Datasheet GP1A57HR Datasheet (Sharp)

GP1A57HR
GP1A57HR
Wide Gap Type OPIC Photointerrupter
Features
1. Wide gap between LED and detector(10mm
2. High accuracy mounting type with positioning pin
3. Built-in schmidt-trigger circuit
4. PWB mounting type package
Applications
1. Cameras, video cameras
2. OA equipmet, such as copiers etc.
3. Facsimiles
Slit width (
Detector side
±
1.8
5- 0.45
1.25
(
Unit : mm
Voltage regulator Amp.
2
1
3 V
CC
4 V
O
5 GND
0.1
0.1
(
)
1.27
C1.0
Outline Dimensions
)
5.0
18.6
10.0
5- 0.4
C0.3 (
)
1.5
φ
1.5
(
)
15.2
8.95
5
34
*“OPIC” (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
)
Detector center
2.5
(
1A57HR
0.7
φ
0.7
2.0
12
Internal connection diagram
3
(
)
15k
4 5
1 Anode 2 Cathode
15.2
3.0
1.5
*Tolerance:± 0.2mm *( ): Reference dimensions
)
)
MIN.
MIN.
4.0
)(
Absolute Maximum Ratings
(
Ta = 25˚C
)
Parameter Symbol Rating Unit
Input
Forward current I
*1
Peak forward current I Reverse voltage V
F
FM
R
50 mA
1A
6V Power dissipation P 75 mW Supply voltage V
Output
Output current I Power dissipation P
Operating temperature T Storage temperature T
*2
Soldering temperature T
*1 Pulse width<=100µs, Duty ratio = 0.01 *2 For 5 seconds
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
opr
stg
sol
- 0.5 to + 17 V
CC
O
O
- 25 to + 85 ˚C
- 40 to + 100 ˚C
50 mA
250 mW
260 ˚C
GP1A57HR
Electro-optical Characteristics
Paramerter Symbol Conditions
Input
Output
Transfer
charac-
teristics
*3 I
represents forward current when output changes from low to high.
FLH
*4 I
represents forward current when output changes from high to low.
FHL
Hysteresis stands for I
Forward voltage V Reverse current I Operating supply voltage Low level output voltage V High level output voltage V Low level supply current High level supply current I
*3
“LowHigh”
threshold input current
*4
Hysteresis VCC=5V
“ LowHigh”
propagation delay time
“ HighLow”
propagation delay time
Response
time
Rise time t Fall time t
.
FHL/IFLH
R
V
CC
OL
OH
I
CCL
CCH
I
FLH
I
FHL/IFLH
t
PLH
t
PHL
IF= 7mA
F
VR=3V
VCC= 5V, IF= 0, IOL= 16mA VCC= 5V, IF= 7mA VCC= 5V, IF=0 VCC= 5V, IF= 7mA
VCC=5V
= 5V, IF= 7mA
V
CC
R = 280
L
r
f
(
Ta = 25˚C
MIN. TYP. MAX. Unit
- 1.1 1.4 V
- - 10.0 µ A
4.5 - 17.0 V
- 0.15 0.4 V
4.9 - - V
- 1.7 3.8 mA
- 0.7 2.2 mA
- 1.0 7.0 mA
0.55 0.75 0.95 -
-
3.0 9.0
-
5.0 15.0
µ s
- 0.1 0.5
- 0.05 0.5
)
Fig. 1 Forward Current vs. Ambient
Temperature
60
50
)
40
mA
(
F
30
20
Forward current I
10
0
0
Ambient temperature Ta (˚C
)
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
300
)
250
mW
(
O
200
150
100
50
Output power dissipation P
100755025
85-25 -25 85
0
0
25 50 75 100
Ambient temperature T
a
(˚C
)
GP1A57HR
Fig. 3 Low Level Output Current vs.
Ambient Temperature
60
)
50
mA
(
OL
40
30
20
Low level output current I
10
0
0
0
Ambient temperature Ta (˚C
100755025
85-25
)
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
1.1 Ta= 25˚C
, I
FLH
FHL
I
1.0
FLH
0.9
0.8
I
FHL
0.7
Fig. 4 Forward Current vs. Forward Voltage
500
25˚C
0˚C
- 25˚C
) mA
(
200
Ta= 75˚C
50˚C
100
50
F
20
10
5
Forward current I
2
1
Forward voltage VF (V
)
32.521.510.50
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.6 =5V
V
FLH
1.4
, I
FHL
1.2
I
FLH
1.0
0.8
CC
I
FHL
0.6
Relative threshold input current I
0.5 0
I
= 1 at VCC=5V
FLH
10 15 20
5
Supply voltage V
)
(V
CC
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
1.0 VCC=5V
= 25˚C
T
0.5
a
) V
(
OL
0.2
0.1
0.05
Low level output voltage V
0.02
0.01 2 5 20 50
1 10 100
Low level output current IOL (mA
0.6
Relative threshold input current I
25
0.4
-25
I
= 1 at Ta= 25˚C
FLH
0
25 50 75 100
Ambient temperature T
)
(˚C
a
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
0.6 V
=5V
I
OL
a
CC
= 30mA
(˚C
16mA
5mA
)
0.5
) V
(
OL
0.4
0.3
0.2
Low level output voltage V
0.1
0
)
-25
0
25 50 75 100
Ambient temperature T
GP1A57HR
Fig. 9 Supply Current vs.
Ambient Temperature
3.0
2.5 ) mA
2.0
(
CC
1.5
1.0 Supply current I
0.5
0
-25
0
25 50 75 100
Ambient temperature Ta (˚C
VCC= 17V
10V
V
)
10V
5V
5V
CC
= 17V
I
CCL
}
}
I
CCH
Fig.11 Rise Time, Fall Time vs. Load Resistance
0.8
0.7
0.6
) µs
(
f
0.5 , t
r
0.4
0.3
0.2
Rise time, fall time t
0.1
0
0.1
0.5 2 5
0.2 1 10 Load resistance R
L
(k
)
T
a
V
CC
I
F
t
r
t
= 25˚C
=5V
= 7mA
f
5020
Fig.10 Propagation Delay Time vs.
Forward Current
12
VCC=5V R
= 280
L
)
T
= 25˚C
a
10
µs
(
PHL
8
, t
PLH
6
4
2
Propagation delay time t
0
0
10
t
PHL
Forward current IF (mA
3020
Test Circuit for Response Time
47
Input
Output
Voltage regulator
Amp.
t
PLH
10%
t
r
50%
t
PHL
(
15k
IF= 7mA
Input
= tf= 0.01 µs
t
r
Zo = 50
t
)
t
f
PLH
)
GND
90%
1.5V
5040
280
0.01µ F
V
OH
V
OL
60
+ 5V
Output
Precautions for Use
(1) In case of cleaning, use only the following type of cleaning solvent.
Ethyl alcohol, Methyl alcohol, Isopropyl alcohol
(2) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01µF bet-
ween Vcc and GND near the device.
(3) As for other general cautions, refer to the chapter “Precautions for Use .”
Loading...