Datasheet GMS97L58, GMS97L56, GMS97C58, GMS97C56HQ, GMS97C56H Datasheet (HYNIX)

...
Page 1
HYNIX SEMICONDUCTOR INC.
8-BIT SINGLE-CHIP MICROCONTROLLERS
GMS90C3X GMS90C5X GMS97C5X
User’s Manual (Ver. 3.1a)
Page 2
Version 3.1a Published by
MCU Application Team 2001 Hynix semiconductor All right reserved.
Additional information of this manual may beserved by Hynix semiconductor offices in Korea or Distributors and Representatives listed at address directory.
Hynix semiconductor reserves the right to make changes to any information here in at any time without notice. The information, diagrams and other data in this manual are correct and reliable; however, Hynix semiconduc-
tor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.
Page 3
GMS90 Series
Oct. 2000 Ver 3.1a
Device Naming Structure
GMS90X5X
Frequency
Package Type
Blank: 24:
40:
12MHz 24MHz
40MHz
Blank: PL: Q:
40PDIP 44PLCC 44MQFP
ROM Code serial No. ROM size
1: 2: 4:
4k bytes 8k bytes 16k bytes
6:8:24k bytes
32k bytes
Operating Voltage
C:L:4.25~5.5V
2.7~3.6V
Hynix semiconductor MCU
-GBXXXXXXX
GMS97X5X
Frequency
Package Type
Blank:H:12/24(5V),12MHz(3V)
33MHz
Blank: PL: Q:
40PDIP 44PLCC 44MQFP
ROM size
1: 2: 4:
4k bytes 8k bytes 16k bytes
6:8:24k bytes
32k bytes
Operating Voltage
C:L:4.25~5.5V
2.7~3.6V
Hynix semiconductor MCU
XXX
Mask ROM version
OTP version
16: 16MHz
Page 4
GMS90 Series
Oct. 2000 Ver 3.1a
GMS90SeriesSelectionGuide
Operating
Voltage (V)
ROM size (bytes)
RAM size
(bytes)
Device Name
Operating
Frequency (MHz)
MASK OTP
4.25~5.5
ROM-less
128 256
GMS90C31 GMS90C32
12/24/40 12/24/40
4K 8K 16K 24K 32K
-
-
-
-
-
128 256 256 256 256
GMS90C51 GMS90C52 GMS90C54 GMS90C56 GMS90C58
12/24/40 12/24/40 12/24/40 12/24/40 12/24/40
-
-
-
-
-
-
-
-
-
-
4K 4K 8K 8K 16K 16K 24K 24K 32K 32K
128 128 256 256 256 256 256 256 256 256
GMS97C51 GMS97C51H GMS97C52 GMS97C52H GMS97C54 GMS97C54H GMS97C56 GMS97C56H GMS97C58 GMS97C58H
12/24 33 12/24 33 12/24 33 12/24 33 12/24 33
2.7~3.6
ROM-less
128 256
GMS90L31 GMS90L32
12/16 12/16
4K 8K 16K 24K 32K
-
-
-
-
-
128 256 256 256 256
GMS90L51 GMS90L52 GMS90L54 GMS90L56 GMS90L58
12/16 12/16 12/16 12/16 12/16
-
-
-
-
-
4K 8K 16K 24K 32K
128 256 256 256 256
GMS97L51 GMS97L52 GMS97L54 GMS97L56 GMS97L58
12 12 12 12 12
Page 5
GMS90 Series
Oct. 2000 Ver 3.1a 1
GMS90C31/51, 97C51 GMS90L31/51, 97L51 (Low voltage versions)
• Fully compatible to standard MCS-51 microcontroller
• Wide operating frequency up to 40MHz (for more detail, see “GMS90 Series Selection Guide”)
•4K× 8 (EP)ROM
•128× 8RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Two 16-bit Timers / Counters
• USART
• Five interrupt sources, two priority levels
• Power saving Idle and power down mode
• Quick pulse programming algorithm (in the OTPdevices)
• 2-level program memory lock (in the OTP devices)
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
Block Diagram
RAM
128 × 8
PORT 0
PORT 1
PORT 3
PORT 2
8-BIT
USART
ROM / EPROM
4K × 8
CPU
T0
T1
I/O
I/O
I/O
I/O
Page 6
GMS90 Series
2 Oct. 2000 Ver 3.1a
GMS90C32/52, 97C52 GMS90L32/52, 97L52 (Low voltage versions)
• Fully compatible to standard MCS-51 microcontroller
• Wide operating frequency up to 40MHz (for more detail, see “GMS90 Series Selection Guide”)
•8K× 8 (EP)ROM
•256× 8RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
• USART
• Six interrupt sources, two priority levels
• Power saving Idle and power down mode
• Quick pulse programming algorithm (in the OTPdevices)
• 2-level program memory lock (in the OTP devices)
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
Block Diagram
RAM
256 × 8
PORT 0
PORT 1
PORT 3
PORT 2
8-BIT
USART
ROM / EPROM
8K × 8
CPU
T0
T1
I/O
I/O
I/O
I/O
T2
Page 7
GMS90 Series
Oct. 2000 Ver 3.1a 3
GMS90C54/56/58, 97C54/56/58 GMS90L54/56/58, 97L54/56/58 (Low voltage versions)
• Fully compatible to standard MCS-51 microcontroller
• Wide operating frequency up to 40MHz (for more detail, see “GMS90 Series Selection Guide”)
• 16K/24K/32K bytes (EP)ROM
•256× 8RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
• USART
• One clock output port
• Programmable ALE pin enable / disable
• Six interrupt sources, two priority levels
• Power saving Idle and power down mode
• Quick pulse programming algorithm (in the OTPdevices)
• 2-level program memory lock (in the OTP devices)
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
Block Diagram
RAM
256 × 8
PORT 0
PORT 1
PORT 3
PORT 2
8-BIT
USART
ROM / EPROM
GMS9XX54: 16K × 8
CPU
T0
T1
I/O
I/O
I/O
I/O
T2
GMS9XX56: 24K × 8 GMS9XX58: 32K × 8
Page 8
GMS90 Series
4 Oct. 2000 Ver 3.1a
PIN CONFIGURATION
44-PLCC Pin Configuration (top view)
P0.4 / AD4 P0.5 / AD5 P0.6 / AD6 P0.7 / AD7
EA
/V
PP
N.C.* ALE / PROG PSEN P2.7 / A15 P2.6 / A14 P2.5 / A13
P1.5 P1.6 P1.7
RESET
RxD / P3.0
N.C.*
TxD / P3.1
INT0
/P3.2
INT1
/P3.3 T0 / P3.4 T1 / P3.5
WR /P3.6
RD
/P3.7
XTAL2
XTAL1
V
SS
N.C.*
P2.0 / A8
P2.1 / A9
P2.2 / A10
P2.3 / A11
P2.4 / A12
P1.4
P1.3
P1.2
P1.1 / T2EX
P1.0 / T2
N.C.*
V
CC
P0.0 / AD0
P0.1 / AD1
P0.2 / AD2
P0.3 / AD3
65432
1
4443424140
1819202122232425262728
39 38 37 36
35 34 33 32 31 30 29
7 8 9
10 11
12 13 14 15 16 17
INDEX CORNER
N.C.: Do not connect.
Page 9
GMS90 Series
Oct. 2000 Ver 3.1a 5
40-PDIP Pin Configuration (top view)
P0.4 / AD4 P0.5 / AD5 P0.6 / AD6 P0.7 / AD7 EA
/V
PP
ALE / PROG PSEN P2.7 / A15 P2.6 / A14 P2.5 / A13
39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
40
P2.4 / A12 P2.3 / A11 P2.2 / A10 P2.1 / A9 P2.0 / A8
P0.0 / AD0 P0.1 / AD1 P0.2 / AD2 P0.3 / AD3
V
CC
T2EX / P1.1
P1.2 P1.3 P1.4
T2 / P1.0
P1.5 P1.6 P1.7
RESET
RxD / P3.0
TxD / P3.1
INT0
/P3.2
INT1
/P3.3 T0 / P3.4 T1 / P3.5
WR
/P3.6
RD
/P3.7
XTAL2 XTAL1
V
SS
2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20
1
Page 10
GMS90 Series
6 Oct. 2000 Ver 3.1a
44-MQFP Pin Configuration (top view)
P0.4 / AD4 P0.5 / AD5 P0.6 / AD6 P0.7 / AD7
EA
/V
PP
N.C.* ALE / PROG PSEN P2.7 / A15 P2.6 / A14 P2.5 / A13
P1.5 P1.6 P1.7
RESET
RxD / P3.0
N.C.*
TxD / P3.1
INT0
/P3.2
INT1
/P3.3 T0 / P3.4 T1 / P3.5
WR /P3.6
RD
/P3.7
XTAL2
XTAL1
V
SS
N.C.*
P2.0 / A8
P2.1 / A9
P2.2 / A10
P2.3 / A11
P2.4 / A12
P1.4
P1.3
P1.2
P1.1 / T2EX
P1.0 / T2
N.C.*
V
CC
P0.0 / AD0
P0.1 / AD1
P0.2 / AD2
P0.3 / AD3
4443424140393837363534
1213141516171819202122
33 32 31 30
29 28 27 26 25 24 23
1 2 3 4
5 6 7 8
9 10 11
N.C.: Do not connect.
