Datasheet HAF70009 Datasheet (Intersil Corporation)

Page 1
HAF70009
Data Sheet August 1999
56A, 100V, 0.025 Ohm, N-Channel UltraFET Power MOSFET
This N-Channel power MOSFET is manufactured using the innovative UltraFET™process. This advanced
process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low­voltage bus switches, and power management in portable and battery-operated products.
Formerly developmental type TA75639.
Ordering Information
PART NUMBER PACKAGE TEMP. RANGE (oC)
HAF70009 TO-220AB -55 to 175
File Number
Features
• 56A, 100V
• Simulation Models
- Temperature Compensated PSPICE
® and SABER
Electrical Models
- Spice and Saber Thermal Impedance Models
- www.intersil.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
4770
©
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
Absolute Maximum Ratings T
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
= 25oC, Unless Otherwise Specified
C
DSS
DGR
GS
DM
AS
STG
pkg
HAF70009 UNITS
100 V 100 V ±20 V
D
D
L
56
Figure 4
Figures 6, 14, 15
200
1.35
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
4-1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.comor 407-727-9207 | Copyright© Intersil Corporation 1999. SABERis a Copyright of Analogy,Inc.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
Page 2
HAF70009
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q Gate Charge at 10V Q Threshold Gate Charge Q Gate to Source Gate Charge Q Reverse Transfer Capacitance Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
DSSID
DSS
VDS = 90V, VGS = 0V - - 1 µA VDS = 80V, VGS = 0V, TC = 150oC - - 250 µA
GSS
GS(TH)VGS
DS(ON)ID
θJC θJA
ON
VGS = ±20V - - ±100 nA
(Figure 3) - - 0.74 TO-220 - - 62
VDD = 50V, ID≅ 56A, RL = 0.89, VGS= 10V,
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(10)
g(TH)
ISS
RGS = 5.1 (Figures 18,19)
r
f
VGS = 0V to 10V - 57 75 nC VGS = 0V to 2V - 3.7 4.5 nC
gs
gd
VDS = 25V, VGS = 0V, f = 1MHz
OSS
RSS
(Figure 12)
= 250µA, VGS = 0V (Figure 11) 100 - - V
= VDS, ID = 250µA (Figure 10) 2 - 4 V
= 56A, VGS = 10V (Figure 9) - 0.021 0.025
o
C/W
o
C/W
- - 110 ns
-15- ns
-60- ns
-20- ns
-25- ns
- - 70 ns
= 0V to 20V VDD = 50V,
- 110 130 nC ID≅ 56A, RL = 0.89 I
= 1.0mA
g(REF)
(Figures 13, 16, 17)
- 9.8 - nC
-24-nC
- 2000 - pF
- 500 - pF
-65-pF
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Reverse Recovery Time t Reverse Recovered Charge Q
4-2
SD
rr
RR
ISD = 56A - - 1.25 V ISD = 56A, dISD/dt = 100A/µs - - 110 ns ISD = 56A, dISD/dt = 100A/µs - - 320 nC
Page 3
Typical Performance Curves
HAF70009
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
125 175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
60
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
25 50 75 100 125 150 175
T
, CASE TEMPERATURE (oC)
C
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
1000
100
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
10
-5
10
SINGLE PULSE
-4
10
-3
10
-2
10
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC = 25oC
VGS = 10V
-4
10
-3
10
t, PULSE WIDTH (s)
-2
10
10
NOTES: DUTY FACTOR: D = t1/t PEAK TJ = PDM x Z
-1
10
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
-1
I = I
P
DM
θJC
0
10
o
C DERATE PEAK
25
0
10
2
x R
175 - T
150
θJC
t
1
t
2
+ T
C
1
10
C
1
10
4-3
FIGURE 4. PEAK CURRENT CAPABILITY
Page 4
HAF70009
Typical Performance Curves
1000
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1 10 100 200
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
V
DSS(MAX)
(Continued)
TJ = MAX RATED
T
= 100V
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
100
80
60
= 20V
V
GS
V
= 20V
GS
VGS = 10V
VGS = 10V
= 7V
V
= 7V
V
GS
GS
= 25oC
C
100µs
1ms
10ms
VGS = 6V
300
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
100
STARTING T
, AVALANCHE CURRENT (A)
AS
I
10
0.001 0.01 0.1 1
= 150oC
J
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
80
60
= 15V
V
DD
175oC
40
, DRAIN CURRENT (A)
D
I
20
0
01234567
