Temperature
CC
PCN mode. Gain1 (Normal gain)
10
11
Operating voltage range
12
13
14
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
1dB Input compression point vs. VCC and Temperature GSM mode. Gain2 (Low gain)
0
1
Operating voltage range
2
3
4
5
6
7
8
9
1dB Input compression point (dBm)
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
10
4.543.5
32.52 V
(V)
CC
4.543.5
1dB Input compression point vs. V
and Temperature
CC
PCN mode. Gain2 (Low gain)
5
6
Operating voltage range
7
8
9
15
16
17
18
19
1dB Input compression point (dBm)
20
32.52 (V)
V
CC
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
10
11
12
13
14
1dB Input compression point (dBm)
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
15
4.543.5
32.52 V
(V)
CC
4.543.5
31
Page 32
HD155121F
Mixer1 Typical Performance (cont)
Delta (Gain1Gain2) vs. VCC and Temperature GSM mode.
15 14
Operating voltage range
13 12 11
10
9 8 7
Delta (Gain1Gain2) gain (dB)
6 5
32.52 V
(V)
CC
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Delta (Gain1Gain2) vs. VCC and Temperature PCN mode.
15 14
Operating voltage range
13 12 11
10
9 8 7
Delta (Gain1Gain2) gain (dB)
6
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
5
4.543.5
32.52 V
(V)
CC
4.543.5
32
Page 33
Mixer2 Typical Performance
High POONRX144 High POONRX2
Low POONTX
50
Input (IF1) 225MHz
50dBm
Input2 (IFLO) 540MHz
10dBm
8p
100n NC
8p
50
4p
15n
1000p
6
17 18 32 38 41
45 46
IF Amp MIX2
30
29
36
7 19
300
300
PGA
÷2
DIV
31 37 40
42 43
DEM
BAND
LE
SDATA
CLK
HD155121F
V
= 3.0V
CC
TOKO 617DB1018 (200: 50) Test circuit insertion loss = 3.6dB
50
25
24
35 Low 28 27 26
X6 = 0 for High gain X6 = 1 for Low gain other bit is no care
1000p
1000p
Unit: R :
Output (IF2) 45MHz
C : F
Figure 6
Item Mode Min Typ Max Unit Test Condition Note
Input (IF) Z 50 IF1 = 225MHz 1 LO Z 50 IFLO = 540MHz 1 i/p VSWR 2 IF1 = 225MHz 1 LO VSWR 2 IFLO = 540MHz 1
Note: 1. These values are not tested in mass production.
33
Page 34
HD155121F
Mixer2 Typical Performance (cont)
Mixer2 S parameters Port1: pin30 (IFIN) Port2: pin29 (IFINB)
Frequency
(MHz)
200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295
Mag.(mU)
941.92
940.46
940.85
940.32
938.32
938.11
936.93
936.23
935.61
934.29
933.31
933.20
932.03
931.63
930.97
929.68
928.75
927.72
927.06
925.35
Ang.(degree)
20.936
21.513
22.040
22.592
23.094
23.735
24.288
24.863
25.424
26.032
26.599
27.186
27.743
28.351
28.923
29.513
30.038
30.634
31.230
31.837
Mag.(mU)
47.84
47.91
47.97
47.99
48.03
48.05
48.02
48.10
48.15
48.20
48.26
48.29
48.38
48.56
48.57
48.66
48.77
48.92
49.03
49.12
S21S11 S22S12
Ang.(degree)
12.570
12.808
13.024
13.297
13.499
13.659
14.001
14.233
14.539
14.795
15.017
15.299
15.529
15.749
15.992
16.216
16.482
16.685
16.858
17.022
Mag.(mU)
47.77
47.89
47.92
47.92
47.89
47.91
48.00
47.98
48.09
48.04
48.12
48.21
48.26
48.30
48.40
48.50
48.58
48.71
48.84
48.94
Ang.(degree)
12.517
12.829
13.065
13.257
13.489
13.702
13.969
14.257
14.500
14.759
15.039
15.309
15.529
15.751
16.056
16.351
16.598
16.773
17.000
17.193
Mag.(mU)
941.65
941.18
939.92
939.52
938.70
937.66
937.61
936.56
936.05
934.73
934.55
933.47
933.28
931.86
931.63
930.13
929.21
928.79
927.41
926.34
Ang.(degree)
20.558
21.073
21.628
22.145
22.689
23.198
23.777
24.355
24.928
25.481
26.039
26.606
27.110
27.702
28.224
28.763
29.315
29.899
30.498
31.043
34
Page 35
Mixer2 Typical Performance (cont)
HD155121F
Conversion gain vs. V Gain1 (Normal gain)
and Temperature
CC
17 16
Operating voltage range
15 14 13 12
Conversion gain (dB)Noise figure (dB)
11 10
9
32.52 V
(V)
CC
Noise figure vs. VCC and Temperature Gain1 (Normal gain)
10
9
Operating voltage range
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
