Correct the pin number of 44-MQFP package type on page 6.
VERSION 1.1 (Oct. 1999) Before version
Version 1.2
Published by
MCU Application Team
Copy right 2001 Hynix semiconductor, All right reserved.
Additional information of this manual may be served by Hynix semiconductor offices in Korea or Distributors and Representatives listed at address directory.
Hynix semiconductor reserves the right to make changes to any information here in at any time without notice.
The information, diagrams and other data in this manual are correct and reliable; however, Hynix semiconductor is in no
way responsible for any violations of patents or other rights of the third party generated by the use of this manual.
Page 3
GMS90C320
Device Naming Structure
H(G)MS90X320
MCU Series
Hynix semiconductor MCU
XXXX
Frequency
Blank: 24MHz
40:40MHz
50:50MHz
Package Type
Blank:
PL:
Q:
Enhanced ROM-less version
Operating Voltage
C:L:Normal voltage
40PDIP
44PLCC
44MQFP
Low voltage
OCT. 2000 Ver 1.2
Page 4
GMS90C320
GMS90C320 ordering information
Operating
Voltage (V)
4.25~5.5
2.7~5.5
Device Name
GMS90C320 40
GMS90C320 PL40
GMS90C320 Q40
GMS90C320 50
GMS90C320 PL50
GMS90C320 Q50
GMS90L320
GMS90L320 PL
GMS90L320 Q
ROM size
(bytes)
ROM-less25640
ROM-less25650
ROM-less25624
RAM size
(bytes)
Operating max.
Frequency (MHz)
Package Type
40PDIP
44PLCC
44MQFP
40PDIP
44PLCC
44MQFP
40PDIP
44PLCC
44MQFP
OCT. 2000 Ver 1.2
Page 5
GMS90C320/L320
CMOS SINGLE-CHIP 8-BIT MICROCONT ROLLER
ROM-less Version for 90C52
GMS90C320
Operating Voltage (V)Device NameROMRAM
4.25~5.5GMS90C320ROM-less256 ×××× 8bit40/50
2.7~5.5GMS90L320ROM-less256 ×××× 8bit24
Features
• Fully compatible to standard MCS-51 microcontroller
• Versions for 40/50 MHz operating frequency
• Low voltage version for 24MHz operating frequency
• 256 bytes of on-chip data RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Three 16-bit Timers/Counters (Timer 2 with up/down counter feature)
•USART
• Six interrupt sources, two priority levels
• Power saving Idle and power down mode
Operating
Frequency (MHz)
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
RAM
256 x 8
T0
T2
T1
The GMS90C320 described in this document is compatible with the standard 80C32 can be used for all present standard
80C32 applications.
CPU
ROM-less
8-BIT
USART
PORT0
PORT1
PORT2
PORT3
I/O
I/O
I/O
I/O
OCT. 2000 Ver 1.21
Page 6
GMS90C320
44-PLCC Pin Configuration
(top view)
RESET
RxD/P3.0
TxD/P3.1
INT0
/P3.2
INT1
/P3.3
T0/P3.4
T1/P3.5
P1.5
P1.6
P1.7
N.C.
(P-LCC-44)
P1.4
P1.2
P1.1/T2EX
P1.0/T2
N.C.
2
1
VCCP0.0/AD0
4443424140
P1.3
6
543
7
8
9
10
11
12
13
14
15
16
17
1819202122232425262728
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
39
P0.5/AD5
38
P0.6/AD6
37
P0.7/AD7
36
EA
35
N.C.
34
ALE
33
PSEN
32
P2.7/A15
31
P2.6/A14
30
P2.5/A13
29
/P3.6RD/P3.7
WR
SS
N.C.
V
XTAL2
XTAL1
P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
2OCT. 2000 Ver 1.2
Page 7
40-PDIP Pin Configuration
(top view)
GMS90C320
(P-DIP-40)
T2/P1.0
T2EX/P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RESET
RxD/P3.0
TxD/P3.1
INT0
/P3.2
INT1
/P3.3
T0/P3.4
T1/P3.5
/P3.6
WR
RD
/P3.7
XTAL2
XTAL1
V
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
SS
V
40
CC
P0.0/AD0
39
P0.1/AD1
38
P0.2/AD2
37
P0.3/AD3
36
35
P0.4/AD4
34
P0.5/AD5
33
P0.6/AD6
32
P0.7/AD7
31
EA
30
ALE
29
PSEN
P2.7/A15
28
P2.6/A14
27
P2.5/A13
26
P2.4/A12
25
P2.3/A11
24
P2.2/A10
23
P2.1/A9
22
P2.0/A8
21
OCT. 2000 Ver 1.23
Page 8
GMS90C320
44-PLCC Pin Configuration
(top view)
(P-MQFP-44)
P1.4
P1.2
P1.1/T2EX
P1.0/T2
N.C.
VCCP0.0/AD0
P0.1/AD1
P0.2/AD2
P1.3
P0.3/AD3
P1.5
P1.6
P1.7
RESET
RxD/P3.0
N.C.
