Datasheet GS-R51515S, GS-R51212S Datasheet (SGS Thomson Microelectronics)

Page 1
GS-R51212S GS-R51515S
31W TRIPLE OUTPUT STEP-DOWN SWITCHING REGULATORS
Type V
i
V
o
+ 5,1 V 4,5 A
± 12V
+ 5,1 V 4,5 A
± 15 V
I
o
0,35 A
0,3 A
FEATURES
5.1V/4.5Aand ±12V/0.35A or ±15V/0.3Aoutput voltages ±12 or ±15Vexternallyadjustable High efficiency(81%typ.) Short-circuitprotection Reset output Power Fail programmableinput Inhibit/Enablecontrolinput Soft-start PCB or chassismounting
DESCRIPTION
The GS-R51212S and GS-R51515Sare versatile triple output, high current step-down switching regulators that provide +5.1V/4.5A output voltage and an isolated ±12V/0.35A or ±15V/0.3A dual output voltage. They are ideal for microprocessor based boards because power the logic and the communication ports and have Reset output and Power Fail pro­grammableinput for the correct system start-up.
The Inhibit/Enable pin allows the ON/OFF logic functionwith TTL/CMOScompatibleinput signal. The auxiliaryoutputs(±12Vor±15V)are externally adjustablein a very widerange,i.e. from ±4.25Vto
±12.45V on GS-R51212S and from ±4.50V to ±15.25V (typical values)on GS-R51515S.
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
i
I
rs
June 1994 1/8
DC Input Voltage 44 V Reset Output Sink Current 20 mA
Page 2
GS-R51212S/GS-R51515S
ELECTRICALCHARACTERISTICS (T
Symbol
V
Input Voltage
i
GS-R51212S
V
Input Voltage
i
GS-R51515S
l
Input ReflectedCurrent Vi= 24V I
ir
l
Input ReflectedCurrent Vi= 24V I
ir
V
δV
δV
δV
δV
V
l
V
V
V
V
V
V
V
or2,3
OL2,3
OO2,3
I
I
I
I
Enable Input Voltage Vi= 15 to 40V 0 0.8 V
ien
Enable Input Current Vi= 15 to 40V – 1 mA
ien
Inhibit Input Voltage Vi= 15 to 40V 1.2 +Vi V
iinh
Output Voltage 1 Vi= 15 to 40V Io1= 0 to 4.5A
o1
Output Voltage 2
o2
GS-R51212S Output Voltage 2
o2
GS-R51515S Output Voltage 3
o3
GS-R51212S Output Voltage 3
o3
GS-R51515S Output Ripple
or1
Voltage1 Output Ripple
Voltage2,3 Line Regulation 1 Vi= 15 to 40V Io1= 2.5A
OL1
Line Regulation 2,3 Vi= 15 to 40V
Load Regulation 1 Vi= 24V Io1= 0.5 to 4.5A
OO1
Load Regulation 2,3 Vi= 24V Io1= 2.5A
Output Current 1 Vi= 15 to 40V Vo1= 5.1V
o1
Output Current 2*
o2
GS-R51212S Output Current 2*
o2
GS-R51515S Output Current 2*
o2
GS-R51212S
Io2 Output Current 2*
GS-R51515S
Io3 Output Current 3*
GS-R51212S
Parameter Test Conditions Min Typ Max Unit
=25°C unless otherwise specified)
amb
Vo1= +5.1V Io1= 4.5A
15 40 V Vo2= +12V Io2= 0.35A Vo3= – 12V Io3= – 0.35A
Vo1= +5.1V Vo2= +15V Io2= 0.3A
Io1
= 4.5A
15 40 V Vo3= – 15V Io3= – 0.3A
= Full Load
No external input capacitor
Ci (external) = 100µF/50V
o1,2,3
o1,2,3
= Full Load
0.5 App
0.15 App
+5 +5.1 +5.2 V Io2= 0 to 0.35/0.3A Io3= 0 to – 0.35/– 0.3A
Vi= 15 to 40V Io1= 0 to 4.5A
+11.5 +12 +12.5 V
Io2= 0 to 0.35A Io3= 0 to – 0.35A Vi= 15 to 40V Io1= 0 to 4.5A
+14.5 +15 +15.5 V
Io2= 0 to 0.3A Io3= 0 to – 0.3A Vi= 15 to 40V Io1= 0 to 4.5A
– 11.5 – 12 – 12.5 V
Io2= 0 to 0.35A Io3= 0 to – 0.35A Vi= 15 to 40V Io1= 0 to 4.5A
Io2= 0 to 0.3A
= 0 to – 0.3A
Io3
– 14.5 – 15 – 15.5 V
Vi= 24V Io1= 4.5A 30 50 mVpp
Vi= 24V I
= 0.35/0.3A 50 100 mVpp
o2,3
0.5 mV/V
I
= 0.35/0.3A
o2,3
I
o2,3
= 0.35/0.3A
Io1
= 2.5A
1 mV/V
2 mV/A
I
= 0.35/0.3A
o2,3
500 mV/A
I
= 0.05 to 0.35/0.3A
o2,Io3
0 4.5 A
I
= 0 to 0.35/0.3A
o2,3
Vi= 15 to 40V Io1= 0 to 4.5A
0 0.35 A
Vo2= +12V Io3= 0 to – 0.35A Vi= 15 to 40V Io1= 0 to 4.5A
0 0.3 A
Vo2= +15V Io3= 0 to – 0.3A Vi= 15 to 40V
Vo2= +12V Io3=0A Vi= 15 to 40V Io1= 0 to 4.5A
= 0 to 4.5A
Io1
0 0.7 A
0 0.6 A
Vo2= +15V Io3=0A Vi= 15 to 40V Io1= 0 to 4.5A
0 – 0.35 A
Vo3= – 12V Io2= 0 to 0.35A
2/8
Page 3
GS-R51212S/GS-R51515S
ELECTRICALCHARACTERISTICS (T
Symbol
I
I
I
I
osck1
I
osc1
I
osc2,3
t
t
R
T
T
* Note: whenoutput current is less than 50mA, outputripple voltage increases due todiscontinuous operation.