Conversion gain vs. V Gain2 (Low gain)
and Temperature
CC
1 0
Operating voltage range
1
2
3
4
Conversion gain (dB)
5
6
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
7
4.543.5
Noise figure vs. V Gain2 (Low gain)
32.52 V
(V)
CC
and Temperature
CC
4.543.5
16 15
Operating voltage range
8 7 6 5 4 3
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
2
32.52 (V)
V
CC
4.543.5
14 13 12 11
Noise figure (dB)
10
9 8
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
32.52 V
(V)
CC
4.543.5
35
Page 36
HD155121F
Mixer2 Typical Performance (cont)
1dB Input compression point vs. V
and Temperature
CC
Gain1 (Normal gain)
10
Operating voltage range
15
20
25
1dB Input compression point (dBm)
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
30
32.52 V
(V)
CC
Delta(Gain1Gain2) vs. VCC and Temperature
18.0
17.5
Operating voltage range
1dB Input compression point vs. VCC and Temperature Gain2 (Low gain)
5
Operating voltage range
Ta=40°C
10
Ta=25°C Ta=27°C Ta=85°C Ta=100°C
15
20
1dB Input compression point (dBm)
25
4.543.5
32.52
4.543.5
VCC (V)
17.0
16.5
16.0
15.5
15.0
Delta(Gain1Gain2) gain (dB)
14.5
14.0
36
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
32.52 V
(V)
CC
4.543.5
Page 37
PGA and Demodulator Typical Performance
Serial data
26
27
28
LE
IFLO
36
25
MIX2O
24
MIX2OB
CLK
SDATA
DIV
MIX2
300
300
fin: 540MHz
10dBm
GMSK modulated wave Carrier: 45MHz
1000p
1000p
15n
4p
TOKO 617DB-1018 Insertion loss = 3.6dB
6IQ17
OPLL
0,90,180,270
degree
(45MHz)
PGA
Demo.
18IF38 32
MODLB
POONTX
IQ
DIV
IOUT
IOUTB
QOUT
QOUTB
VCC = 3.0V
44POONRX1 45POONRX2 46
23
22
21
20
RX mode
10k
10k
10k
10k
HD155121F
Measurement
equipment
OPLL
7IQ19
Figure 7
DIV37IF31BAND
35
Unit: R :
C : F
37
Page 38
HD155121F
PGA and Demodulator Typical Performance (cont)
Power gain vs. Bit number with Temperature
= 3V
V
CC
60
40
20
0
20
Power gain (dB)1dB Input compression point (dBm)
40
60
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
20100 Bit number
1dB Input compression point vs. Bit number V
= 3V, Ta = 25°C
CC
0
10
Power gain vs. V
and Temperature
CC
60
40
Bit number 46
20
0
Bit number 26
20
Power gain (dB)
40
60
Bit number 6
Operating voltage range
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
80
504030
32.52 V
(V)
CC
4.543.5
1dB Input compression point vs. V
and Temperature
CC
0
Operating voltage range
10
38
20
30
40
50
60
70
20100 Bit number
20
30
40
50
Ta=40°C Ta=25°C Ta=27°C Ta=85°C Ta=100°C
60
1dB Input compression point (dBm)
70
504030
32.52 V
(V)
CC
4.543.5
Page 39
PGA and Demodulator Typical Performance (cont)
Frequency response of LPF in Demodulator
HD155121F
20
sim.(typical) sim.(worst)
0
20
40
Rejection (dB)IQ offset voltage (mV)
60
80
1000 1000010010
Frequency (kHz)
IQ offset voltage vs. VCC and Temperature GSM mode
60
Operating voltage range
100000
Frequency (kHz) 10 120 200 400 600 800 1600 3000 20000
IQ offset voltage vs. V PCN mode
60
Operating voltage range
sim.(typ)
0.0
1.2
4.0
14.0
22.3
29.2
49.8
47.3
62.3
and Temperature
CC
sim.(worst)
0.0
0.5
1.6
7.9
14.7
20.3
37.6
46.3
58.7
40
20
20
40
60
40
20
0
0
20
I Ta=40°C I Ta=25°C I Ta=27°C I Ta=85°C I Ta=100°C
Q Ta=40°C Q Ta=25°C Q Ta=27°C Q Ta=85°C Q Ta=100°C
IQ offset voltage (mV)
40
I Ta=40°C I Ta=25°C I Ta=27°C I Ta=85°C I Ta=100°C
Q Ta=40°C Q Ta=25°C Q Ta=27°C Q Ta=85°C Q Ta=100°C
60
32.52 VCC (V)
32.524.543.5 V
(V)
CC
4.543.5
39
Page 40
HD155121F
IQ Modulator and OffsetPLL Typical Performance
fin: 540MHz
10dBm
Digital
modulation
signal
generator
Differential encode: off
I
Q
generator
I, Ibar,
Q, Qbar
15n
4p
I
Ibar
Q
Qbar
fin: 1167MHz
8dBm
36
16
15
14
13
3V
10
COMP
IFLO
IIN
IINB
QIN
QINB
OPLL
7IQ19
DIV
Mod.
