Datasheet HA17741PS, HA17741 Datasheet (HIT)

Page 1
HA17741/PS
General-Purpose Operational Amplifier
(Frequency Compensated)
Description
The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields.
Features
High voltage gain : 106 dB (Typ)
Wide output amplitude : ±13 V (Typ) (at RL ≥ 2 kΩ)
Shorted output protection
Adjustable offset voltage
Internal phase compensation
Ordering Information
Application Type No. Package
Industrial use HA17741PS DP-8 Commercial use HA17741
Pin Arrangement
Offset
Vin()
Vin(+)
Null
V
EE
1
2
3
4
+
(Top view)
8
7
6
5
NC
V
CC
Vout Offset
Null
Page 2
HA17741/PS
Circuit Structure
Vin(+) Vin()
V
CC
Vout
To V
CC
1
Pin
5
Pin
To V
CC
V
EE
Offset Null
Absolute Maximum Ratings (Ta = 25°C)
Ratings
Item Symbol HA17741PS HA17741 Unit
Power-supply voltage V
CC
V
EE
Input voltage Vin ±15 ±15 V Differential input voltage Vin(diff) ±30 ±30 V Allowable power dissipation P
T
Operating temperature Topr –20 to +75 –20 to +75 °C Storage temperature Tstg –55 to +125 –55 to +125 °C
Note: These are the allowable values up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature.
+18 +18 V –18 –18 V
670 * 670 * mW
2
Page 3
HA17741/PS
Electrical Characteristics
Electrical Characteristics-1 (VCC = –VEE = 15 V, Ta = 25°C)
Item Symbol Min Typ Max Unit Test Condition
Input offset voltage V Input offset current I Input bias current I
IO
IO
IB
Power-supply VIO/VCC— 30 150 µV/V RS 10 k rejection ratio VIO/VEE— 30 150 µV/V RS 10 k Voltage gain A Common-mode
VD
CMR 70 90 dB RS 10 k
rejection ratio Common-mode input
V
CM
voltage range Maximum output V
OP-P
voltage amplitude ±10 ±13 V RL 2 k Power dissipation Pd 65 100 mW No load Slew rate SR 1.0 V/µsRL 2 k Rise time t
r
Overshoot Vover 5.0 % CL = 100 pF Input resistance Rin 0.3 1.0 M
1.0 6.0 mV RS 10 k 18 200 nA — 75 500 nA
86 106 dB RL 2 k, Vout = ±10 V
±12 ±13 V RS ≤ 10 kΩ
±12 ±14 V RL ≥ 10 kΩ
0.3 µs Vin = 20 mV, RL = 2 kΩ,
Electrical Characteristics-2 (VCC = –VEE = 15 V, Ta = –20 to +75°C)
Item Symbol Min Typ Max Unit Test Condition
Input offset voltage V Input offset current I Input bias current I Voltage gain A Maximum output
voltage amplitude
IO
IO
IB
VD
V
OP-P
9.0 mV RS 10 k 400 nA — 1,100 nA 80——dBR ±10——VR
2 k, Vout = ±10 V
L
2 k
L
3
Page 4
HA17741/PS
IC Operational Amplifier Application Examples
Multivibrator
A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate the waveform. Multivibrators are widely used as the square wave source in such applications as power supplies and electronic switches.
Multivibrators are classified into three types, astable multivibrators, which have no stable states, monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable states.