TxD/P3.1
INT0
/P3.2
INT1
/P3.3
T0/P3.4
T1/P3.5
4443424140
1
2
3
4
5
6
7
8
9
10
11
1213141516171819202122
/P3.6RD/P3.7
XTAL2
WR
XTAL1
3837363534
39
SS
N.C.
V
P2.0/A8
P2.1/A9
P2.2/A10
33
32
31
30
29
28
27
26
25
24
23
P2.3/A11
P2.4/A12
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7
EA
N.C.
ALE
PSEN
P2.7/A15
P2.6/A14
P2.5/A13
4OCT. 2000 Ver 1.2
Page 9
GMS90C320
V
V
CC
SS
Logic Symbol
XTAL1
XTAL2
RESET
EA
ALE
PSEN
Port 0
8-bit Digital I/O
Port 1
8-bit Digital I/O
Port 2
8-bit Digital I/O
Port 3
8-bit Digital I/O
OCT. 2000 Ver 1.25
Page 10
GMS90C320
Pin Definitions and functions
Pin Number
Symbol
P-LCC-44P-DIP-40
P1.0-P1.72-91-840-44,
2
3
P3.0-P3.711,13-1910-175,7-
11105P3.0/RxDreceiver data input (asynchronous) or data input
13117P3.1 / TxDtransmitter data output (asynchronous) or clock
14128P3.2 / INT0interrupt 0 input /timer0gatecontrol
15139P3.3 / INT1interrupt 1 input /timer1gatecontrol
161410P3.4 / T0counter 0 input
171511P3.5 / T1counter 1 input
181612P3.6 / WRthe write control signal latches the data byte from
191713P3.7 / RDthe read control signal enables the external data
XTAL2201814OXTAL2
XTAL1211915IXTAL1
P-MQFP-
44
1-3
1
2
40
41
13
Input/
Output
I/OPort1
is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins
that have 1s written to them are pulled high by the internal pull-up
resistors and can be used as inputs. As inputs, port 1 pins that are
externally pulled low will source current because of the pulls-ups
(IIL, in the DC characteristics). Pins P1.0 and P1.1 also. Port 1
also receives the low-order address byte during program memory
verification. Port1 also serves alternate functions of Timer 2.
is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins
that have 1s written to them are pulled high by the internal pull-up
resistors, and in that state they can be used as inputs. As inputs,
port 3 pins being externally pulled low will source current (IIL,in
the DC characteristics) because of internal pulls-up resistors. Port
3 also serves the special features of the 80C51 family, as listed
below.
Output of the inverting oscillator amplifier
Input to the inverting oscillator amplifier and input to the internal
clock generator circuits.
To drive the device from an external clock source, XTAL1 should
be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the
input to the internal clocking circuitry is divided down by a divideby-two flip-flop. Minimum and maximum high and low times as
well as rise fall times specified in the AC characteristics must be
observed.
Function
output (synchronous) of the serial interface 0
output (synchronous) of the serial interface 0
port 0 into the external data memory
memory to port 0
6OCT. 2000 Ver 1.2
Page 11
GMS90C320
Symbol
Pin Number
P-LCC-44P-DIP-40
P-MQFP-
44
Input/
Output
P2.0-P2.724-3121-2818-25I/OPort 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2
pins that have 1s written to them are pulled high by the internal
pull-up resistors and can be used as inputs. As inputs, port 2 pins
that are externally pulled low will source current because of the
pulls-ups (IIL, in the DC characteristics). Port 2 emits the highorder address byte during fetches from external program memory
and during accesses to external data memory that use 16-bit
addresses (MOVX @DPTR). In this application it uses strong
internal pull-ups when emitting 1s. During accesses to external
data memory that use 8-bit addresses (MOVX @Ri), port 2 emits
the contents of the P2 special function register.
PSEN322926OThe Program Store Enable
The read strobe to external program memory when the device is
executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN activation
are skipped during each access to external data memory. PSEN
is not activated during fetches from internal program memory.
RESET1094IRESET
A high level on this pin for two machine cycles while the oscillator
is running resets the device. An internal diffused resistor to V
permits power-on reset using only an external capacitor to VCC.
ALE333027OThe Address Latch Enable
Output pulse for latching the low byte of the address during an
access to external memory. In normal operation, ALE is emitted
at a constant rate of 1/6 the oscillator frequency, and can be used
for external timing or clocking. Note that one ALE pulse is skipped
during each access to external data memory.
EA353129IExternal Access Enable
EA must be external held low to enable the device to fetch code
from external program memory locations 0000Hto FFFFH.IfEAis
held high, the device executes from internal program memory
unless the program counter contains an address greater than its
internal memory size.
P0.0-P0.743-3639-3237-30I/OPort 0
Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that
have 1s written to them float and can be used as high-impedance
inputs. Port 0 is also the multiplexed low-order address and data
bus during accesses to external program and data memory. In
this application it uses strong internal pull-ups when emitting 1s.
Port 0 also outputs the code bytes during program verification in
the GMS97C5x. External pull-up resistors are required during
program verification.