DIV37IF
6IQ17
18IF38 32
OPLL
MODLB
0,90,180,270
degree
(270MHz)
IQ
31
1000p1000p
47
VCC = 3.0V
DIV
44POONRX1 45POONRX2
POONTX
PLLOUT
Offset
RFLOIN39ICURAD12BAND
PLL
VCOIN1
VCOIN2
22k
46
11
9
100
8
100
35
GSM "Low" PCN "High"
560p
33p
33p
TX mode
33 6800p
1p 33p
68
100
1p
68
100
TxVCO
390
MURATA MQE9P7-897
390
TxVCO MURATA MQE9P7-1747
33p
Detector mode: positive peak
Unit: R :
Spectrum
analyzer
C : F
Figure 8
Phase detector offset current ratio evaluation circuit
1000p1000p
47
GSM: VCOIN1 = 901MHz, 20dBm PCN: VCOIN2 = 1746MHz, 20dBm IFLO: 540MHz, 10dBm
Signal generator
Oscillo scope
47
2.5V
22k
1000p
1000p
8
VCOIN2
VCOIN19
PLLOUT11
ICURAD
12
39
RFLOIN
Signal generator GSM: 1172MHz, 8dBm
PCN: 1612MHz, 8dBm
1000p
36IFLO
16IIN 15IINB 14QIN 13QINB
Signal generator
47
1.5V
0.5V
1.5V
0.5V
Figure 9
40
Unit: R :
C : F
Page 41
IQ Modulator and OffsetPLL Typical Performance (cont)
HD155121F
Tx spectrum vs. Temperature GSM mode (902MHz)
100
80
60
40
Suppression ratio (dBc)
20
Operating voltage range
0
60 20−40 Temperature (°C)
Tx spectrum vs. V GSM mode (902MHz)
100
80
Carrier suppression ratio Side-band suppression ratio
CC
Carrier suppression ratio Side-band suppression ratio
Tx spectrum vs. Temperature PCN mode (1747MHz)
100
Carrier suppression ratio Side-band suppression ratio
80
60
40
Suppression ratio (dBc)
20
Operating voltage range
0
12040200 60 80 100
60 20−40
12040200 60 80 100
Temperature (°C)
Tx spectrum vs. V
CC
PCN mode (1747MHz)
100
Carrier suppression ratio Side-band suppression ratio
80
60
40
Suppression ratio (dBc)
20
0
60
40
Suppression ratio (dBc)
20
Operating voltage range Operating voltage range
0
32.52 V
(V)
CC
4.543.5
32.52 V
(V)
CC
4.543.5
41
Page 42
HD155121F
IQ Modulator and OffsetPLL Typical Performance (cont)
Phase error vs. Temperature GSM mode (902MHz)
10
9 8
Operating voltage range
7 6 5 4 3
Phase error (degree)
2 1 0
60 20−40 Temperature (°C)
Phase error vs. V GSM mode (902MHz)
10
9 8
Operating voltage range Operating voltage range
7 6 5 4 3
Phase error (degree)
2 1 0
32.52 V
CC
CC
(V)
RMS peak
RMS peak
Phase error vs. Temperature PCN mode (1747MHz)
10
9 8
Operating voltage range
RMS peak
7 6 5 4 3
Phase error (degree)
2 1 0
12040200 60 80 100
60 20−40
12040200 60 80 100
Temperature (°C)
Phase error vs. V
CC
PCN mode (1747MHz)
10
9
RMS peak
8 7 6 5 4 3
Phase error (degree)
2 1 0
4.543.5
32.52 V
(V)
CC
4.543.5
42
Page 43
IQ Modulator and OffsetPLL Typical Performance (cont)
HD155121F
Modulation spectrum vs. Temperature GSM mode (902MHz)
0
20
200kHz offset 400kHz offset 600kHz to 1800kHz
1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset
40
60
Suppression ratio (dB)
80
Operating voltage range
100
60
Temperature (°C)
Modulation spectrum vs. V GSM mode (902MHz)
0
20
200kHz offset 400kHz offset 600kHz to 1800kHz
1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset
CC
Modulation spectrum vs. Temperature PCN mode (1747MHz)
0
20
200kHz offset 400kHz offset 600kHz to 1800kHz
1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset
40
60
Suppression ratio (dB)
80
Operating voltage range
100
12040200 60 80 100
602040
60 2040
12040200 60 80 100
Temperature (°C)
Modulation spectrum vs. V
CC
PCN mode (1747MHz)
0
20
200kHz offset 400kHz offset 600kHz to 1800kHz