1. Astable Multivibrator
R
3
V
Vin()
Vin(+)
C
1
+
CC
Vout
R
V
EE
1
R
L
R
2
Figure 1 Astable Multivibrator Operating Circuit
Vin(+) 0
Vin() 0
Vout 0
Vertical: Horizontal:
Circuit constants R R R V
5 V/div 2 ms/div
= 8 k, R2 = 4 k
1
= 100 k, C1 = 0.1 µF
3
=
L
= 15 V, VEE = 15 V
CC
Figure 2 HA17741 Astable Multivibrator Operating Waveform
4
Page 5
2. Monostable Multivibrator
Figure 3 Monostable Multivibrator Operating Circuit
Trigger input 0
Vin(+) 0
HA17741/PS
R
3
C
1
Input
0
C
2
V
CC
+
R
R
2
Vout
V
EE
1
R
L
Figure 4 HA17741 Monostable Multivibrator Operating Waveform
3. Bistable Multivibrator
Vin() 0
Vertical: Horizontal:
Circuit constants
= 10 k, R2 = 2 k
R
Vout 0
Vin()
Vin(+)
Input
0
C
V
+
V
R
L
R
2
1
= 40 k, C1 = 0.47 µF
R
3
C2 = 0.0068 µF
=
R
L
= 15 V, VEE = 15 V
V
CC
CC
Vout
EE
R
1
Figure 5 Bistable Multivibrator Operating Circuit
5
Page 6
HA17741/PS
Trigger input 0
Vin(+) 0
Vout 0
Figure 6 HA17741 Bistable Multivibrator Operating Waveform
Wien Bridge Sine Wave Oscillator
2SK16 H
Figure 7 Wien Bridge Sine Wave Oscillator
500
Rin
Vertical: Horizontal:
5 V/div 2 ms/div
Circuit constants
R1 = 10 k, R2 = 2 k C = 0.0068 µF
=
R
L
= 15 V, VEE = 15 V
V
CC
1S2074 H
R
1 M
R
C
3
3
4
470 k
5.1 k R
S
+
R
C
R
2
2
1
C
1
R
Vout
50 k
L
30 k
10 k
Oscillator Frequency f (Hz)
V
= 2 V
OP-P
V
= 20 V
OP-P
3 k
1 k
300
100
30
10
30 p 100 p 300 p 1,000 p 3,000 p 0.01 µ 0.03 µ 0.1 µ
VCC = 15 V,
= 15 V
V
EE
= C2/10
C
1
= 110 k,
R
1
= 11 k
R
2
C1 Capacitance (F)
Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f–C Characteristics
6
Page 7
HA17741/PS
Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform
Quadrature Oscillator
Vertical: Horizontal:
5 V/div
0.5 ms/div
Test circuit condition
VCC = 15 V, VEE = 15 V
= 110 k, R2 = 11 k
R
1
= 0.0015 µF, C2 = 0.015 µF
C
1
Test results
f = 929.7 Hz, T.H.P = 0.06%
Sin out
C
T1
+
R
T1
C
1
R
A1
T2
R
1
Cos out
C
T2
A2
+
V
4
R
D
1
R
R
D
2
R
V
8
Figure 10 Quadrature Sine Wave Oscillator
11
22
44
33
Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is, it also supplies the waveform delayed by 90°. The output amplitude is essentially determined by the limiter circuit.
7
Page 8
HA17741/PS
fCT1, CT2, C1 Characteristics
30
CT1 = 102 pF
= 99 pF
C
T2
= 106 pF
C
10
1
3
1.0
0.3
0.1
0.03
0.01 100 p 1,000 p 0.01 µ 0.1 µ
VCC = VEE = 15 V
= 150 k, RT2 = 150 k
R
T1
= 151.2 k
R
1
= 15 k, R22 = 10 k
R
11
= 15 k, R44 = 10 k
R
33
, CT2, C1 1,000 pF
C
T1
Use a Mylar capacitor.
= 21 V
With V
OP-P
= R44 = 10 k
R
22
the frequency of the sine wave will be under 10 kHz.
and
P-P
Sin out Cos out
CT1, CT2, C1 (F)
Figure 11 HA17741 Quadrature Sine Wave Oscillator
Triangular Wave Generator
Sin out 0
Cos out
Vertical: Horizontal: Circuit constants
5 V/div
0.2 ms/div
CT1 = 1000 pF (990), CT2 = 1000 pF (990)
= 150 k, RT2 = 150 k
R
T1
= 1000 pF (990), R1 = 160 k
C
1
= 15 k, R22 = 10 k
R
11
= 16 V, R44 = 10 k
R
33
= 15 V, VEE = 15 V
V
CC
Figure 12 Sine and Cosine Output Waveforms
Integrator
D1R
3
D2R
4
Vout2
Hysteresis comparator
C
A1
+
R
1
R
2
+
A2
V
R1/R
Vout1
A
2
Figure 13 Triangular Wave Generator Operating Circuit
8
Page 9
0
Vout1
Vout2
0
0
V
A
Figure 14 HA17741 Triangular Wave Generator Operating Waveform
Sawtooth Waveform Generator
Vin
R
6 k
3 k
HA17741/PS
Vertical: Horizontal:
Circuit constants
R
3
2
V
A
+
R
4
2.7 k
2.7 k
6 k
R
V
1
B
R
5
R
6
V
C
2SC1706 H
Q
1
+
I
C
1
10 V/div 10 ms/div
= 15 V, VEE = 15 V
V
CC
= 10 k, R2 = 20 k
R
1
= 100 k, R4 = 200 k
R
3
C = 0.1 µF
Vout
R
7
2.7 k R
8
2.7 k
5 k V
R
Figure 15 Sawtooth Waveform Generator
V
R
0
Vout
0
Vertical: Horizontal:
5 V/div 2 ms/div
Circuit constants
VCC = 15 V, VEE = 15 V
= 100 k, C1 = 0.1 µF
R
1
= 10 V
V
in
Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform
9
Page 10
HA17741/PS
Characteristic Curves
Voltage Offset Adjustment Circuit
R
1
Input Offset Current vs.