Page 11
GMS90 Series
Oct. 2000 Ver 3.1a 7
Logic Symbol
XTAL1 XTAL2
RESET
Port 0 8-bit Digital I/O
Port 1 8-bit Digital I/O
Port 2 8-bit Digital I/O
Port 3 8-bit Digital I/O
EA/V
PP
ALE/PROG
PSEN
V
CCVSS
Page 12
GMS90 Series
8 Oct. 2000 Ver 3.1a
PIN DEFINITIONS AND FUNCTIONS
Symbol
Pin Number
Input/
Output
Function
PLCC-44PDIP-40MQFP-
44
P1.0-P1.7 2-9
2 3
2
1-8
1 2
1
40-44,
1-3
40 41
40
I/O Port1
Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the pulls-ups (IIL, in the DC characteristics). Pins P1.0 and P1.1 also. Port1 also receives the low-order address byte during program memory verification. Port1 also serves alternate functions of Timer 2. P1.0 / T2 : Timer/counter 2 external count input P1.1 / T2EX : Timer/counter 2 trigger input
In GMS9XC54/56/58:
P1.0 / T2, Clock Out : Timer/counter 2 external count
input, Clock Out
P3.0-P3.7 11,
13-19
10-17 5, 7-13 I/O Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 3 pins that are externally pulled low will source current because of the pulls-ups (IIL, in the DC characteristics). Port 3 also serves the special features of the 80C51 family, as listed below.
11
13
14 15 16 17 18
19
10
11
12 13 14 15 16
17
5
7
8
9 10 11 12
13
P3.0 / RxD
P3.1 / TxD
P3.2 /INT0 P3.3 / INT1 P3.4 /T0 P3.5 /T1 P3.6 / WR
P3.7 /RD
receiver data input (asynchronous) or data input output(synchronous) of serial interface 0 transmitter data output (asynchronous) or clock output (synchronous) of the serial interface 0 interrupt 0 input/timer 0 gate control interrupt 1 input/timer 1 gate control counter 0 input counter 1 input the write control signal latches the data byte from port 0 into the external data memory the read control signal enables the external data memory to port 0
XTAL2 20 18 14 O XTAL2
Output of the inverting oscillator amplifier.
Page 13
GMS90 Series
Oct. 2000 Ver 3.1a 9
XTAL1 21 19 15 I XTAL1
Input to the inverting oscillator amplifier and input to the internal clock generator circuits.To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise fall times specified in the AC characteristics must be observed.
P2.0-P2.7 24-31 21-28 18-25 I/O Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 2 pins that are externally pulled low will source current because of the pulls-ups (IIL, in the DC characteristics).Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 special function register.
PSEN 32 29 26 O The Program Store Enable
The read strobe to external program memory when the device is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
RESET 10 9 4 I RESET
A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to VSSpermits power-on reset using only an external capacitor to VCC.
Symbol
Pin Number
Input/
Output
Function
PLCC-44PDIP-40MQFP-
44
Page 14
GMS90 Series
10 Oct. 2000 Ver 3.1a
ALE /
PROG
33 30 27 O The Address Latch Enable / Program pulse
Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG)during EPROM programming.
In GMS9XC54/56/58:
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With this bit set, the pin is weakly pulled high. The ALE disable feature will be terminated by reset. Setting the ALE-disable bit has no affect if the microcontroller is in external execution mode.
EA /V
PP
35 31 29 I External Access Enable / Program Supply Voltage
EA must be external held low to enable the device to fetch code from external program memory locations 0000Hto FFFFH.IfEAis held high, the device executes from internal program memory unless the program counter contains an address greater than its internal memory size. This pin also receives the
12.75V programming supply voltage (VPP)during EPROM programming.
Note; however, that if any of the Lock bits are
programmed, EA will be internally latched on reset.
P0.0-P0.7 36-43 32-39 30-37 I/O Port 0
Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the GMS97X5X. External pull-up resistors are required during program verification.
V
SS
22 20 16 -
Circuit ground potential
V
CC
44 40 38 -
Supply terminal for all operating modes
N.C. 1,12
23,34
-6,17 28,39
-
No connection
Symbol
Pin Number
Input/
Output
Function
PLCC-44PDIP-40MQFP-
44
Page 15
GMS90 Series
Oct. 2000 Ver 3.1a 11
FUNCTIONAL DESCRIPTION
The GMS90 series is fully compatible to the standard 8051 microcontroller family. It is compatible with the general 8051 family. While maintaining all architectural and operational characteristics
of the general 8051 family.
Figure 1 shows a block diagram of the GMS90 series
Figure 1. Block Diagram of the GMS90 series
ROM/EPROM
4K/8K/16K
24K/32K
RAM
128/256×8
OSC & TIMING
CPU
Timer 0
Timer 1
Timer 2
Interrupt Unit
Serial Channel
Port 0
Port 1
Port 2
Port 3
Port 0 8-bit Digit. I/O
Port 1 8-bit Digit. I/O
Port 2 8-bit Digit. I/O
Port 3 8-bit Digit. I/O
XTAL1 XTAL2
RESET
EA
/V
PP
ALE/PROG
PSEN
Page 16
GMS90 Series
12 Oct. 2000 Ver 3.1a
CPU
The GMS90 series is efficient both as a controller and as an arithmetic processor. It has extensive facilities for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte,41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in 1.0µs (40MHz: 300ns).
Special Function Register PSW
Reset value of PSW is 00H.
Bit Function
CY
Carry Flag
AC
Auxiliary Carry Flag (for BCD operations)
F0
General Purpose Flag
RS1
0 0 1 1
RS0
0 1 0 1
Register Bank select control bits
Bank 0 selected, data address 00H-07
H
Bank 1 selected, data address 08H-0F
H
Bank 2 selected, data address 10H-17
H
Bank 3 selected, data address 18H-1F
H
OV
Overflow Flag
F1
General Purpose Flag
P
Parity Flag
Set/cleared by hardware each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.
CY AC F0 RS1 RS0 OV F1 P
76543210
LSB
MSB
Bit No.
Addr. D0
H
PSW
Page 17
GMS90 Series
Oct. 2000 Ver 3.1a 13
SPECIAL FUNCTION REGISTERS
All registers, except the program counter and the four general purpose register banks, reside in the special func­tion register area.
The 28 special function registers (SFR) include pointers and registers that provide an interface between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.
All SFRs are listed in Table 1, Table 1, and Table 3. In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which
refer to the functional blocks of the GMS90 series. Table 3 illustrates the contents of the SFRs.
Table 1. Special Function Registers in Numeric Order of their Addresses
Address Register
Contentsafter
Reset
Address Register
Contentsafter
Reset
80H
81H 82H 83H 84H 85H 86H 87H
P0
1)
SP
DPL
DPH reserved reserved reserved
PCON
1) Bit-addressable SpecialFunctionRegister.
FFH
07H 00H 00H
XXH
2)
XXH
2)
XXH
2)
0XX0000
B
2)
2) X means that the value is indeterminate and the location is reserved.
90H
91H 92H 93H 94H 95H 96H 97H
P1
1)
reserved reserved reserved reserved reserved reserved reserved
FF
H
00
H
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
88H
89H 8AH 8BH 8CH 8DH
8EH
3)
8FH
3) The GMS9XX54/56/58 have the AUXR0 register at address 8EH.
TCON
1)
TMOD
TL0
TL1 TH0 TH1
+
3)
reserved
00H
00H 00H 00H 00H 00H
+
3)
XXH
2)
98H
99H 9AH 9BH 9CH 9DH 9EH 9FH
SCON
1)
SBUF reserved reserved reserved reserved reserved reserved
00H
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
8E
H
reserved XXXXXXX0
B
2)
8E
H
AUXR0
GMS9XX51/52 GMS9XX54/56/58
XXXXXXXX
B
2)
Page 18
GMS90 Series
14 Oct. 2000 Ver 3.1a
Table 1. Special Function Registers in Numeric Order of their Addresses (cont’d)
Address Register
Contentsafter
Reset
Address Register
Contentsafter
Reset
A0H
A1H A2H A3H A4H A5H A6H A7H
P2
1)
reserved reserved reserved reserved reserved reserved reserved
FFH
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
C8H
C9H
3)
CAH CBH CCH CDH CEH CFH
T2CON
1)
T2MOD
RC2L
RC2H
TL2
TH2 reserved reserved
00H
+
3)
00H 00H 00H 00H
XXH
2)
XXH
2)
A8H
A9H AAH
ABH ACH ADH AEH AFH
IE
1)
reserved reserved reserved reserved reserved reserved reserved
0X000000B
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
D0H
D1H D2H D3H D4H D5H D6H D7H
PSW
1)
reserved reserved reserved reserved reserved reserved reserved
00H
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
B0H
B1H
B2H
B3H
B4H
B5H
B6H
B7H
P3
1)
reserved reserved reserved reserved reserved reserved reserved
FFH
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
D8H
D9H DAH DBH DCH DDH DEH DFH
reserved reserved reserved reserved reserved reserved reserved reserved
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
B8H
B9H BAH BBH BCH BDH BEH BFH
IP
1)
reserved reserved reserved reserved reserved reserved reserved
XX000000B
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
E0H
E1H E2H E3H E4H E5H E6H E7H
ACC
1)
reserved reserved reserved reserved reserved reserved reserved
00H
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
C0H
C1H C2H C3H C4H C5H C6H C7H
reserved reserved reserved reserved reserved reserved reserved reserved
XX
H
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
E8H
E9H EAH EBH ECH EDH EEH EFH
reserved reserved reserved reserved reserved reserved reserved reserved
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
Page 19
GMS90 Series
Oct. 2000 Ver 3.1a 15
F0H
F1H F2H F3H F4H F5H F6H F7H
B
1)
reserved reserved reserved reserved reserved reserved reserved
00H
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
F8H
F9H FAH FBH FCH FDH FEH
FFH
reserved reserved reserved reserved reserved reserved reserved reserved
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
1) Bit-addressable SpecialFunctionRegister.
