Datasheet GP1A52LR Datasheet (Sharp)

Page 1
GP1A52LR
GP1A52LR
OPIC Photointerrupter
Features
1. Output inverting type of GPIA52HR
2. High sensing accuracy (Slit width: 0.5mm
3. TTL and CMOS compatible output
4. PWB mounting type
1. OA equipment, such as printers, floppy disk drives, etc.
2. VCRs
Outline Dimensions
Internal connection diagram
)
(
)
5-0.4
7.5
2.5
15k
S
A52
±
0.3
12.2
+
0.2
3.0
-
0.1
1.5
+
0.3
-
0.1
(
1.5
4
1A52LR
)
(
)
9.2
5
1
23
4
5 1 Anode
2 Cathode
Slit width
3.5 (
Both sides of
detector and
10.0
emitter
MIN.
9.0
*Unspecified tolerances shall be as follows ;
Dimensions(d)Tolerance
d<=6.0
6.0< d<=18.0 ± 0.2
*( ): Reference dimensions
(
Unit : mm
Voltage regulator
23
1
3 V 4 V 5 GND
5.0
0.5 C1.0
)
5 - 0.45 (
)
1.27
1.27
± 0.1
)(
CC O
Amp
+
- 0.1
)
0.3
*“ OPIC ” (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
Absolute Maximum Ratings
(
Ta= 25˚C
)
Parameter Symbol Rating Unit
Input
Forward current I
*1
Peak forward current I Reverse voltage V
F
FM
R
50 mA
1A
6V Power dissipation P 75 mW Supply voltage V
Output
Low level output current I
OL
Power dissipation P
Operating temperature T
opr
Storage temperature T
*2
Soldering temperature T
*1 Pulse width<=100µ s, Duty ratio= 0.01 *2 For 5 seconds
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
- 0.5 to + 17 V
CC
O
- 25 to + 85 ˚C
- 40 to + 100 ˚C
stg
sol
50 mA
250 W
260 ˚C
Page 2
GP1A52LR
Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Input
Output
Transfer
charac-
teristics
*3 I
represents forward current when output changes from high to low.
FHL
*4 I
represents forward current when output changes from low to high.
FLH
Hysteresis stands for I
Forward voltage V Reverse current I Operating supply voltage Low level output voltage V High level output voltage V Low level supply current I High level supply current I
*3
“HighLow”
threshold input current
*4
Hysteresis
“HighLow” propagation delay time
“LowHigh” propagation dealy time
Response
time
Rise time Fall time
.
FLH/IFHL
FIF
R
V
CC
OL
OH
CCL
CCH
I
FHLVCC
I
FLH/IFHLVCC
t
PHL
t
PLH
t
r
t
f
(
Ta= 25˚C
= 5mA - 1.1 1.4 V
VR= 3V - - 10.0 µA
4.5 - 17.0 V VCC= 5V, IF= 5mA, IOL= 16mA VCC= 5V, IF= 0mA
= 5V, IF= 5mA
V
CC
= 5V, IF= 0mA
V
CC
- 0.15 0.4 V
4.9 - - V
- 1.7 3.8 mA
- 0.7 2.2 mA = 5V - 1.0 5.0 mA = 5V 0.55 0.75 0.95
3.0 9.0
VCC= 5V, IF= 5mA
R
L
= 280
- 5.0 15.0
- 0.1 0.5
µ s
- 0.05 0.5
)
Recommended Operating Conditions
Parameter Symbol
Low level output current I
OL
Forward current I
Fig. 1 Forward Current vs. Ambient
Temperature
60
50
)
40
mA
(
F
30
20
Forward current I
10
0
0
Ambient temperature Ta (˚C
Operating temp.
Ta= 0 to + 70˚C
F
100755025
85-25 -25 85
)
MIN. MAX. Unit
- 16.0 mA
10.0 20.0 mA
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
300
)
250
mW
(
O
200
150
100
50
Output power dissipation P
0
0
25 50 75 100
Ambient temperature Ta (˚C
)
Page 3
GP1A52LR
Fig. 3 Low Level Output Current vs.
Ambient Temperature
60
)
50
mA
(
OL
40
30
20
10
Low level output current I
0
-25 85
0
25 50 75 100
Ambient temperature Ta (˚C
)
Fig. 5 Relative Threshold Input Current vs.
Fig. 4 Forward Current vs. Forward Voltage
500
T
= 75˚C
a
50˚C
) (
mA
F
200
100
50
20
10
5
Forward current I
2
1
Forward voltage VF (V
Fig. 6 Relative Threshold Input Current vs.
Supply Voltage Ambient Temperature
, I
FLH
FHL
1.1
1.0
I
Ta= 25˚C
FHL
0.9
0.8 I
FLH
0.7
, I
FLH
FHL
1.6
1.4
1.2
1.0
0.8
25˚C
- 25˚C
I
FHL
I
FLH
0˚C
V
CC
3.50 0.5 1 1.5 2 2.5 3
)
=5V
0.6
Relative threshold input current I
0.5
0
I = 1 at V
FHL
5
Supply voltage V
CC
CC
=5V
(V
)
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
1.0
VCC=5V T
= 25˚C
a
0.5
) V
(
OL
0.2
0.1
0.05
Low level output voltage V
0.02
0.01
Low level output current IOL (mA
0.6
Relative threshold input current I
201510
25
0.4
-25
0
I = 1 at T
FHL
Ambient temperature Ta (˚C
= 25˚C
a
)
100755025
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
0.6
0.5
)
V
(
OL
0.4
0.3
0.2
Low level output voltage V
0.1
502052
100101
)
0
-25
0
25 50 75 100
Ambient temperature Ta (˚C
I
OL
V
= 30mA
16mA
5mA
)
CC
=5V
Page 4
GP1A52LR
Fig. 9 Supply Current vs.
Ambient Temperature
3.0
2.5
) mA
2.0
(
CC
1.5
1.0
Supply current I
0.5
0
-25
0
Ambient temperature Ta (˚C
10V
Fig.11 Rise Time, Fall Time vs.
Load Resistance
0.8
0.7
)
0.6
µ s (
f
,t
r
0.5
0.4
0.3
0.2
Rise time, fall time t
0.1
0
0.1 Load resistance RL (k
520.5
VCC= 17V
VCC=17V
)
T
a
V I
F
t
r
t
f
1010.2 )
10V
5V
5V
= 25˚C
=5V
CC
= 5mA
20 50
Fig.10 Propagation Delay Time vs.
Forward Current
12
VCC=5V
= 280
R
L
)
µ s
(
PHL
,t
PLH
I
CCL
I
CCH
100755025
Propagation delay time t
= 25˚C
T
a
10
8
6
4
2
0
0
10
t
PLH
t
PHL
20 30
Forward current IF (mA
40 50
60
)
Test Circuit for Response Time
47
90%
10%
Voltage regulator
Amp.
t
PHL
t
r
t
PLH
50%
(
15k
t
f
)
GND
V
OH
1.5V V
+ 5V
280
Output
0.01µ F
OL
t
r=tf
Zo
Output
Input
=0.01µs
=50
Input
IF= 5mA
Precautions for Use
(1)
In case of cleaning, use only the following type of cleaning solvent.
Ethyl alcohol, Methyl alcohol, Isopropyl alcohol
(2)
In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01µF
between Vcc and GND near the device.
(3)
As for other general cautions refer to the chapter “Precautions for Use .”
Loading...