Output Current 3*
o3
GS-R51515S Output Current 3*
o3
GS-R51212S Output Current 3*
o3
GS-R51515S Output Current
Limit 1 Output Short-circuit
Current 1 Output Short-circuit
Current 2,3 Soft-start time 10 ms
ss
Reset Time Delay 100 ms
dr
f
Switching Frequency Vi= 15 to 40V Vo1= 5.1V
s
η Efficiency Vi= 24V I
Thermal Resistance 7.5 °C/W
th
Operating Case
cop
TemperatureRange Storage
stg
TemperatureRange
Parameter Test Conditions Min Typ Max Unit
=25°C unless otherwise specified) (cont’d)
amb
Vi= 15 to 40V Io1= 0 to 4.5A Vo3= – 15V Io2= 0 to 0.3A
Vi= 15 to 40V Io1= 0 to 4.5A Vo3= – 12V Io2=0A
Vi= 15 to 40V Io1= 0 to 4.5A Vo3= – 15V Io2=0A
Vi= 15 to 40V Overload 5.5 A
Vi= 15 to 40V 3 A
Vi= 15 to 40V 0.8 A
Io1= 0.5 to 4.5A Vo2= +12/+15V Vo3= – 12/– 15V Io2,Io3= – 0.05 to – 0.35/– 0.3A
= Full Load 78 81 %
o1,2,3
0 – 0.3 A
0 – 0.7 A
0 – 0.6 A
0 +85 °C
– 40 +105 °C
100 kHz
3/8
Page 4
GS-R51212S/GS-R51515S
CONNECTION DIAGRAM AND MECHANICAL DATA
Package R.Dimensionsin mm (inches).
PIN DESCRIPTION
Pin Function Description
1 GND IN Return for input voltage source. Internallyconnected to pin 7.
2 EN.
3 P.F. 4 + Vin DC input voltage. Recommended maximum voltage is 40V. 5RT 6 Vo+ 5V Regulated +5.1V output voltage.
7 GND 1 Return for output 1 current path. Internally connected to pin 1. 8 Vo+ 12/15V Regulated+12 or +15V output.
9 Vo– 12/15V Regulated – 12 or – 15Voutput. 10 ADJ. External adjustment for output voltages ±12 and ±15V. 11 GND Aux. Return for ±12 and ±15V output current path.
4/8
Inhibit/Enable control input. The converter is ON (ENABLE) when the voltage applied to this pin is lower than 0.8V. The converter is OFF (INHIBIT) when this pin is unconnected or the input voltage is in the range of 1.2 to Vi.
Power Fail programmable input. If unconnected the Power Fail threshold voltage is 11V with 1V hysteresis (factory setting).
Reset output (activehigh). When the supply voltage +Vin and the regulated output voltage +Vo1are in the correct range this signalis generated after a delaytime of 100ms typical.
Page 5
GS-R51212S/GS-R51515S
USER NOTES Input Voltage
The recommended operating maximum DC input voltage is 40V inclusive of the ripple voltage. The use of an external low ESR, high ripple current capacitor located as close the module as possible is recommended;suggestedvalue is 100µF/50V.
Soft-start
To avoid heavy inrush current the output voltage risetime is typically 10ms in any conditionof load.
Power Fail-Reset Circuit
The module include a voltage sensing circuit that may be used to generate a power-on/power-off reset signal for a microprocessorsystem. The circuit sense the input supply voltage and the output generatedvoltageVo1(+5V)and willgener­ate the required reset signal only when both the sensed voltages have reached the required value for correct systemoperation. When both the supply voltage and the regulated voltage are in the correct range the output Reset signalis generatedaftera delaytime t
of100ms
DR
typical. A latch assures that if a spike is present on the sensed voltage the delay time circuit discharges completelybefore initializationof anew reset cycle.