2) X means that the value is indeterminate and the location is reserved.
3) Address C9
H
is configured as below.
Table 1. Special Function Registers in Numeric Order of their Addresses (cont’d)
Address Register
Contentsafter
Reset
Address Register
Contentsafter
Reset
C9
H
reserved XXXXXX00
B
2)
XXXXXXX0
B
2)
C9
H
T2MOD
GMS9XX51/52 GMS9XX54/56/58
Page 20
GMS90 Series
16 Oct. 2000 Ver 3.1a
Table 2. Special Function Registers - Functional Blocks
Block Symbol Name Address
Contents
after Reset
CPU ACC
B DPH DPL PSW SP
Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Register Stack Pointer
E0H
1)
F0H
1)
83H
82H
D0H
1)
81H
1) Bit-addressable SpecialFunction register
00H 00H 00H 00H 00H 07H
Interrupt System IE
IP
Interrupt Enable Register Interrupt Priority Register
A8H
1)
B8H
1)
0X000000B
2)
XX000000B
2)
2) X means that the value is indeterminate and the location is reserved
Ports P0
P1 P2 P3
Port 0 Port 1 Port 2 Port 3
80H
1)
90H
1)
A0H
1)
B0H
1)
FFH FFH FFH FFH
Serial Channels
PCON
3)
SBUF SCON
3) This special function register is listed repeatedly since some bit of it also belong to other functional blocks
Power Control Register Serial Channel Buffer Reg. Serial Channel 0 Control Reg.
87H 99H
98H
1)
0XXX0000B
2)
XXH
2)
00H
Timer 0/ Timer 1 TCON
TH0 TH1 TL0 TL1 TMOD
Timer 0/1 Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register
88H
1)
8CH 8DH 8AH 8BH 89H
00H 00H 00H 00H 00H 00H
Timer 2 T2CON
T2MOD RC2H RC2L TH2 TL2
AUXR0
4)
4) The AUX R0 is in the GMS9XX54/56/58 only.
Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload Capture Reg., High Byte Timer 2 Reload Capture Reg., Low Byte Timer 2, High Byte Timer 2, Low Byte Aux. Register 0
C8H
1)
C9H CBH CAH CDH CCH 8EH
00H 00H 00H 00H 00H 00H
XXXXXXX0B
2)
Power Saving Modes
PCON
3)
Power Control Register 87H
0XXX0000B
2)
Page 21
GMS90 Series
Oct. 2000 Ver 3.1a 17
† indicates resident in the GMS9XX54/56/58, not in 9XX51/52.
Table 3. Contents of SFRs, SFRs in Numeric Order
Address Register
Bit76543210
80H P0 81H SP 82H DPL 83H DPH 87H PCON
SMOD
---GF1GF0PDEIDLE 88H TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 89H TMOD GATE C/T M1 MT GATE C/T M1 M0
8AH TL0 8BH TL1 8CH TH0 8DH TH1 8EH
AUXR0
-------
A0
90H P1 98H SCON SM0 SM1 SM2 REN TB8 RB8 TI RI 99H SBUF
A0H P2 A8H IE EA - ET2 ES ET1 EX1 ET0 EX0 B0H P3 B8H IP - - PT2 PS PT1 PX1 PT0 PX0
SFR bit and byte addressable
SFR not bit addressable
- : this bit locationis reserved
Page 22
GMS90 Series
18 Oct. 2000 Ver 3.1a
† indicates resident in the GMS9XX54/56/58, not in 9XX51/52.
Table 3. Contents of SFRs, SFRs in Numeric Order (cont’d)
Address Register
Bit76543210
C8H T2CON TF2 EXF2 RCLK TCLK
EXEN2
TR2 C/T2
CP/RL2
C9HT2MOD ------
T2OE
DCEN
CAH RC2L CBH RC2H CCH TL2 CDH TH2 D0H PSW CY AC F0 RS1 RS0 OV
F1
P
E0H ACC
F0H B
A0
8EH
0 : Enable ALE Signal (Generated ALE Signal)
C9H
1 : Disable ALE Signal (Not Generated ALE Signal)
T2OE
0 : Disable Timer2 Output 1 : Enable Timer2 Output
T2OE : Timer2 Output Enable bit
A0 : ALE Signal Disable bit
SFR bit and byte addressable
SFR not bit addressable
- : this bit location is reserved
Page 23
GMS90 Series
Oct. 2000 Ver 3.1a 19
TIMER / COUNTER 0 AND 1
Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:
In the "timer" function (C/T
= "0") the register is incremented every machine cycle. Therefore the count rate is
f
OSC
/12.
In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding exter­nal input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is f
OSC
/24. External inputs INT0 and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate
pulse width measurements. Figure 2 illustrates the input clock logic.
Figure 2. Timer/Counter 0 and 1 Input Clock Logic
Table 4. Timer/Counter 0 and 1 Operating Modes
Mode Description
TMOD Input Clock
Gate C/T M1 M0 internal external (Max.)
0
8-bit timer/counter with a divide-by-32 prescaler
XX00
f
OSC
÷(12×32) f
OSC
÷(24×32)
1 16-bit timer/counter X X 0 1
f
OSC
÷12 f
OSC
÷24
2
8-bit timer/counter with 8-bit auto-reload
XX10
f
OSC
÷12 f
OSC
÷24
3
Timer/counter 0 used as one 8-bit timer/counter and one 8-bit timer Timer 1 stops
XX11
f
OSC
÷12 f
OSC
÷24
f
OSC
÷ 12
TMOD
f
OSC
÷ 12
P3.4/T0 P3.5/T1
Max.
f
OSC
/24
C/T
=1
1
TCON
TR0 / 1
TMOD
Gate
&
P3.2 / INT0 P3.3 / INT1
Timer 0/1 Input Clock
0
1
Page 24
GMS90 Series
20 Oct. 2000 Ver 3.1a
TIMER 2
Timer 2 is a 16-bit timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which is selected by bit C/T2
(T2CON.1). It has three operating modes as shown in Table 5.
Note: = falling edge
Table 5. Timer/Counter 2 Operating Modes
Mode
T2CON
T2MO
D
T2CON
P1.1/
T2EX
Remarks
Input Clock
RCLKor
TCLK
CP/RL2
TR2 DCEN EXEN2 internal
external
(P1.0/T2)
16-bit Auto­Reload
0 0 0
0
0 0 0
0
1 1 1
1
0 0 1
1
0 1
X X
X
0 1
reload upon over­flow reload trigger (fall­ing edge) Down counting Up counting
f
OSC
÷ 12
Max.
f
OSC
÷24
16-bit Capture
0
0
1
1
1
1
X
X
0
1
X↓16 bit Timer/ Coun-
ter (only up-count­ing) capture TH2,TL2 RC2H,RC2L
f
OSC
÷ 12
Max.
f
OSC
÷ 24
Baud Rate Generator
1
1
X
X
1
1
X
X
0
1
X↓no overflow
interrupt request (TF2) extra external inter­rupt ("Timer 2")
f
OSC
÷ 12
Max.
f
OSC
÷ 24
Off X X 0 X X X Timer 2 stops - -
Page 25
GMS90 Series
Oct. 2000 Ver 3.1a 21
SERIAL INTERFACE (USART)
The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.
Table 6. USART Operating Modes
Mode
SCON
Baudrate Description
SM0 SM1
000
Serial data enters and exits through RxD. TxD outputs the shift clock. 8-bit are transmit­ted/received (LSB first)
1 0 1 Timer 1/2 overflow rate
8-bit UART 10 bits are transmitted (through TxD) or received (RxD)
210
or
9-bit UART 11 bits are transmitted (TxD) or received (RxD)
3 1 1 Timer 1/2 overflow rate
9-bit UART Like mode 2 except the variable baud rate
Table 7. Formulas for Calculating Baud rates
Baud Rate
derived from
Interface Mode Baudrate
Oscillator
0
2
Timer 1 (16-bit timer)
(8-bit timer with
8-bit auto reload)
1,3
1,3
Timer 2 1,3
f
OSC
12
----------- -
f
OSC
32
----------- -
f
OSC
64
----------- -
f
OSC
12
----------- -
2
SMOD
64
----------------- -
f
OSC
×
2
SMOD
32
----------------- -
Timer 1 overflow
()×
2
SMOD
32
----------------- -
f
OSC
12 256 TH1
()[]×
------------------------------------------------- -
×
f
OSC
32 65536 RC2H RC2L
,()[]×
--------------------------------------------------------------------------------- -
Page 26
GMS90 Series
22 Oct. 2000 Ver 3.1a
INTERRUPT SYSTEM
The GMS90 series provides 5 (4K bytes ROM version) or 6 (above 8K bytes ROM version) interrupt sources with two priority levels. Figure 3 gives a general overview of the interrupt sources and illustrates the request and control flags.
Figure 3. Interrupt Request Sources
PT0
IP.1
PT1
IP.3
PT2
IP.5
PS
IP.4
PX0
IP.0
PX1
IP.2
EA
IE.7
ET0 IE.1
ET1 IE.3
ET2 IE.5
ES
IE.4
EX0 IE.0
EX1 IE.2
TF0
TCON.5
TF1
TCON.7
1
TF2
T2CON.7
EXF2
T2CON.6
1
RI
SCON.0
TI
SCON.1
IE0
TCON.1
IE1
TCON.3
IT0
TCON.0
IT1
TCON.2
P3.2/ INT0
P3.3/ INT1
EXEN2
T2CON.3
P1.1/
T2EX
Timer 2 Overflow
Timer 0 Overflow
Timer 1 Overflow
: Low level triggered
: Falling edge triggered
Low Priority
High Priority
UART
Page 27
GMS90 Series
Oct. 2000 Ver 3.1a 23
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority in­terrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.