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
T
= 25oC
C
VGS = 5V
40
, DRAIN CURRENT (A)
D
I
20
25oC
0
0 1.5 3.0 4.5 6.0 7.5
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. TRANSFER CHARACTERISTICS
3.0
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.5
VGS = 10V, ID = 56A
2.0
1.5
1.0
ON RESISTANCE
0.5
NORMALIZED DRAIN TO SOURCE
0
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
-55oC
VGS = VDS, ID = 250µA
FIGURE 9. NORMALIZED DRAIN TOSOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4-4
FIGURE 10. NORMALIZED GATETHRESHOLD VOLTAGEvs
JUNCTION TEMPERATURE
Page 5
HAF70009
Typical Performance Curves
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
(Continued)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
8
6
3000
2500
2000
1500
1000
C, CAPACITANCE (pF)
500
0
0 102030405060
VDS, DRAIN TO SOURCE VOLTAGE (V)
C
C
C
ISS
OSS
RSS
VGS= 0V, f = 1MHz
= CGS + C
C
ISS
C
= C
RSS
C
C
OSS
GD
DS
GD
+ C
GD
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
4
WAVEFORMS IN DESCENDING ORDER:
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0 102030405060
VDD = 50V
Qg, GATE CHARGE (nC)
ID = 56A
= 37A
I
D
I
= 18A
D
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
4-5
Page 6
HAF70009
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
I
G(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
I
g(REF)
0
V
GS
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(10)
VGS = 10V
Q
gd
V
DS
V
DD
VGS= 20V
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
t
10%
r
PULSE WIDTH
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
4-6
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
Page 7
HAF70009
PSPICE Electrical Model
SUBCKT HUF75639 2 1 3 ; rev Oct. 98
CA 12 8 2.8e-9 CB 15 14 2.65e-9 CIN 6 8 1.9e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 110 EDS 14 8 5 8 1
DPLCAP
10
RSLC2
EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 2e-9
LGATE 1 9 1e-9 LSOURCE 3 7 0.47e-9
RLGATE 1 9 10
GATE
1
LGATE
RLGATE
RGATE
9
20
ESG
EVTEMP +
18 22
-
6 8
EVTHRES
+
+
6
-
RLDRAIN 2 5 20 RLSOURCE 3 7 4.69
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1.3e-2 RGATE 9 20 0.7 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
CA
S1A
12
13
8
S1B
EGS EDS
S2A
14 13
S2B
13
+
+
6 8
-
-
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1 ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*115),4))} .MODEL DBODYMOD D (IS = 1.4e-12 RS = 3.3e-3 XTI = 4.7 TRS1 = 2e-3 TRS2 = 0.1e-5 CJO = 3.3e-9 TT = 6.1e-8 M = 0.7)
.MODEL DBREAKMOD D (RS = 3.5e-1 TRS1 = 1e-3 TRS2 = 1e-6) .MODEL DPLCAPMOD D (CJO = 2.2e-9 IS = 1e-30 N = 10 M = 0.95 vj = 1.0) .MODEL MMEDMOD NMOS (VTO = 3.5 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Rg = 0.7) .MODEL MSTROMOD NMOS (VTO = 3.97 KP = 56.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO =3.11 KP = 0.085 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 0.8e-3 TC2 = 1e-6) .MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 1.75e-5) .MODEL RSLCMOD RES (TC1 = 2.8e-3 TC2 = 14e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -2.0e-3 TC2 = -1.75e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0.05e-9)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.0 VOFF = -3.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.5 VOFF = -6.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF = 4.95) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.95 VOFF = -2.5)
.ENDS
5
RSLC1
51
+
5
ESLC
51
-
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5 8
-
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17 18
-
7
RLSOURCE
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
4-7
Page 8
HAF70009
SABER Electrical Model
nom temp=25 deg c 100v Ultrafet
REV Oct. 98 template huf75639 n2,n1,n3