Power-Supply Voltage Characteristics
20
R
2
16
(nA)
IO
2
6
3
5
1
12
8
R
R
1
2
R
a = 100%a = 0%
V
EE
Power Dissipation vs.
Power-Supply Voltage Characteristics
100
No load
80
60
40
20
Power dissipation Pd (mW)
0
±3 ±6 ±12 ±15
±9 ±18 ±3 ±6 ±12 ±15
Power-supply voltage VCC, VEE (V)
4
Input offset current I
0
±3 ±6 ±12 ±15
±9 ±18
Power-supply voltage VCC, VEE (V)
Voltage Gain vs.
Power-Supply Voltage Characteristics
120
110
(dB)
VD
100
90
Voltage gain A
80
70
±9 ±18
RL 2 k
Power-supply voltage VCC, VEE (V)
10
Page 11
HA17741/PS
Maximum Output Voltage Amplitude vs.
Power-Supply Voltage Characteristics
20
RL 2 k
16
12
(V)
OP-P
±V
8
4
+V
OP-P
OP-P
V
Maximum output voltage amplitude
0
±3 ±6 ±12 ±15
±9 ±18
Power-supply voltage VCC, VEE (V)
Input Offset Current vs.
Ambient Temperature Characteristics
20
16
(nA)
IO
12
8
4
Input offset current I
0
20 0 20 40 60
VCC = +15 V V
Ambient temperature Ta (°C)
= 15 V
EE
Input Offset Voltage vs.
Ambient Temperature Characteristics
5
4
(mV)
IO
3
2
1
Input offset voltage V
0
20 0 20 40 60
VCC = +15 V
= 15 V
V
EE
10 k
R
S
80
Ambient temperature Ta (°C)
Input Bias Current vs.
Ambient Temperature Characteristics
120
100
(nA)
IB
80
60
40
Input bias current I
20
0
80
20 0 20 40 60
VCC = +15 V
= 15 V
V
EE
80
Ambient temperature Ta (°C)
11
Page 12
HA17741/PS
Power Dissipation vs.
Ambient Temperature Characteristics
90
80
70
60
50
Power dissipation Pd (mW)
40
20 0 20 40 60
VCC = +15 V
= 15 V
V
EE
No load
Ambient temperature Ta (°C)
Maximum Output Voltage Amplitude vs.
Ambient Temperature Characteristics
16
12
8
Voltage Gain vs.
Ambient Temperature Characteristics
120
110
(dB)
VD
100
90
Voltage gain A
80
80
70
20 0 20 40 60
VCC = +15 V
= 15 V
V
EE
2 k
R
L
80
Ambient temperature Ta (°C)
Output Shorted Current vs.
Ambient Temperature Characteristics
20
VO = V
CC
VCC = +15 V
= 15 V
16
(mA)
OS
V
EE
4
(V)
0
OP-P
V
4
8
Maximum output voltage amplitude
12
20 0 40 60
VCC = +15 V
= 15 V
V
EE
= 10 k
R
L
20 80
Ambient temperature Ta (°C)
12
8
4
Output shorted current I
0
20 0 20 40 60
Ambient temperature Ta (°C)
80
12
Page 13
HA17741/PS
Maximum Output Voltage Amplitude vs.
Load Resistance Characteristics
16
12
8
4
(V)
0
OP-P
V
4
VCC = +15 V
= 15 V
V
EE
8
Maximum output voltage amplitude
12 200 500 1 k 2 k 5 k
10 k
Load resistance RL ()
Maximum Output Voltage Amplitude vs.
Frequency Characteristics
28
24
1.6
VCC = +15 V, VEE = 15 V R
1.2
See the voltage offset adjustment circuit diagram.
0.8
0.4 0
0.4
0.8
Output voltage Vout (V)
1.2
1.6
0
Resistor position a (%)
Input Resistance vs.
Frequency Characteristics
1.4
1.2
Offset Adjustment
Characteristics
= 51 , R2 = 5.1 k
1
R = 10 k
R = 5 k
R = 20 k
20 40 60 80 100
20
16
(V)
12
OP-P
V
VCC = +15 V
8
4
V
EE
= 10 k
R
L
= 15 V
Maximum output voltage amplitude
0
500 1 k 50 k 100 k
200 2 k 5 k 10 k 20 k 200 k 500 k 100 500 1 k 50 k 100 k
100
Frequency f (Hz)
1.0
0.8
0.6
0.4
Input resistance Rin (M)
0.2
0
200 2 k 5 k 10 k 20 k 200 k 500 k 1 M
Frequency f (Hz)
13
Page 14
HA17741/PS
Phase vs.