If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which re­quest is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.
Table 8. Interrupt Sources and their Corresponding Interrupt Vectors
Source (Request Flags) Vectors Vector Address
RESET IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2
RESET External interrupt 0 Timer 0 interrupt External interrupt 1 Timer 1 interrupt Serial port interrupt Timer 2 interrupt
0000H 0003H 000BH 0013H 001BH 0023H 002BH
Table 9. Interrupt Priority-Within-Level
Interrupt Source Priority
External Interrupt 0 Timer 0 Interrupt External Interrupt 1 Timer 1 Interrupt Serial Channel Timer 2 Interrupt
IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2
High
↓ ↓ ↓ ↓
Low
Page 28
GMS90 Series
24 Oct. 2000 Ver 3.1a
Power Saving Modes
Two power down modes are available, the Idle Mode and Power Down Mode. The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If
the Power Down mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview of the power saving modes.
In the Power Down modeofoperation,V
CC
can be reduced tominimize power consumption. It must be ensured,
however,that V
CC
is not reduced before the Power Down mode is invoked, and that VCCis restored to its normal operating level, before the Power Down mode is terminated. The reset signal that terminates the Power Down mode also restarts the oscillator. The reset should not be activated before V
CC
is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize (similar to power-on reset).
Table 10. Power Saving Modes Overview
Mode
Entering
Instruction
Example
Leaving by Remarks
Idle mode ORL PCON, #01H - Enabled interrupt
- Hardware Reset
CPU is gated off CPU status registers maintain their data. Peripherals are active
Power-Down mode ORL PCON, #02H Hardware Reset Oscillatoris stopped, contents of on-
chip RAM and SFR’s are maintained (leaving Power Down Mode means redefinition of SFR contents).
Page 29
GMS90 Series
Oct. 2000 Ver 3.1a 25
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
Ambient temperature under bias (TA)...................................................................................... -40 to + 85 °C
Storage temperature (T
ST
)......................................................................................................-65 to + 150 °C
Voltage on V
CC
pins with respect to ground (VSS) .................................................................-0.5V to 6.5V
Voltage on any pin with respect to ground (V
SS
) ..........................................................-0.5V to VCC+0.5V
Input c urrent on any pin during overload condition............................................................-15mA to +15mA
Absolute sum of all input currents during overload condition ...........................................................|100mA|
Power dissipation ....................................................................................................................................1.5W
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the de­vice. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specificationis not implied.Exposureto absolute maximum rat­ing conditions for longer periods may affect device reliability. During overload conditions (VIN>VCCor VIN<VSS) the Voltage on VCCpins with respect to ground (VSS) must not exceed the values defined by the absolute maxi­mum ratings.
Page 30
GMS90 Series
26 Oct. 2000 Ver 3.1a
DC Characteristics
DC Characteristics for GMS90C31/32, GMS90C51/52/54/56/58
V
CC
=5V+10%,-15%;VSS=0V; TA=0°Cto70°C
Parameter Symbol
Limit Values
Unit Test Conditions
Min. Max.
Input low voltage (except EA, RESET)
V
IL
-0.5
0.2VCC-0.1
V-
Input low voltage (EA)V
IL1
-0.5
0.2VCC-0.3
V-
Input low voltage (RESET) V
IL2
-0.5
0.2VCC+0.1
V-
Input high voltage (except XTAL1, EA, RESET)
V
IH
0.2VCC+0.9 VCC+0.5
V-
Input high voltage to XTAL1 V
IH1
0.7V
CC
VCC+0.5
V-
Input high voltage to EA, RESET
V
IH2
0.6V
CC
VCC+0.5
V-
Output low voltage (ports 1, 2, 3)
V
OL
-0.45V
IOL=1.6mA
1)
Output low voltage (port0,ALE,PSEN)
V
OL1
-0.45V
IOL=3.2mA
1)
Output high voltage (ports 1, 2, 3)
V
OH
2.4
0.9V
CC
-V
IOH=-80µA IOH=-10µA
Output high voltage (port 0 in external bus mode, ALE, PSEN)
V
OH1
2.4
0.9V
CC
-V
IOH=-800µA
2)
IOH=-80µA
2)
Logic 0 input current (ports 1, 2, 3)
I
IL
-10 -50 µA
VIN=0.45V
Logical 1-to-0 transition cur­rent (ports 1, 2, 3)
I
TL
-65 -650 µA
VIN=2.0V
Input leakage current (port 0, EA)
I
LI
- ±1 µA
0.45 < VIN< V
CC
Pin capacitance
C
IO
-10pF
fC=1MHz TA=25°C
Power supply current:
Active mode, 12MHz
3)
Idle mode, 12MHz
3)
Active mode, 24 MHz
3)
Idle mode, 24MHz
3)
Active mode, 40 MHz
3)
Idle mode, 40 MHz
3)
Power Down Mode
3)
I
CC
I
CC
I
CC
I
CC
I
CC
I
CC
I
PD
-
-
-
-
-
-
-
21
4.8
36.2
8.2
58.5
12.5 50
mA mA mA mA mA mA
µA
VCC=5V
4)
VCC=5V
5)
VCC=5V
4)
VCC=5V
5)
VCC=5V
4)
VCC=5V
5)
VCC=5V
6)
Page 31
GMS90 Series
Oct. 2000 Ver 3.1a 27
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLof ALE and port 3.
The noise is due to external bus capacitance discharg ing into the port 0 and port 2 pins when these pins make 1-to-0 tran­sitions during bus operation. In the worst case (capacitive l oading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may exceed 0.8V. In such cases it may be desirable to qualif y ALE with a schmitt-trigger, or use an address l atch with a schmitt-trigger strobe input.
2) Capacitive loading on ports 0 and 2 may cause the V
OH
on ALE and PSEN to momentarily fall below the 0.9VCCspecifica-
tion when the address lines are stabilizing.
3) I
CC
Max at other frequencies is given by:
active mode: I
CC
=1.27× f
OSC
+5.73
idle mode: I
CC
=0.28× f
OSC
+ 1.45 (except OTP devices)
where f
OSC
is the oscillator frequency in MHz. ICCvalues are given in mA and measured at VCC=5V.
4) I
CC
(active mode) is measured with:
XTAL1 driven with t
CLCH,tCHCL
=5ns,VIL=VSS+0.5V,VIH=VCC- 0.5V; XTAL2 = N.C.;
EA
= Port0 = RESET = VCC; all other pins are disconnected. ICCwould be slightly higher if a crystal oscillator is used (appr.
1mA).
5) I
CC
(Idle mode) is measured with all output pins disconnectedand with all peripheralsdisabled;
XTAL1 driven with t
CLCH,tCHCL
=5ns,VIL=VSS+0.5V,VIH=VCC- 0.5V; XTAL2 = N.C.;
RESET=EA
=VSS;Port0=VCC; all other pins are disconnected;
6) I
PD
(Power Down Mode) is measured under following conditions:
EA
=Port0=VCC; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.
Page 32
GMS90 Series
28 Oct. 2000 Ver 3.1a
DC Characteristics for GMS97C51/52/54/56/58 (H)
V
CC
=5V+10%,-15%;VSS=0V; TA=0°Cto70°C
Parameter Symbol
Limit Values
Unit Test Conditions
Min. Max.
Input low voltage (except EA, RESET)
V
IL
-0.5
0.2VCC-0.1
V-
Input low voltage (EA)V
IL1
-0.5
0.2VCC-0.3
V-
Input low voltage (RESET) V
IL2
-0.5
0.2VCC+0.1
V-
Input high voltage (except XTAL1, EA, RESET)
V
IH
0.2VCC+0.9 VCC+0.5
V-
Input high voltage to XTAL1 V
IH1
0.7V
CC
VCC+0.5
V-
Input high voltage to EA, RESET
V
IH2
0.6V
CC
VCC+0.5
V-
Output low voltage (ports 1, 2, 3)
V
OL
-0.45V
IOL=1.6mA
1)
Output low voltage (port0,ALE,PSEN)
V
OL1
-0.45V
IOL=3.2mA
1)
Output high voltage (ports 1, 2, 3)
V
OH
2.4
0.9V
CC
-V
IOH=-80µA IOH=-10µA
Output high voltage (port 0 in external bus mode, ALE, PSEN)
V
OH1
2.4
0.9V
CC
-V
IOH=-800µA
2)
IOH=-80µA
2)
Logic 0 input current (ports 1, 2, 3)
I
IL
-10 -50 µA
VIN=0.45V
Logical 1-to-0 transition cur­rent (ports 1, 2, 3)
I
TL
-65 -650 µA
VIN=2.0V
Input leakage current (port 0, EA)
I
LI
- ±1 µA
0.45 < VIN< V
CC
Pin capacitance
C
IO
-10pF
fC=1MHz TA=25°C
Power supply current:
Active mode, 12MHz
3)
Idle mode, 12MHz
3)
Active mode, 24 MHz
3)
Idle mode, 24MHz
3)
Active mode, 33 MHz
3)
Idle mode, 33 MHz
3)
Power Down Mode
3)
I
CC
I
CC
I
CC
I
CC
I
CC
I
CC
I
PD
-
-
-
-
-
-
-
21
4.8
36.2
8.2 45 10 50
mA mA mA mA mA mA
µA
VCC=5V
4)
VCC=5V
5)
VCC=5V
4)
VCC=5V
5)
VCC=5V
4)
VCC=5V
5)
VCC=5V
6)
Page 33
GMS90 Series
Oct. 2000 Ver 3.1a 29
DC Characteristics for GMS90L31/32, GMS90L51/52/54/56/58
V
CC
= 3.3V + 0.3V, -0.6V; VSS=0V; TA=0°Cto70°C
Parameter Symbol
Limit Values
Unit Test Conditions
Min. Max.