electrical n2,n1,n3 { var i iscl d..model dbodymod = (is=1.4e-12, xti=4.7, cjo=33e-10,tt=6.1e-8, m=0.7) d..model dbreakmod = () d..model dplcapmod = (cjo=22e-10,is=1e-30,n=10,m=0.95, vj=1.0) m..model mmedmod = (type=_n,vto=3.5,kp=4.8,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=3.97,kp=56.5,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.11,kp=0.085,is=1e-30, tox=1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.0,voff=-3.5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-6.0) sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2.5,voff=4.95) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=4.95,voff=-2.5)
c.ca n12 n8 = 28.5e-10 c.cb n15 n14 = 26.5e-10 c.cin n6 n8 = 19e-10
GATE
d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
LGATE
1
RLGATE
9
RGATE
EVTEMP +
20
i.it n8 n17 = 1 l.ldrain n2 n5 = 2.0e-9
l.lgate n1 n9 = 1e-9 l.lsource n3 n7 = 4.69e-10
S1A
12
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=0.8e-3,tc2=-1e-6
S1B
CA
res.rdbody n71 n5 = 3.3e-3, tc1=2.0e-3, tc2=0.1e-5 res.rdbreak n72 n5 = 3.5e-1, tc1=1e-3, tc2=1e-6 res.rdrain n50 n16 = 13e-3, tc1=1e-2,tc2=1.75e-5 res.rgate n9 n20 = 0.7 res.rldrain n2 n5 = 20 res.rlgate n1 n9 = 10 res.rlsource n3 n7 = 4.69 res.rslc1 n5 n51 = 1e-6, tc1=2.8e-3,tc2=14e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 4.5e-3, tc1=0,tc2=0 res.rvtemp n18 n19 = 1, tc1=-2.75e-3,tc2=0.05e-9 res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1.75e-5
spe.ebreak n11 n7 n17 n18 = 110 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1 equations {
i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/115))** 4)) } }
10
RSLC2
-
6
ESG
8
+
6
-
18 22
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
DPLCAP
EVTHRES
+
19
8
15
CB
CIN
-
+
5 8
-
5
RSLC1
51
50 RDRAIN
21
MSTRO
14
ISCL
16
8
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
LDRAIN
RLDRAIN
RDBODY
71
DBODY
+
17 18
-
LSOURCE
7
RLSOURCE
RVTEMP 19
DRAIN
2
SOURCE
3
-
VBAT
+
22
4-8
Page 9
Spice Thermal Model
HAF70009
REV APRIL 1998
HUF75639
CTHERM1 TH 6 5.0e-3 CTHERM2 6 5 1.9e-2 CTHERM3 5 4 7.95e-3 CTHERM4 4 3 9.0e-3 CTHERM5 3 2 2.95e-2 CTHERM6 2 TL 12.55
RTHERM1 TH 6 5.04e-3 RTHERM2 6 5 1.25e-2 RTHERM3 5 4 3.54e-2 RTHERM4 4 3 1.98e-1 RTHERM5 3 2 2.99e-1 RTHERM6 2 TL 3.97e-2
Saber Thermal Model
Saber thermal model HUF75639 template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th 6 = 5.0e-3 ctherm.ctherm2 6 5 = 1.9e-2 ctherm.ctherm3 5 4 = 7.95e-3 ctherm.ctherm4 4 3 = 9.0e-3 ctherm.ctherm5 3 2 = 2.95e-2 ctherm.ctherm6 2 tl = 12.55
RTHERM1
RTHERM2
RTHERM3
RTHERM4
TH
JUNCTION
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
rtherm.rtherm1 th 6 = 5.04e-3 rtherm.rtherm2 6 5 = 1.25e-2 rtherm.rtherm3 5 4 = 3.54e-2 rtherm.rtherm4 4 3 = 1.98e-1 rtherm.rtherm5 3 2 = 2.99e-1 rtherm.rtherm6 2 tl = 3.97e-2 }
RTHERM5
RTHERM6
TL
CTHERM5
2
CTHERM6
CASE
4-9
Page 10
TO-220AB
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE
HAF70009
ØP
Q
D
E
1
L
1
E
H
1
D
1
b
1
A
A
1
SYMBOL
A 0.170 0.180 4.32 4.57 -
A
1
TERM. 4
o
45
b 0.030 0.034 0.77 0.86 3, 4
b
1
c 0.014 0.019 0.36 0.48 2, 3, 4
D 0.590 0.610 14.99 15.49 -
D
1
INCHES MILLIMETERS
NOTESMIN MAX MIN MAX
0.048 0.052 1.22 1.32 -
0.045 0.055 1.15 1.39 2, 3
- 0.160 - 4.06 -
E 0.395 0.410 10.04 10.41 -
L
o
60
1
e
1
b
c
E
1
- 0.030 - 0.76 -
e 0.100 TYP 2.54 TYP 5
3
2
e
J
1
e
1
H
1
J
1
0.200 BSC 5.08 BSC 5
0.235 0.255 5.97 6.47 -
0.100 0.110 2.54 2.79 6
L 0.530 0.550 13.47 13.97 -
L
1
0.130 0.150 3.31 3.81 2
ØP 0.149 0.153 3.79 3.88 -
Q 0.102 0.112 2.60 2.84 -
NOTES:
1. These dimensions are within allowable dimensions of Rev.J of JEDEC TO-220AB outline dated 3-24-87.
2. Lead dimension and finish uncontrolled in L1.
3. Lead dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder coating.
5. Position of lead to be measured 0.250 inches (6.35mm) from bot­tom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from bot­tom of dimension D.
7. Controlling dimension: Inch.
8. Revision 2 dated 7-97.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rightsof third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
4-10
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...