1.8MHz to 3MHz 3MHz to 6MHz 6MHz upward offset
40
60
Suppression ratio (dB)
80
Operating voltage range Operating voltage range
100
40
60
Suppression ratio (dB)
80
100
32.5 V
(V)
CC
4.543.5
32.522 V
(V)
CC
4.543.5
43
Page 44
HD155121F
IQ Modulator and OffsetPLL Typical Performance (cont)
Lock up time vs. Temperature GSM mode (902MHz)
100
80
60
40
Lock up time (µsec)
20
Operating voltage range
0
60 Temperature (°C)
Lock up time vs. V GSM mode (902MHz)
100
CC
Lock up time vs. Temperature PCN mode (1747MHz)
100
80
60
40
Lock up time (µsec)
20
Operating voltage range
0
12040200 60 80 100
60 2040
602040
12040200 60 80 100
Temperature (°C)
Lock up time vs. V
CC
PCN mode (1747MHz)
100
44
80
60
40
Lock up time (µsec)
20
80
60
40
Lock up time (µsec)
20
Operating voltage range Operating voltage range
0
32.5 V
(V)
CC
4.543.5
0
32.522 V
(V)
CC
4.543.5
Page 45
IQ Modulator and OffsetPLL Typical Performance (cont)
Modulation spectrum wave form vs. Temperature
GSM mode (880 MHz)
HD155121F
10dB/
MKR 9.77dBm
880.000MHz
Specification
SWP 50.0ms
ATTEN 20dB RL 10.3dBm
D
R
CENTER 880.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
ATTEN 20dB RL 10.7dBm
D
R
CENTER 880.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
Ta = 40°C
ATTEN 20dB RL 12.4dBm
D
R
CENTER 880.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 12.27dBm
880.00MHz
Specification Specification Specification
SWP 50.0ms
ATTEN 20dB RL 12.7dBm
D
R
CENTER 880.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
Modulation spectrum wave form vs. Temperature
GSM mode (902 MHz)
ATTEN 20dB RL 10.0dBm
D
R
VAVG 100
10dB/
MKR 9.62dBm
902.000MHz
Specification
ATTEN 20dB RL 10.2dBm
D
R
VAVG 100
10dB/
MKR 10.20dBm
880.000MHz
Specification Specification
SWP 50.0ms
ATTEN 20dB RL 10.2dBm
D
R
CENTER 880.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
MKR 10.03dBm
880.000MHz
SWP 50.0ms
Ta = 27°C Ta = 100°C
MKR 12.53dBm
880.00MHz
SWP 50.0ms
MKR 10.50dBm
902.000MHz
Specification Specification
ATTEN 20dB RL 12.2dBm
D
R
CENTER 880.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
ATTEN 20dB RL 9.7dBm
D
R
VAVG 100
10dB/
VAVG 100
10dB/
MKR 12.03dBm
880.00MHz
SWP 50.0ms
MKR 9.37dBm
902.000MHz
CENTER 902.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
SWP 50.0ms
Ta = 40°C
ATTEN 20dB RL 12.3dBm
D
R
CENTER 902.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 12.12dBm
902.00MHz
Specification Specification Specification
SWP 50.0ms
CENTER 902.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
SWP 50.0ms
Ta = 27°C Ta = 100°C
ATTEN 20dB RL 12.7dBm
D
R
CENTER 902.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 12.50dBm
902.00MHz
SWP 50.0ms
CENTER 902.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
ATTEN 20dB RL 11.8dBm
D
R
CENTER 902.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
SWP 50.0ms
MKR 12.00dBm
902.00MHz
SWP 50.0ms
45
Page 46
HD155121F
IQ Modulator and OffsetPLL Typical Performance (cont)
Modulation spectrum wave form vs. Temperature
GSM mode (915 MHz)
ATTEN 20dB RL 9.9dBm
D
R
CENTER 915.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
MKR 9.61dBm
915.000MHz
Specification
SWP 50.0ms
Ta = 40°C
ATTEN 20dB RL 12.1dBm
D
R
CENTER 915.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 12.28dBm
915.00MHz
Specification Specification Specification