Input low voltage V
IL
-0.5 0.8 V -
Input high voltage V
IH
2.0
VCC+0.5
V-
Output low voltage (ports 1, 2, 3)
V
OL
-
0.45
0.30
V
IOL=1.6mA
1)
IOL=100µA
1)
Output low voltage (port0,ALE,PSEN)
V
OL1
-
0.45
0.30
V
IOL=3.2mA
1)
IOL=200µA
1)
Output high voltage (ports 1, 2, 3)
V
OH
2.0
0.9V
CC
-V
IOH=-20µA IOH=-10µA
Output high voltage (port 0 in external bus mode, ALE, PSEN)
V
OH1
2.0
0.9V
CC
-V
IOH=-800µA
2)
IOH=-80µA
2)
Logic 0 input current (ports 1, 2, 3)
I
IL
-1 -50 µA
VIN=0.45V
Logical 1-to-0 transition cur­rent (ports 1, 2, 3)
I
TL
-25 -250 µA
VIN=2.0V
Input leakage current (port 0, EA)
I
LI
- ±1 µA
0.45 < VIN< V
CC
Pin capacitance
C
IO
-10pF
fC=1MHz TA=25°C
Power supply current:
Active mode, 16 MHz
3)
Idle mode, 16MHz
3)
Power Down Mode
3)
I
CC
I
CC
I
PD
-
-
-
15
5
10
mA mA
µA
VCC=3.6V
4)
VCC=2.6V
5)
VCC=2~ 5.5V
6)
Page 34
GMS90 Series
30 Oct. 2000 Ver 3.1a
DC Characteristics for GMS97L51/52/54/56/58
V
CC
= 3.3V + 0.3V, -0.6V; VSS=0V; TA=0°Cto70°C
Parameter Symbol
Limit Values
Unit Test Conditions
Min. max.
Input low voltage V
IL
-0.5 0.8 V -
Input high voltage V
IH
2.0
VCC+0.5
V-
Output low voltage (ports 1, 2, 3)
V
OL
-
0.45
0.30
V
IOL=1.6mA
1)
IOL=100µA
1)
Output low voltage (port0,ALE,PSEN)
V
OL1
-
0.45
0.30
V
IOL=3.2mA
1)
IOL=200µA
1)
Output high voltage (ports 1, 2, 3)
V
OH
2.0
0.9V
CC
-V
IOH=-20µA IOH=-10µA
Output high voltage (port 0 in external bus mode, ALE, PSEN)
V
OH1
2.0
0.9V
CC
-V
IOH=-800µA
2)
IOH=-80µA
2)
Logic 0 input current (ports 1, 2, 3)
I
IL
-1 -50 µA
VIN=0.45V
Logical 1-to-0 transition cur­rent (ports 1, 2, 3)
I
TL
-25 -250 µA
VIN=2.0V
Input leakage current (port 0, EA)
I
LI
- ±1 µA
0.45 < VIN< V
CC
Pin capacitance
C
IO
-10pF
fC=1MHz TA=25°C
Power supply current:
Active mode, 12MHz
3)
Idle mode, 12MHz
3)
Power Down Mode
3)
I
CC
I
CC
I
PD
-
-
-
15
5
10
mA mA
µA
VCC=3.6V
4)
VCC=2.6V
5)
VCC=2~ 5.5V
6)
Page 35
GMS90 Series
Oct. 2000 Ver 3.1a 31
AC Characteristics
Explanation of the AC Symbols
Each timing symbol has 5 characters. The first character is always a ‘t’ (stand for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
AC Characteristics for GMS90 series (12MHz version)
External Program Memory Characteristics
VCC=5V: VCC=5V+ 10%, 15%; VSS=0V; TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
VCC=3.3V: VCC=3.3V+ 0.3V, 0.6V; VSS=0V; TA=0°Cto70°C
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock : Vcc = 5V : 1/t
CLCL
=3.5MHzto12MHz
Vcc = 3.3V : 1/t
CLCL
=1MHzto12MHz
Parameter Symbol
12 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to12MHz
Unit
Min. Max. Min. Max.
ALE pulse width
t
LHLL
127 - 2t
CLCL
-40 -
ns
Address setup to ALE
t
AVLL
43 - t
CLCL
-40 - ns
Address hold after ALE
t
LLAX
30 - t
CLCL
-53 -
ns
ALE low to valid instruction in
t
LLIV
-233 -4t
CLCL
-100 ns
ALE to PSEN
t
LLPL
58 - t
CLCL
-25 -
ns
PSEN pulse width
t
PLPH
215 - 3t
CLCL
-35 - ns
PSEN to valid instruction in
t
PLIV
-150 -3t
CLCL
-100
ns
Input instruction hold after PSEN
t
PXIX
0- 0 - ns
Input instruction float after PSEN
t
PXIZ
-63 -t
CLCL
-20
ns
Address valid after PSEN
t
PXAV
75 - t
CLCL
-8 - ns
A: Address C: Clock D: Input Data H: Logic level HIGH I: Instruction (program memory contents) L: Logic level LOW, or ALE P: PSEN Q: Output Data R: RD signal
T: Time V: Valid W: WR signal X: No longer a valid logic level Z: Float
For example, t
AVLL
= Time from Address Valid to ALE Low
t
LLPL
= Time from ALE Low to PSEN Low
Page 36
GMS90 Series
32 Oct. 2000 Ver 3.1a
Interfacing the GMS90 series to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.
Address to valid instruction in
t
AVIV
-302 -5t
CLCL
-115
ns
Address float to PSEN
t
AZPL
0- 0 - ns
Parameter Symbol
12 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to12MHz
Unit
Min. Max. Min. Max.
Page 37
GMS90 Series
Oct. 2000 Ver 3.1a 33
AC Characteristics for GMS90 series (12MHz)
External Data Memory Characteristics
Advance Information (12MHz)
External Clock Drive
Parameter Symbol
12 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to12MHz
Unit
Min. Max. Min. Max.
RD pulse width
t
RLRH
400 - 6t
CLCL
-100 -
ns
WR pulse width
t
WLWH
400 - 6t
CLCL
-100 - ns
Address hold after ALE
t
LLAX2
53 - t
CLCL
-30 -
ns
RD to valid data in
t
RLDV
-252 -5t
CLCL
-165 ns
Data hold after RD
t
RHDX
0- 0 -
ns
Data float after RD
t
RHDZ
-97 -2t
CLCL
-70 ns
ALE to valid data in
t
LLDV
-517 -8t
CLCL
-150
ns
Address to valid data in
t
AVDV
-585 -9t
CLCL
-165 ns
ALE to WR or RD
t
LLWL
200 300 3t
CLCL
-50 3t
CLCL
+50
ns
Address valid to WR or RD
t
AVWL
203 - 4t
CLCL
-130 - ns
WR or RD high to ALE high
t
WHLH
43 123 t
CLCL
-40 t
CLCL
+40
ns
Data valid to WR transition
t
QVWX
33 - t
CLCL
-50 - ns
Data setup before WR
t
QVWH
433 - 7t
CLCL
-150 - ns
Data hold after WR
t
WHQX
33 - t
CLCL
-50 -
ns
Address float after RD
t
RLAZ
-0 - 0 ns
Parameter Symbol
Variable Oscillator
(Freq. = 3.5 to 12MHz)
Unit
Min. Max.
Oscillator period (VCC=5V) Oscillator period (VCC=3.3V)
t
CLCL
t
CLCL
83.3
83.3
285.7 1
ns
High time
t
CHCX
20 t
CLCL-tCLCX
ns
Low time
t
CLCX
20 t
CLCL-tCHCX
ns
Rise time
t
CLCH
-20ns
Fall time
t
CHCL
-20
ns
Page 38
GMS90 Series
34 Oct. 2000 Ver 3.1a
AC Characteristics for GMS90 series (16MHz version)
V
CC
=3.3V+0.3V,0.6V; VSS=0V; TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 50pF; CLfor all other outputs = 50pF)
External Program Memory Characteristics
Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause
any damage to port 0 Drivers.
Parameter Symbol
16 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to16MHz
Unit
Min. Max. Min. Max.
ALE pulse width
t
LHLL
85 - 2t
CLCL
-40 -
ns
Address setup to ALE
t
AVLL
23 - t
CLCL
-40 - ns
Address hold after ALE
t
LLAX
23 - t
CLCL
-40 -
ns
ALE low to valid instruction in
t
LLIV
-150 -4t
CLCL
-100 ns
ALE to PSEN
t
LLPL
38 - t
CLCL
-25 -
ns
PSEN pulse width
t
PLPH
153 - 3t
CLCL
-35 - ns
PSEN to valid instruction in
t
PLIV
-88 -3t
CLCL
-100
ns
Input instruction hold after PSEN
t
PXIX
0- 0 - ns
Input instruction float after PSEN
t
PXIZ
-43 -t
CLCL
-20
ns
Address valid after PSEN
t
PXAV
55 - t
CLCL
-8 - ns
Address to valid instruction in
t
AVIV
-198 -5t
CLCL
-115
ns
Address float to PSEN
t
AZPL
0- 0 - ns
Page 39
GMS90 Series
Oct. 2000 Ver 3.1a 35
AC Characteristics for GMS90 series (16MHz)
External Data Memory Characteristics
Advance Information (16MHz)
External Clock Drive
Parameter Symbol
16 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to16MHz
Unit
Min. Max. Min. Max.