Reset output has internal pull-up resistor of 10kOhmconnected to Vo +5V pin. Maximum sink output current is 20mA at V
RESET(sat)
= 200mV.
Fig. 1 and fig.2 showreset waveforms.
Power Fail ProgrammableInput
This pin is internally connected via a divider to the +Vin pin for Power Fail function. The factory setting is for a value of 11V with 1V hysteresis. It is possibleto program a different value of Power Fail threshold by connecting a resistor (Rpf) be­tween pin 3 (Power Fail Input) and pin 1 (GND Input).The value of Rpfmustbe calculatedaccord­ing to the followingformula:
Rpf=
5.1
5.1
V
pf
0.191
34
=(kΩ)
whereVpf isthe desiredvalueof PowerFailthresh­old voltage. Exampe:Vpf = 24V (must not belower than 12V):
Rpf=
5.1
24 5.1
34
= 14k
0.191
Figure1 - Resetand Power Fail waveforms.
5/8
Page 6
GS-R51212S/GS-R51515S
Figure2 - Resetand Power Fail waveforms.
AuxiliaryOutputs
Theauxiliaryoutputs(±12Vor±15V) areexternally adjustabl e in s ymmetric way by conne cting a resistor Ra between pin 10 (ADJ.) and pin 8 (Vo + 12/+15V),accordingtothefollowingformula:
V
4.229
GS−R51212S R
GS−R51515S R
= 32.66 ×
a
= 38.66 ×
a
o
12.485 V V
4.39
o
15.252 V
o
o
whereVoisthe desired dual output voltage. Example: V
= ±5V.
o
R
(GSR51212S)=3.36k
a
R
(GSR51515S)=2.3k
a
Example: Vo= ±10V.
R
(GSR51212S)=75.8k
a
R
(GSR51515S)=41.3k
a
6/8
Page 7
Figure3 - TypicalApplication.
GS-R51212S/GS-R51515S
Inhibit/EnableInput
The Inhibit/Enable function allows the ON/OFF logiccontrol of the module. The converter is ON (Enable) when the voltage applied to pin 2 (EN.) and referred to pin 1 (GND IN)is lower than 0.8V (TTL, CMOS, open collector compatiblelevel). Theconverteris OFF (Inhibit) when pin2 is uncon­nectedor the voltageappliedisin therangeof1.2V to +Vin.Maximum sinking current is1mA.
Module Protection
The module is protected against occasional and permanent short-circuits of the output pins to ground,as wellas againstoutput currentoverload. The main output (+5.1V) uses a foldback current limiting;the outputcurrent decreaseswith increas­ing overload, reaching a minimum at short-circuit condition. This solution minimizes internalpower dissipation. Theauxiliary outputs(±12Vor ±15V) use a current limitingprotectioncircuitry.
Thermal characteristics
SometimestheGS-R51212SandGS-R51515Sre­quire an external heat-sinkdepending on both op­erating temperature conditions and power. Before entering into calculations details,some ba­sic conceptswill be explained to betterunderstand the problem.
The thermal resistancebetween two points is rep­resentedby their temperaturedifferencein front of a specifieddissipatedpower,and it is expressedin Degree Centigrade per Watt (°C/W). For the modules the thermal resistance case to ambient is 7.5°C/W. This means that an internal powerdissipationof1Wwillbring thecasetempera­ture at 7.5°C abovethe ambienttemperature. The maximumcase temperatureis 85°C. Let’ssuppose to have aGS-R51515Sthatdelivers the maximumoutputpower of31.4W at anambient temperatureof 40°C.
7/8
Page 8
GS-R51212S/GS-R51515S
The dissipated power in this operating condition is about 7.4W (at typical efficiency of 81%), and the case temperatureof the modulewill be:
T
= T
case
+ PRth= 40 + 7.4 × 7.5 = 95.5 °C
amb
This valueexceedsthemaximumallowedtempera­ture and an external heat-sink must be added. To this purpose four holes (see mechanical drawing) are providedon the metal surface of themodule. Tocalculatethisheat-sink,let’sfirst determinewhat the total thermal resistance should be:
T
R
case(max)
=
th
T
P
d
amb
=
85 40
7.4
= 5.40 °CW
This value is the resulting value of the parallel connection of GS-R thermal resistance and of the additionalheatsink thermal resistance.
R
(GSR) × Rth(Heatsink)
th
(GSR) + R
R
th
(Heatsink)
th
= 5.40°C/W
Tocalculatethethermalresistanceoftheadditional heat-sink the following equation may be used:
R
(Heatsink)=
th
R
th(GSR)
(GSR)
th
5,40
5.40× 7.5
=
7.5 5.40
= 19.3 °C/W
5.40 ×
R
In instead of or in addition to the externalheatsink, a forced ventilationwith an airspeed of about 200 linearfeet/minutecanbeusedreducingthethermal resistanceof the moduleat the specifiedvalue.
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patentor patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products arenot authorized for use as critical components inlife support devices orsystems without express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics –All Rights Reserved
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
8/8
Loading...