SWP 50.0ms
ATTEN 20dB RL 10.4dBm
D
R
CENTER 915.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
MKR 9.73dBm
915.000MHz
Specification Specification
SWP 50.0ms
Ta = 27°C Ta = 100°C
ATTEN 20dB RL 12.4dBm
D
R
CENTER 915.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 12.40dBm
915.00MHz
SWP 50.0ms
ATTEN 20dB RL 9.5dBm
D
R
CENTER 915.000MHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
ATTEN 20dB RL 11.8dBm
D
R
CENTER 915.00MHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
VAVG 100
10dB/
MKR 9.67dBm
915.000MHz
SWP 50.0ms
MKR 11.83dBm
915.00MHz
SWP 50.0ms
46
Page 47
IQ Modulator and OffsetPLL Typical Performance (cont)
Modulation spectrum wave form vs. Temperature
PCN mode (1710 MHz)
HD155121F
10dB/
MKR 8.36dBm
1.710000GHz
Specification
SWP 50.0ms
ATTEN 20dB RL 9.2dBm
D
R
CENTER 1.710000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
ATTEN 20dB RL 8.5dBm
D
R
CENTER 1.710000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
Ta = 40°C
ATTEN 20dB RL 10.9dBm
D
R
CENTER 1.71000GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 11.03dBm
1.71000GHz
Specification Specification Specification
SWP 50.0ms
ATTEN 20dB RL 11.2dBm
D
R
CENTER 1.71000GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
Modulation spectrum wave form vs. Temperature
PCN mode (1747 MHz)
ATTEN 20dB RL 9.4dBm
D
R
VAVG 100
10dB/
MKR 8.76dBm
1.747000GHz
Specification
ATTEN 20dB RL 9.4dBm
D
R
VAVG 100
10dB/
MKR 8.90dBm
1.710000GHz
Specification Specification
SWP 50.0ms
ATTEN 20dB RL 9.4dBm
D
R
CENTER 1.710000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
MKR 9.23dBm
1.710000GHz
SWP 50.0ms
Ta = 27°C Ta = 100°C
MKR 11.23dBm
1.71000GHz
SWP 50.0ms
MKR 9.58dBm
1.747000GHz
Specification Specification
ATTEN 20dB RL 11.5dBm
D
R
CENTER 1.71000GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
ATTEN 20dB RL 9.5dBm
D
R
VAVG 100
10dB/
VAVG 100
10dB/
MKR 11.20dBm
1.71000GHz
SWP 50.0ms
MKR 9.17dBm
1.747000GHz
CENTER 1.747000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
SWP 50.0ms
Ta = 40°C
10dB/
MKR 11.44dBm
1.74700GHz
Specification Specification Specification
SWP 50.0ms
ATTEN 20dB RL 11.3dBm
D
R
CENTER 1.74700GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
CENTER 1.747000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
SWP 50.0ms
Ta = 27°C Ta = 100°C
MKR 11.58dBm
ATTEN 20dB RL 11.6dBm
D
R
CENTER 1.74700GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
1.74700GHz
SWP 50.0ms
CENTER 1.747000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
ATTEN 20dB RL 11.9dBm
D
R
CENTER 1.74700GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
SWP 50.0ms
MKR 11.87dBm
1.74700GHz
SWP 50.0ms
47
Page 48
HD155121F
IQ Modulator and OffsetPLL Typical Performance (cont)
Modulation spectrum wave form vs. Temperature
PCN mode (1785 MHz)
ATTEN 20dB RL 8.8dBm
D
R
CENTER 1.785000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
MKR 8.44dBm
1.785000GHz
Specification
SWP 50.0ms
Ta = 40°C
ATTEN 20dB RL 11.3dBm
D
R
CENTER 1.78500GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 10.94dBm
1.78500GHz
Specification Specification Specification
SWP 50.0ms
ATTEN 20dB RL 8.7dBm
D
R
CENTER 1.785000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
VAVG 100
10dB/
MKR 8.91dBm
1.785000GHz
Specification Specification