RD pulse width
t
RLRH
275 - 6t
CLCL
-100 -
ns
WR pulse width
t
WLWH
275 - 6t
CLCL
-100 - ns
Address hold after ALE
t
LLAX2
23 - t
CLCL
-40 -
ns
RD to valid data in
t
RLDV
-183 -5t
CLCL
-130 ns
Data hold after RD
t
RHDX
0- 0 -
ns
Data float after RD
t
RHDZ
-75 -2t
CLCL
-50 ns
ALE to valid data in
t
LLDV
-350 -8t
CLCL
-150
ns
Address to valid data in
t
AVDV
-398 -9t
CLCL
-165 ns
ALE to WR or RD
t
LLWL
138 238 3t
CLCL
50 3t
CLCL
+50
ns
Address valid to WR or RD
t
AVWL
120 - 4t
CLCL
-130 - ns
WR or RD high to ALE high
t
WHLH
28 97 t
CLCL
35 t
CLCL
+35
ns
Data valid to WR transition
t
QVWX
13 - t
CLCL
50 - ns
Data setup before WR
t
QVWH
288 - 7t
CLCL
-150 - ns
Data hold after WR
t
WHQX
23 - t
CLCL
40 -
ns
Address float after RD
t
RLAZ
-0 - 0 ns
Parameter Symbol
Variable Oscillator
(Freq. = 3.5 to 16MHz)
Unit
Min. Max.
Oscillator period
t
CLCL
62.5 285.7
ns
High time
t
CHCX
17 t
CLCL-tCLCX
ns
Low time
t
CLCX
17 t
CLCL-tCHCX
ns
Rise time
t
CLCH
-17ns
Fall time
t
CHCL
-17
ns
Page 40
GMS90 Series
36 Oct. 2000 Ver 3.1a
AC Characteristics for GMS90 series (24MHz version)
V
CC
=5V+10%,15%; VSS=0V; TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
External Program Memory Characteristics
Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause
any damage to port 0 Drivers.
Parameter Symbol
24 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to24MHz
Unit
Min. Max. Min. Max.
ALE pulse width
t
LHLL
43 - 2t
CLCL
-40 -
ns
Address setup to ALE
t
AVLL
17 - t
CLCL
-25 - ns
Address hold after ALE
t
LLAX
17 - t
CLCL
-25 -
ns
ALE low to valid instruction in
t
LLIV
-80 -4t
CLCL
-87 ns
ALE to PSEN
t
LLPL
22 - t
CLCL
-20 -
ns
PSEN pulse width
t
PLPH
95 - 3t
CLCL
-30 - ns
PSEN to valid instruction in
t
PLIV
-60 -3t
CLCL
-65
ns
Input instruction hold after PSEN
t
PXIX
0- 0 - ns
Input instruction float after PSEN
t
PXIZ
-32 -t
CLCL
-10
ns
Address valid after PSEN
t
PXAV
37 - t
CLCL
-5 - ns
Address to valid instruction in
t
AVIV
-148 -5t
CLCL
-60
ns
Address float to PSEN
t
AZPL
0- 0 - ns
Page 41
GMS90 Series
Oct. 2000 Ver 3.1a 37
AC Characteristics for GMS90 series (24MHz)
External Data Memory Characteristics
Advance Information (24MHz)
External Clock Drive
Parameter Symbol
24 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to24MHz
Unit
Min. Max. Min. Max.
RD pulse width
t
RLRH
180 - 6t
CLCL
-70 -
ns
WR pulse width
t
WLWH
180 - 6t
CLCL
-70 - ns
Address hold after ALE
t
LLAX2
15 - t
CLCL
-27 -
ns
RD to valid data in
t
RLDV
-118 -5t
CLCL
-90 ns
Data hold after RD
t
RHDX
0- 0 -
ns
Data float after RD
t
RHDZ
-63 -2t
CLCL
-20 ns
ALE to valid data in
t
LLDV
-200 -8t
CLCL
-133
ns
Address to valid data in
t
AVDV
-220 -9t
CLCL
-155 ns
ALE to WR or RD
t
LLWL
75 175 3t
CLCL
-50 3t
CLCL
+50
ns
Address valid to WR or RD
t
AVWL
67 - 4t
CLCL
-97 - ns
WR or RD high to ALE high
t
WHLH
17 67 t
CLCL
-25 t
CLCL
+25
ns
Data valid to WR transition
t
QVWX
5-t
CLCL
-37 - ns
Data setup before WR
t
QVWH
170 - 7t
CLCL
-122 - ns
Data hold after WR
t
WHQX
15 - t
CLCL
-27 -
ns
Address float after RD
t
RLAZ
-0 - 0 ns
Parameter Symbol
Variable Oscillator
(Freq. = 3.5 to 24MHz)
Unit
Min. Max.
Oscillator period
t
CLCL
41.7 285.7
ns
High time
t
CHCX
12 t
CLCL-tCLCX
ns
Low time
t
CLCX
12 t
CLCL-tCHCX
ns
Rise time
t
CLCH
-12ns
Fall time
t
CHCL
-12
ns
Page 42
GMS90 Series
38 Oct. 2000 Ver 3.1a
AC Characteristics for GMS90 series (33MHz version)
V
CC
=5V+10%,15%; VSS=0V; TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
External Program Memory Characteristics
Interfacing the GMS90 series to devices with float times up to 35 ns is permissible. This limited bus contention will not cause
any damage to port 0 Drivers.
Parameter Symbol
33 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to33MHz
Unit
Min. Max. Min. Max.
ALE pulse width
t
LHLL
40 - 2t
CLCL
-20 -
ns
Address setup to ALE
t
AVLL
10 - t
CLCL
-20 - ns
Address hold after ALE
t
LLAX
10 - t
CLCL
-20 -
ns
ALE low to valid instruction in
t
LLIV
-56 -4t
CLCL
-65 ns
ALE to PSEN
t
LLPL
15 - t
CLCL
-15 -
ns
PSEN pulse width
t
PLPH
80 - 3t
CLCL
-20 - ns
PSEN to valid instruction in
t
PLIV
-35 -3t
CLCL
-55
ns
Input instruction hold after PSEN
t
PXIX
0- 0 - ns
Input instruction float after PSEN
t
PXIZ
-20 -t
CLCL
-10
ns
Address valid after PSEN
t
PXAV
25 - t
CLCL
-5 - ns
Address to valid instruction in
t
AVIV
-91 -5t
CLCL
-60
ns
Address float to PSEN
t
AZPL
0- 0 - ns
Page 43
GMS90 Series
Oct. 2000 Ver 3.1a 39
AC Characteristics for GMS90 series (33MHz)
External Data Memory Characteristics
Advance Information (33MHz)
External Clock Drive
Parameter Symbol
33 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to33MHz
Unit
Min. Max. Min. Max.
RD pulse width
t
RLRH
132 - 6t
CLCL
-50 -
ns
WR pulse width
t
WLWH
132 - 6t
CLCL
-50 - ns
Address hold after ALE
t
LLAX2
10 - t
CLCL
-20 -
ns
RD to valid data in
t
RLDV
-81 -5t
CLCL
-70 ns
Data hold after RD
t
RHDX
0- 0 -
ns
Data float after RD
t
RHDZ
-46 -2t
CLCL
-15 ns
ALE to valid data in
t
LLDV
-153 -8t
CLCL
-90
ns
Address to valid data in
t
AVDV
-183 -9t
CLCL
-90 ns
ALE to WR or RD
t
LLWL
71 111 3t
CLCL
-20 3t
CLCL
+20
ns
Address valid to WR or RD
t
AVWL
66 - 4t
CLCL
-55 - ns
WR or RD high to ALE high
t
WHLH
10 40 t
CLCL
-20 t
CLCL
+20
ns
Data valid to WR transition
t
QVWX
5-t
CLCL
-25 - ns
Data setup before WR
t
QVWH
142 - 7t
CLCL
-70 - ns
Data hold after WR
t
WHQX
10 - t
CLCL
-20 -
ns
Address float after RD
t
RLAZ
-0 - 0 ns
Parameter Symbol
Variable Oscillator
(Freq. = 3.5 to 24MHz)
Unit
Min. Max.
Oscillator period
t
CLCL
30.3 285.7
ns
High time
t
CHCX
11.5 t
CLCL-tCLCX
ns
Low time
t
CLCX
11.5 t
CLCL-tCHCX
ns
Rise time
t
CLCH
-5ns
Fall time
t
CHCL
-5
ns
Page 44
GMS90 Series
40 Oct. 2000 Ver 3.1a
AC Characteristics for GMS90 series (40MHz version)
V
CC
=5V+10%,15%; VSS=0V; TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
External Program Memory Characteristics
Interfacing the GMS90 series to devices with float times up to 20 ns is permissible. This limited bus contention will not cause
any damage to port 0 Drivers.
Parameter Symbol
40 MHz Oscillator
Variable Oscillator
1/t
CLCL
=3.5to40MHz
Unit
Min. Max. Min. Max.