Frequency Characteristics
40
0
40
80
120
Phase φ (deg.)
160
200
240
50 200 1 k 50 k 100 k
100 2 k 5 k 10 k 20 k 200 k 500 k
500 1 M 2 M
Frequency f (Hz)
Voltage Gain and Phase vs.
Frequency Characteristics (1)
120
100
(dB)
80
VD
60
40
20
0
Voltage gain A
20 10 50 200 10 k 20 k
20 500 1 k 2 k 5 k 50 k 100 k
100 200 k 500 k 1 M 2 M
VCC = +15 V
= 15 V
V
EE
Closed loop gain = 60 dB
φ
A
VD
Frequency f (Hz)
VCC = +15 V
= 15 V
V
EE
Open loop
0
60
120
180
Phase φ (deg.)
Voltage Gain vs
Frequency Characteristics
120
100
80
(dB)
60
VD
40
20
0
Voltage gain A
20
40
10 50 200 10 k 20 k
20 500 1 k 2 k 5 k 50 k 100 k
100 500 k 2 M200 k 1 M
Frequency f (Hz)
Voltage Gain and Phase vs.
Frequency Characteristics (2)
120
100
80
(dB)
60
VD
40
20
0
Voltage gain A
20
40
10 50 200 10 k 20 k
20 500 1 k 2 k 5 k 50 k 100 k
100 200 k 500 k 1 M 2 M
VCC = +15 V V
EE
Closed loop gain = 40 dB
Frequency f (Hz)
= 15 V
φ
A
VD
VCC = +15 V
= 15 V
V
EE
Open loop
0
60
120
180
Phase φ (deg.)
14
Page 15
HA17741/PS
Voltage Gain and Phase vs.
Frequency Characteristics (3)
120
100
(dB)
80
VD
VCC = +15 V
60
= 15 V
V
EE
40
Closed loop gain = 20 dB
20
0
Voltage gain A
20
40
10 50 200 10 k 20 k
20
500
1 k 2 k 5 k 50 k 100 k100 200 k 500 k 1 M 2 M
Frequency f (Hz)
Impulse Response
Characteristics Test Circuit
2
6
3
Vin
Voltage Gain and Phase vs.
Frequency Characteristics (4)
120
φ
A
VD
0
60
120
180
100
(dB)
80
VD
60
40
20
Phase φ (deg.)
0
Voltage gain A
20
40
VCC = +15 V
= 15 V
V
EE
Closed loop gain = 0 dB
10 50 200 10 k 20 k
20
500
1 k 2 k 5 k 50 k 100 k100 200 k 500 k 1 M 2 M
φ
A
VD
0
60
120
180
Phase φ (deg.)
Frequency f (Hz)
Rise time vs.
Power-Supply Voltage Characteristics
0.8 Vin = 20 mV
= 2 k
R
L
= 100 pF
C
Vout
R
C
L
L
0.6
(µs)
r
0.4
L
Vout
90%
10%
V
2
Vout = × 100 (%)
V
V
2
t
r
1
V
1
Rise time t
0.2
0
±3 ±6 ±9 ±12 ±15
Power-supply voltage VCC, VEE (V)
±18
15
Page 16
HA17741/PS
Overshoot vs.
Power-Supply Voltage Characteristics
40
Vin = 20 mV R
30
20
10
Overshoot Vover (%)
0
±3 ±6 ±9 ±12 ±15
C
Power-supply voltage VCC, VEE (V)
= 2 k
L
= 100 pF
L
±18
Impulse Response
Characteristics
40
30
20
10
0
Output voltage Vout (mV)
0 0.4 0.8 1.2
Time t (µs)
VCC = +15 V
= 15 V
V
EE
= 2 k
R
L
= 100 pF
C
L
= 20 mV
V
in
1.6
16
Page 17
Package Dimensions
0.89
10.6 Max
1
HA17741/PS
Unit: mm
9.6
58
6.3
7.4 Max
4
1.3
2.54 ± 0.25
1.27 Max
0.48 ± 0.10
5.06 Max
0.1 Min
2.54 Min 0° – 15°
Hitachi Code JEDEC EIAJ
(reference value)
Mass
7.62
0.25
+ 0.10 – 0.05
DP-8 Conforms Conforms
0.54 g
17
Page 18
HA17741/PS
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail­safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223
Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Europe GmbH Electronic components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533
Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
18
Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX
Loading...