SWP 50.0ms
Ta = 27°C Ta = 100°C
ATTEN 20dB RL 11.4dBm
D
R
CENTER 1.78500GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
MKR 11.41dBm
1.78500GHz
SWP 50.0ms
ATTEN 20dB RL 9.4dBm
D
R
CENTER 1.785000GHz SPAN 1.000MHz
*RBW 30kHz VBW 30kHz
ATTEN 20dB RL 11.8dBm
D
R
CENTER 1.78500GHz SPAN 20.00MHz
*RBW 100kHz VBW 100kHz
VAVG 100
10dB/
VAVG 100
10dB/
MKR 9.57dBm
1.785000GHz
SWP 50.0ms
MKR 11.66dBm
1.78500GHz
SWP 50.0ms
48
Page 49
IQ Modulator and OffsetPLL Typical Performance (cont)
HD155121F
Tx spectrum vs. Common mode voltage GSM mode (902MHz)
0
10
Carrier suppression ratio Side-band suppression ratio
20
30
40
50
60
70
Suppression level (dBc)
80
90
Operating range
100
Tx spectrum vs. Common mode voltage PCN mode (1747MHz)
0
10
Carrier suppression ratio Side-band suppression ratio
20
30
40
50
60
70
Suppression level (dBc)
80
90
Operating range
100
1.751.000.75 1.25 1.500.25 0.50
Common mode voltage (V)
Tx spectrum vs. Input swing level GSM mode (902MHz)
0
10
Carrier suppression ratio Side-band suppression ratio
20
30
40
50
60
70
Suppression level (dBc)
80
90
Operating range Operating range
100
0.40 0.60 1.601.000.80 1.20 1.40
1.601.000.80 1.20 1.40
0
10
20
30
40
50
60
70
Suppression level (dBc)
80
90
100
0.40 0.60
Input swing level (Vpp) (single)
Common mode voltage (V)
Tx spectrum vs. Input swing level PCN mode (1747MHz)
Carrier suppression ratio Side-band suppression ratio
Input swing level (Vpp) (single)
1.751.000.75 1.25 1.500.25 0.50
49
Page 50
HD155121F
IQ Modulator and OffsetPLL Typical Performance (cont)
Phase comparator output current (I1, I3) vs. V
and Temperature
CC
1.5
RICURAD = 22k at pin12
I1
1.2
0.9
I1 or I3 (mA)
0.6
0.3
Operating voltage range
32.52 V
(V)
CC
I3/I1
I3
0.45
0.4
0.35
0.3
0.25
54.543.5
I3/I1 (mA)
I1,I3 Ta=40°C I1,I3 Ta=25°C I1,I3 Ta=27°C I1,I3 Ta=85°C I1,I3 Ta=100°C
I3/I1 Ta=40°C I3/I1 Ta=25°C I3/I1 Ta=27°C I3/I1 Ta=85°C I3/I1 Ta=100°C
OPLL phase detector output current value is controlled by RICURAD(pin12). Following figure is for determining phase detector output current.
6
IPLLOUT (GSM) IPLLOUT (PCN)
5
4
3
2
IPLLOUT(Pin11) (mA)
1
0
1
10010
RICURAD(Pin12) (k)
50
Page 51
Package Dimensions
HD155121F
Preliminary
9.0 ± 0.2
7.0
36 25
37
9.0 ± 0.2
48
112
*0.21 ± 0.05
0.19 ± 0.04
0.75 0.75
0.10
*Dimension including the plating thickness
Base material dimension
24
13
0.08
M
1.40
+0.09
0.05
0.13
0.5
1.70 Max
0.15 ± 0.04
*0.17 ± 0.05
0.50 ± 0.10
Hitachi Code JEDEC EIAJ Weight
1.00
0° 8°
(reference value)
Unit: mm
FP-48C
Conforms
0.2 g
51
Page 52
HD155121F
Appendix A
Transmitter Architecture (offset PLL architecture)
The HD155121F generates a modulated signal at IF with a quadrature modulator and converts it to a final frequency with an Offset Phase Locked Loop (OPLL).
The Offset Phase Locked Loop is simply a PLL with a down conversion mixer in the feedback path.
Using a down converter in the feed back path acts as an up converter in the forward path, which allows the output frequency to be different from the comparison frequency without affecting the normal operation of the loop. Phase / frequency changes in the reference signal are not scaled, as they would be if a divider were used in the feed back path, and hence the modulation is faithfully reproduced at the final frequency.