ALE pulse width
t
LHLL
35 - 2t
CLCL
15 -
ns
Address setup to ALE
t
AVLL
10 - t
CLCL
15 - ns
Address hold after ALE
t
LLAX
10 - t
CLCL
15 -
ns
ALE low to valid instruction in
t
LLIV
-55 -4t
CLCL
45 ns
ALE to PSEN
t
LLPL
10 - t
CLCL
15 -
ns
PSEN pulse width
t
PLPH
60 - 3t
CLCL
15 - ns
PSEN to valid instruction in
t
PLIV
-25 -3t
CLCL
50
ns
Input instruction hold after PSEN
t
PXIX
0- 0 - ns
Input instruction float after PSEN
t
PXIZ
-15 -t
CLCL
10
ns
Address valid after PSEN
t
PXAV
20 - t
CLCL
5- ns
Address to valid instruction in
t
AVIV
-65 -5t
CLCL
60
ns
Address float to PSEN
t
AZPL
5- 5 - ns
Page 45
GMS90 Series
Oct. 2000 Ver 3.1a 41
AC Characteristics for GMS90 series (40MHz)
External Data Memory Characteristics
Advance Information (40MHz)
External Clock Drive
Parameter Symbol
at 40 MHz Clock
Variable Clock
1/t
CLCL
=3.5to40MHz
Unit
Min. Max. Min. Max.
RD pulse width
t
RLRH
120 - 6t
CLCL
-30 -
ns
WR pulse width
t
WLWH
120 - 6t
CLCL
-30 - ns
Address hold after ALE
t
LLAX2
10 - t
CLCL
-15 -
ns
RD to valid data in
t
RLDV
-75 -5t
CLCL
-50 ns
Data hold after RD
t
RHDX
0- 0 -
ns
Data float after RD
t
RHDZ
-38 -2t
CLCL
-12 ns
ALE to valid data in
t
LLDV
-150 -8t
CLCL
-50
ns
Address to valid data in
t
AVDV
-150 -9t
CLCL
-75 ns
ALE to WR or RD
t
LLWL
60 90 3t
CLCL
-15 3t
CLCL
+15
ns
Address valid to WR or RD
t
AVWL
70 - 4t
CLCL
-30 - ns
WR or RD high to ALE high
t
WHLH
10 40 t
CLCL
-15 t
CLCL
+15
ns
Data valid to WR transition
t
QVWX
5-t
CLCL
-20 - ns
Data setup before WR
t
QVWH
125 - 7t
CLCL
-50 - ns
Data hold after WR
t
WHQX
5-t
CLCL
-20 -
ns
Address float after RD
t
RLAZ
-0 - 0 ns
Parameter Symbol
Variable Oscillator
(Freq. = 3.5 to 40MHz)
Unit
Min. Max.
Oscillator period
t
CLCL
25 285.7
ns
High time
t
CHCX
10 t
CLCL-tCLCX
ns
Low time
t
CLCX
10 t
CLCL-tCHCX
ns
Rise time
t
CLCH
-10ns
Fall time
t
CHCL
-10
ns
Page 46
GMS90 Series
42 Oct. 2000 Ver 3.1a
Figure 4. External Program Memory Read Cycle
t
LHLL
t
PXAV
t
PXIZ
t
PXIX
t
LLAX
t
LLIV
t
PLIV
t
PLPH
t
AZPL
t
LLPL
t
AVLL
A0-A7
INSTR.
IN
A0-A7
A8-A15
A8-A15
t
AVIV
ALE
PSEN
PORT 0
PORT 2
Page 47
GMS90 Series
Oct. 2000 Ver 3.1a 43
Figure 5. External Data Memory Read Cycle
Figure 6. External Data Memory Write Cycle
t
LHLL
P2.0-P2.7 or A8-A15 from DPH
A8-A15 from PCH
ALE
PSEN
PORT 0
PORT 2
RD
t
LLWL
DATA IN A0-A7 from PCL INSTR. IN
A0-A7 from
t
LLAX2
t
AVWL
t
AVLL
t
AVDV
t
RLAZ
t
LLDV
t
RLRH
t
RLDV
t
RHDX
t
RHDZ
t
WHLH
RI or DPL
t
LHLL
P2.0-P2.7 or A8-A15 from DPH
A8-A15 from PCH
ALE
PSEN
PORT 0
PORT 2
WR
t
LLWL
DATA OUT
A0-A7 from PCL
INSTR. IN
A0-A7 from
t
LLAX2
t
AVWL
t
AVLL
t
WLWH
t
WHQX
t
WHLH
RI or DPL
t
QVWX
t
QVWH
Page 48
GMS90 Series
44 Oct. 2000 Ver 3.1a
Figure 7. AC Testing: Input, Output Waveforms
Figure 8. Float Waveforms
Figure 9. External Clock Cycle
AC Inputs during testing are driven at VCC−0.5V for a logic ‘1’ and 0.45V for a logic ‘0’.
0.2VCC+ 0.9
0.2V
CC
0.1
Test Points
V
CC
0.5V
0.45V
Timing measurements are made a V
IHmin
for a logic ‘1’ and V
ILmax
for a logic ‘0’.
V
LOAD
+ 0.1
V
LOAD
0.1
Timing Reference Points
0.2VCC− 0.1
V
OH
0.1
V
OL
+ 0.1
V
LOAD
For timing purposes a port pin is no longer floating when a 100mV change from load voltage
IOL/IOH≥ 20mA.
occurs and begins to float when a 100mV change from the loaded VOH/VOLlevel occurs.
t
CHCL
t
CLCH
t
CHCX
t
CLCL
t
CLCX
0.2 VCC−0.1
0.7 V
CC
VCC−0.5V
0.45V
Page 49
GMS90 Series
Oct. 2000 Ver 3.1a 45
OSCILLATOR CIRCUIT
Figure 10. Recommended Oscillator Circuits
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for ap­propriate values of external components.
XTAL2 P-LCC-44/Pin 20 P-DIP-40/Pin 18 M-QFP-44/Pin 14
XTAL1 P-LCC-44/Pin 21 P-DIP-40/Pin 19 M-QFP-44/Pin 15
CRYSTAL OSCILLATOR MODE DRIVING FROM EXTERNAL SOURCE
XTAL2 P-LCC-44/Pin 20 P-DIP-40/Pin 18 M-QFP-44/Pin 14
XTAL1 P-LCC-44/Pin 21 P-DIP-40/Pin 19 M-QFP-44/Pin 15
External Oscillator Signal
N.C.
C2
C1
C1, C2 = 30pF ±10pF for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Page 50
GMS90 Series
46 Oct. 2000 Ver 3.1a
OTP ROM Verification Characteristics
ROM Verification Mode 1
Figure 11. OTP ROM Verification Mode 1
Parameter Symbol
Limit Values
Unit
Min. Max.
Address to valid data
t
AVQV
-48t
CLCL
ENABLE to valid data
t
CLCL
-48t
CLCL
ns
Data float after ENABLE
t
EHQZ
048t
CLCL
Oscillator frequency
1/t
CLCL
46MHz
Address
Data Out
P1.0-P1.7
PORT 0
Address:
P2.7
P2.0-P2.4
ENABLE
t
EHQZ
t
ELQV
t
AVQV
P2.0-P2.5 = A8-A13
Data:
P1.0-P1.7 = A0-A7
P0.0-P0.7 = D0-D7
Input:
ALE = V
IH
P2.6-P2.7, PSEN =V
SS
EA, RESET = V
IH2
P3.4 = A14
Page 51
GMS90 Series
Oct. 2000 Ver 3.1a 47
EPROM CHARACTERISTICS
The GMS97C5X, 97L5X are programmed by using a modified Quick-Pulse ProgrammingTMalgorithm. It dif­fers from older methods in the value used for V
PP
(programming supply voltage) and in the width and number
of the ALE/PROG
pulses. The GMS97C5X, 97L5X contains two signature bytes that can be read and used by an EPROM programming system to identify the device. The signature bytes identify the device as an manufac­tured by HME. Table 11 showsthe logic levels for reading the signature byte, and for programmingthe program memory, the encryption table, and the security bits. The circuit configuration and waveforms for quick-pulse programming are shown in Figure 12 and Figure 13. Figure 14 show the circuit configuration for normal pro­gram memory verification.
Reading the Signature Bytes :
The GMS97X51/52 signature bytes in locations 030
H
and 031H, the GMS97X54/56/58 signature bytes in loca-
tions 05E
H
and 07CH. To read these bytes follow the procedure for EPROM verify, except that P3.6 and P3.7
need to be pulled to a logic low. The values are:
Quick-pulse programming
The set u p for microcont rol ler quick-pulse programming is shown in Figure 13. Note that the GMS97C5X, 97L5X is running with a 4 to 6MHz oscillator. The reason the oscillator needs to be running is that the device is executing internal address and program data transfers.
The address of the EPROM location to be programmed is applied to ports 1 and 2, as shown in Figure 12. The code byte to be programmed into that location is applied to port 0, RST, PSEN
andpinsofport2and3inTable
11 are held at the "Program Code Data" levels indicated in Table 11. The ALE/PROG
is pulsed low 25 times(10
times for 97X54/56/58) as shown Figure 13. To program the encryption table, repeat the 25 pulses (10 pulses for 97X54/56/58) programming sequence for
addresses 0 through 1F
H
(3FHfor 97X54/56/58), using the "Program Encryption Table" levels. Do not forget
that after the encryption table is programmed, verification cycles will produce only encrypted data. To program the security bits, repeat the 25 pulses (10 pulses for 97X54/56/58) programming sequence using the
"Pgm Security Bit" levels after one security bit is programmed, further programming of the code memory and
Device Location Contents Remarks
GMS97X51 30
H
31
H
E0
H
73
H
Manufacturer ID Device ID
GMS97X52 30
H
31
H
E0
H
71
H
Manufacturer ID Device ID
GMS97X54 5E
H
7C
H
E0
H
54
H
Manufacturer ID Device ID
GMS97X56 5E
H
7C
H
E0
H
56
H
Manufacturer ID Device ID
GMS97X58 5E
H
7C
H
E0
H
58
H
Manufacturer ID Device ID
Page 52
GMS90 Series
48 Oct. 2000 Ver 3.1a
encryption table is disabled. However, the other security bit can still be programmed. Note that the EA/VPPpin must not be allowed to go above the maximum specified V
PP
level for any amount of time. Even a narrow glitch
above that voltage can cause permanent damage to the device. The V
PP
source should be well regulatedand free
glitches and overshoot.
Figure 12. Programming Configuration
Program Verification
If security bit 2 has not been programmed, the on-chip program memory can be read out for program verifica­tion. The address of the program memory location to be read is applied to ports 1 and 2 as shown in Figure 15. The other pins are held at the "Verify Code Data" levels indicated in Table 11. The contents of the address lo­cation will be emitted on port 0 for this operation. If the encryption table has been programmed, the data pre­sented at port 0 will be the exclusive NOR of the program byte with one of the encryption bytes. The user will have to know the encryption table contents in order to correctly decode the verification data. The encryption table itself cannot be read out.
P1
RST P3.6 P3.7
XTAL2
XTAL1 V
SS
V
CC
P0
EA
/V
PP
ALE/PROG
PSEN
P2.7
P2.6
P2.0
-P2.5
A0-A7
1 1 1
4~6MHz
1
1
0
GMS97X51/52:
+12.75V
GMS97X54/56/58:
100µs × 25 pulses to GND 100µs × 10 pulses to GND
+NOTE
NOTE:
PROGRAM DATA
A8-A13
+5V
P3.4
A14
Page 53
GMS90 Series
Oct. 2000 Ver 3.1a 49
Program Memory Lock Bits
The two-level Program Lock system consists of 2 Lock bits and a 32-byte (64-byte for GMS97X54/ 56/58) Encryption Array which are used to protect the program memory against software piracy.
Encryption Array:
Within the EPROM array are 32 bytes (64 bytes for G MS 97X54/56/58) of Encryption Array that are initi ally unprogrammed (all 1s). Every time that a byte is addressed during a verify, address lines are used to select a byte of the Encryption array. This byte is then exclusive-NORed (XNOR) with the code byte, creating an Encrypted Verify byte.
The algorithm, with the array in the unprogrammed state (all 1s), will return the code in its original, unmodified form, It is recommended that whenever the Encryption Array is used, at least one of the L ock Bits be pro­grammed as well.
Program / Verify algorithms
Any algorithm in agreement with the conditions listed in Table 11, and which satisfies the timing specifications is suitable.
Notes:
1. “0” = Valid low for that pin, "1" = valid high for that pin.
2. VPP=12.75V± 0.25V
3. VCC=5V± 10% during programming and verification.
4. ALE/PROG receives 25 (10 for GMS97X54/56/58) programming pulses while VPPis held at 12.75V.
Each programming pulse is low for 100us (± 10us) and high for a minimum of 10µs.
Table 11. EPROM programming modes
MODE
RST PSEN
ALE/
PROG
EA/
V
PP
P2.7 P2.6 P3.7 P3.6
ReadSignature 10110000 Program Code Data
100VPP1011 Verify Code Data 10110011 Program encryption table
100VPP1010 Program security bit 1
100VPP1111 Program security bit 2
100VPP1100
Lock Bit Protection Modes
U: unprogrammed, P: programmed
Mode LB1 LB2 Protection Type
1 U U No program lock features 2 P U Further programming of the
EPROM is disabled
3 P P Sameasmode2,alsoverifyis
disabled
Page 54
GMS90 Series
50 Oct. 2000 Ver 3.1a
Figure 13. PROG Waveform
Figure 14. Program Verification
100µs ±10
Min. 10µs
100µs ±10
In the GMS97X51/52
ALE/PROG
In the GMS97X54/56/58
ALE/PROG
25 PULSES
10 PULSES
Enlarged View
P1
RST P3.6 P3.7
XTAL2
XTAL1 V
SS
V
CC
P0
EA
/V
PP
ALE/PROG
PSEN
P2.7
P2.6
P2.0
-P2.5
A0-A7
1 1 1
4~6MHz
1
0
0
1
1
PROGRAM DATA
A8-A13
+5V
P3.4
A14
10k
Page 55
GMS90 Series
Oct. 2000 Ver 3.1a 51
EPROM Programming and Verification Characteristics
T
A
=21°Cto27°C, VCC=5V+10%,15%; VSS=0V;
Figure 15. EPROM Programming and Verification
Parameter Symbol
Limit Values
Unit
Min. Max.
Programming supply voltage
V
PP
12.5 13.0 V
Programming supply current
I
PP
-50mA
Oscillator frequency
1/t
CLCL
46MHz
Address setup to PROG low
t
AVGL
48t
CLCL
--
Address hold after PROG
t
GHAX
48t
CLCL
--
Data setup to PROG
t
DVGL
48t
CLCL
--
Data hold after PROG
t
GHDX
48t
CLCL
--
P2.7 (ENABLE)hightoV
PP
t
EHSH
48t
CLCL
--
VPPsetup to PROG t
SHGL
10 - µs
VPPhold after PROG t
GHSL
10 - µs
PROG width
t
GLGL
90 110 µs
Address to data valid
t
AVQV
-48t
CLCL
-
ENABLE low to data valid
t
ELQV
-48t
CLCL
-
Data float after ENABLE
t
EHQZ
048t
CLCL
-
PROG high to PROG low
t
GHGL
10 - µs
ADDRESS
ADDRESS
P1.0-P1.7 P2.0-P2.5
P3.4
DATA IN
DATA OUT
PORT 0
ALE/PROG
EA/V
PP
P2.7
t
GHSL
t
GHGL
t
AVGL
t
GHAX
t
GHDX
t
EHSH
t
SHGL
t
DVGL
25 or 10 PULSES
t
GLGL
t
AVQV
t
ELQV
t
EHQZ
~
~
~
~
~
~
~
~
~
~
~
~
~
~
V
PP
TTL HIGH
PROGRAMMING VERIFICATION
(ENABLE)
TTL HIGH
TTL HIGH
Page 56
GMS90 Series
52 Oct. 2000 Ver 3.1a
Plastic Package P-LCC-44
(Plastic Leaded Chip-Carrier)
0.180
0.165
UNIT: INCH
44PLCC
0.012
0.0075
0.120
0.090
0.032
0.026
0.630
0.590
min. 0.020
0.656
0.650
0.695
0.685
0.656
0.650
0.695
0.685
0.050 BSC
0.021
0.013
Page 57
GMS90 Series
Oct. 2000 Ver 3.1a 53
Plastic Package P-DIP-40
(Plastic Dual in-Line Package)
UNIT: INCH
2.075
2.045
0.200 max.
0.022
0.015
0.065
0.045
0.100 BSC
0.550
0.530
0.600 BSC
0-15°
0
.
0
1
2
0
.
0
0
8
40DIP
0.140
0.120
min. 0.015
Page 58
GMS90 Series
54 Oct. 2000 Ver 3.1a
Plastic Package P-MPQF-44
(Plastic Metric Quad Flat Package)
2.35 max.
SEE DETAIL "A"
1.03
0.73
0-7°
0.25
0.10
1.60 REF
DETAIL "A"
UNIT: MM
0.45
0.30
0.80 BSC
2.10
1.95
44MQFP
0
.
1
3
0
.
2
3
10.10
9.90
13.45
12.95
10.10
9.90
13.45
12.95
Page 59
MASK ORDER & VERIFICATION SHEET
GMS90X5X-GB
1. Customer Information
Company Name
2. Device Information
3. Marking Specification
4. Delivery Schedule
Customer Sample
Date
Risk Order
YYYY MM DD
Quantity
Hynix Confirmation
Application
Order Date
YYYY MM DD
Tel:
Fax:
Name & Signature:
Package
HYNIX
YYWW KOREA
5. ROM Code Verification
Ve rific a tio n D ate:
YYYY MM DD
Approval Date:
YYYY MM DD
Please confirm our verification data.
I agree w ith your verification data and confirm you to
make mask set.
Check Sum: Tel:
Fax:
Name & Signature:
Tel:
Fax:
Name & Signature:
Mask Data
HitelChollianInternet
File Name: ( .HEX)
(Please check mark into )


Hynix semiconductor
pcs
Check Sum:
Customer should write inside thick line box.
This box is written after “5.Verification”.
ROM size
4K
Vol./Freq.
GMS90
-G B
SIEMENS ’92
5
Customer’s part number
Without
HYNIX
YYWW KO REA
90
-G B
SIEMENS ’92
5
40PD IP or 44PLCC 44M QFP

Г
Д
C: 5V L: 3V
ROM size 1: 4K 2: 8K
4: 16K 6: 24K 8: 32K
YYYY MM DD
pcs
8K 16K 24K 32K
44MQFP 44PLCC 40PDIP
12MHz 24MHz 40MHz 12MHz 16MHz
5V
3V
Normal Super
ROM: 16,24,32K
ROM: 4K,8K
ROM Protection
Loading...