The main advantage of the OPLL in this application is that it forms a tracking band pass filter around the modulated signal. This is because the loop cannot respond to phase variations at the reference that are outside its closed loop bandwidth. Thus the broad band phase noise from the quadrature modulator is shaped by the frequency response of the closed loop allowing the TX noise specifications to be met without further filtering.
A secondary advantage of the OPLL is that the output signal, coming from a VCO, is truly constant envelope. This removes the problem of spectral spreading caused by AM to AM and AM to PM conversion in the power amplifier.
The OPLL is formed from an on-chip Gilbert cell down converter, limitters and phase detector with an off­chip passive loop filter and VCO. The phase detector is implemented as a Gilbert cell with a current source output stage, which allows an integrator to be included in the passive loop filter. This is similar to the technique commonly used in PLL synthesizers.
As is well known, when out of lock, a mixer type phase detector does not provide any frequency discrimination. This means that the under normal circumstances, a loop of this type is not guaranteed to lock. However in the HD155121F, a well defined offset current is added to the phase detector output, so that when the loop is out of lock, this offset current linearly charges the capacitors in the loop filter. This has the effect of sweeping the VCO across the band. When the down converted signal from the VCO approaches the reference frequency, the Gilbert cell begins to operate as a phase detector and the loop acquires in the normal way. The presence of the offset current in lock is unimportant, as it only results in a static phase offset between the final signal and the reference signal.
At the end of the transmit burst, when the transmitter is disabled, a switch closes to discharge the loop filter capacitors. This resets the acquisition process in preparation for the start of the next burst.
The closed loop bandwidth of the OPLL should be designed to be around 1.2 to 1.5 MHz, which should be large enough to allow rapid locking and accurate tracking of the modulation. If the bandwidth is too large, the OPLL will not reject the noise from the modulator sufficiently. The ideal bandwidth will be a compromise dependant on the noise performance of the VCO and amplifier chain.
52
Page 53
HD155121F
Phase detector VCO
C1
R3
C2
C3
R2
Figure A-1 Loop Filter Circuit of OPLL
The following equations provide a good starting point for the design of the OPLL.
Let:
=
f Closedloop unity gainfrequency Hz Closedloop bandwidth
0
/()
==
f f Closed loopresonant frequency Hz
2
n
0
ωπ
=⋅
f
2
nn
=
k VCO gain Hz V
v
=⋅⋅
k k rad V
2
vr v
== =
k Peak phase dotector current mA inGSM e at RICURAD k
d
===
k Phase ector gain k
dr d
DampingFactor
=≅
(/)
π
( / sec)
det ( ) / . /
.
()( )
. ( ) mod ( )
12 22
π
217
ππξ(/)( )
mA rad atRICURAD k
Then:
Ckk
2
=⋅
vr dr n
RkkC C
22 1 2 2 2
=⋅⋅ ⋅ ⋅ = ⋅
ξξω
CC
1215
=
/
RC
33110
⋅≅ ⋅
/( )
2
/
ω
/( ) ( )/( )
vd n
ω
n
=
2209Ω
Note that many VCO modules have up to 100 pF capacitance on the control line. This can be very significant when designing high bandwidth loops.
The phase detector peak output current is centered around 1.2 mA which is set by an 22 k resistor RICURAD on pin 12.
For example, the f
= 1.2 MHz loop filter using the VCO of kv = 30 MHz / V (GSM) should be designed in
0
the following method.
Let:
09
.
5
6
( /sec)
6
6
5
( / sec)
Ω))
3
53
f MHz Hz
12 12 10
==×
.( ) . ( )
0
f f kHz Hz
n
ωπ π
k MHz V Hz V k k rad V
k mA at RICURAD k k mA rad A rad at RICURAD k
2 600 6 10
== =×
/() ()
0
f rad
22610
=⋅=⋅×
nn
30 30 10
==×
(/) (/)
v
2 2 30 10
=⋅=××
ππ
vr v
12 22
==
.( )(
d
==× =
17 17 10 22
ππξΩ
./ ( / ) . )/ ( / )( )
dr
=≅
Damping Factor
Page 54
HD155121F
Then:
.
.
52
.
72 10 72
=× =
9
..
66
=
23010 1710
×× ××
Ckk nF
2
=⋅ =
vr dr n
RC
22 2
=⋅ ⋅ =
()/( )
ξω
CC pF
1 2 15 7 2 10 15 480
==× =
/(. )/
RC
3
33110
≅⋅=
/
ω
n
/( )ω
2
2 6 10 7 2 10
9
n
2610
π
63
2610
××
()
π
209
×
59
×× × ×
π
1
××
6
When the VCO modules have 33 pF capacitance on the control line, C3 is 33 pF.
CpF
333
=
R
3 804
=Ω
The result of the calculations for the PLL loop characteristic,based on the following block diagram (figure A-2), is showed in figure A-3 and figure A-4. The offset PLL will be stable if the component values shown are used.
VCO module
k
C3 33p
/S
vr
VCO
Unit: R :
C : F
k
+
dr
Phase
detector
Input phase Output phase
R3
804
C2
7.2n
C1
480p
R2 66
54
= 2π kv = 2π × 30 × 106 (rad / Vsec)
k
vr
= (1.7 × 10−3) / π (A / rad)
k
dr
Figure A-2 Block Diagram for OPLL Simulation
VCO module example GSM: MURATA MQE9P7-897
C3 = 33pF k
= 30MHz/V
PCN: MURATA MQE9P7-1747
v
C3 = 22pF k
= 47MHz/V
v
Page 55
The open loop transfer function, Hol(S), of OPLL as shown in figure A-2 is given below.
HD155121F
Hol S
()
=
133 2
CCR S S S
CC C
=
ω
p
12323
CC C RR
⋅⋅⋅⋅
ω
22
CR
{}
p
ς
=
ω ωωςς
ωωςς
1
=
z
CR
22
=−−
pp
pp
()
1
=+−
()
2
kk S
⋅⋅⋅⋅ +⋅+
123
++
(
CCC CRCC
13 3312
++⋅ +
()
CC C
21 2 3
2
1
2
()
⋅⋅+
vr dr z
22
ω
()
ωω
pp
)()
++
1
Let:
CpF
1 480
=
CnF
272
=
.
C pF VCOinput capci ce on the control line
333
=
R
266
=
R
3 804
=
( tan )
Then:
ωπ
=×=×
35 70 10 2 5 68
..()
p
ς
=
1 036
.
ωπ
=×=×
2 104 10 2 335
.()
z
ωπ
=×=×
27 32 10 2 4 348
p
1
ωπ
=×=×
46 65 10 2 7 425
2
p
k rad V
π
=××
23010
vr
k A rad
17 10
(. )/ ( / )
dr
6
6
..()
6
3
6
6
( / sec)
π
..()
MHz
kHz
MHz
MHz
=
22
CCR S S S
kk S
133
⋅⋅⋅⋅+ +
()
⋅⋅+
vr dr z
ω
()()
ωω
pp
12
The magnitude, | Hol(jω) |, and the phase, Φ(jω), of Hol(S) are as shown in the following equations. When the above constants from ωp to kdr are substituted in the equations, then | Hol(jω) | and Φ(jω) in figure A-3 can be obtained.
2
kk
⋅⋅ +
Hol j
()
ω
=
133
CCR
⋅⋅⋅⋅ + ⋅ +
−− −
j
( ) tan ( / ) tan ( / ) tan ( / ) (deg)
ωωω ωω ωω
1111
=− − −
vr dr p
22
ωωω ωω
zp p
2
ωω
1
2
pp
1
2
2
2
2
180Φ
55
Page 56
HD155121F
100
| Hol (jω) |
50
100
designed for 1.2MHz bandwidth loop filter designed for 1.2MHz bandwidth loop filter
50
0
GSM
PCN
80
130
180
GSM, PCN
Φ (jω)
230
10
4
10
5
10
6
10
7
10
8
Frequency (Hz)
280 10
4
10
5
10
6
Frequency (Hz)
10
7
10
8
Figure A-3 The Magnitude, | Hol(jω) |, and the Phase, Φ(jω),
of Open Loop Transfer Function Hol(jω)
Moreover, the closed loop transfer function, Hcl(jw) is the following equation, and the magnitude characteristic, Hcl(jω), of he closed loop is shown is figure A-4.
Hol j
()
Hcl j
()
ω
=
+1
Hol j
ω
()
ω
designed for 1.2MHz bandwidth loop filter
20
GSM
0
20
PCN
40
| Hcl (jω) |
60
80
100
10
4
10
5
10
6
10
7
10
8
Frequency (Hz)
Figure A-4 The Magnitude, | Hcl(jω) | of Closed Loop Transfer Function Hcl(jω)
56
Page 57
HD155121F
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail­safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223
Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533
Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX
57
Loading...