V
SS
V
CC
N.C.1,12,
222016-Circuit ground potential
444038-Supply terminal for all operating modes
23,34
-
6,17,
28,39
-No connection
Function
SS
OCT. 2000 Ver 1.27
Page 12
GMS90C320
Function Description
The GMS90 series is fully compatible to the standard 8051 microcontroller family.
It is compatible with the standard 80C32. While maintaining all architectural and operational characteristics of the standard
80C32, the GMS90C320 incorporates some enhancements in the Timer 2 unit.
Figure 1 shows a block diagram of the GMS90C320
XTAL1
XTAL2
RESET
ALE
PSEN
EA
OSC & Timing
CPU
Timer 0
Timer 1
Timer 2
Interrupt Unit
Serial Channel
RAM
256 x 8
Port 0
Port 1
Port 2
Port 3
Port 0
8-bit Digital I/O
Port 1
8-bit Digital I/O
Port 2
8-bit Digital I/O
Port 3
8-bit Digital I/O
Figure 1 Block Diagram of the GMS90C320
8OCT. 2000 Ver 1.2
Page 13
GMS90C320
CPU
The GMS90C320is efficientbothasa controller and as an arithmetic processor.IthasextensivefacilitiesforbinaryandBCD
arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% o f the instructions are
executed in 1.0µs.
Special Function R egister PSW
MSBLSB
BitNo.76543210
Addr. D0
CYACF0RS1RS2OVF1PPSW
H
BitFunction
CYCarry Flag
ACAuxiliary Carry Flag (for BCD operation)
F0General Purpose Flag
RS1
0
0
1
1
RS0
0
1
0
1
Register Bank select control bits
Bank 0 selected, data address 00H-07
Bank 1 selected, data address 08H-0F
Bank 2 selected, data address 10H-17
Bank 3 selected, data address 18H-1F
OVOverflow Flag
F1General Purpose Flag
PParity Flag
Set/cleared by hardware each instruction cycle to indicate an odd/
even number of “one” bits in the accumulator, i.e. even parity.
Reset value of PSW is 00
H.
H
H
H
H
OCT. 2000 Ver 1.29
Page 14
GMS90C320
Special Function Registers
All registers, except the program counter and the four general purpose register banks, reside in the special function register
area.
The 27 special function registers (SFR) include pointers and registers that provide an interface between theCPUand the other
on-chip peripherals. There are also 128 directly addressable bits within the SFR area.
All SFRs are listed in Table 1, Table 2,andTable 3.
In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which refer to the
functional blocks of the GMS90C320. Table 3 illustrates the contents of the SFRs.
Table 1
Special Function Registers in Numeric Order of their Addresses
AddressRegister
80
H
81
H
82
H
83
H
84
H
85
H
86
H
87
H
88
H
89
H
8A
H
8B
H
8C
H
8D
H
8E
H
8F
H
90
H
91
H
92
H
93
H
94
H
95
H
96
H
97
H
98
H
99
H
9A
H
9B
H
9C
H
9D
H
9E
H
9F
H
1)
: Bit-addressable Special Function Register
2)
: X means that the value is indeterminate and the location is reserved
Table 3
Contents of SFRs, SFRs in Numeric Order (cont’d)
AddressRegister
CA
CB
CC
CD
D0
E0
F0
H
H
H
H
H
H
H
RC2L
RC2H
TL2
TH2
PSWCYACF0RS1RS0OVF1P
ACC
B
Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0
SFR bit and byte addressable
SFR not bit addressable
-
This bit location is reserved.
14OCT. 2000 Ver 1.2
Page 19
Timer/Counter0and1
Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:
Table 4
Timer/Counter 0 and 1 Operating Modes
TMODInput Clock
ModeDescription
GATEC/TM1M0Internal
GMS90C320
External
(Max.)
08-bit timer/counter with a
divide-by-32 prescaler
116-bit timer/counter
28-bit timer/counter with 8-bit
autoreload
XX00
XX01
XX10
ƒ
OSC
------------------ -
12 32×
ƒ
OSC
--------------- -
12
ƒ
OSC
--------------- -
12
ƒ
OSC
------------------ -
24 32×
ƒ
OSC
--------------- -
24
ƒ
OSC
--------------- -
24
3Timer/counter 0 used as one
8-bit timer/counter and one 8bit timer
XX11
ƒ
OSC
--------------- -
12
ƒ
OSC
--------------- -
24
Timer 1 stops
In the “timer” function (C/T
= “0”) the register is incremented every machine cycle. Therefore the count rate is.
ƒ
OSC
12⁄
In the “counter” function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin
(P3.4/T0,P3.5/T1).Sinceittakestwo machinecyclestodetectafallingedge the max. count rate is. External inputs
INT0
and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements.
ƒ
OSC
24⁄
Figure 2 illustrates the input clock logic.
P3.4/T0
P3.5/T1
max. f
OSC
/24
f
OSC
TR 0/1
TCON
÷12
C/T
TMOD
0
1
Control
ƒ
OSC
Timer 0/1
Input Clock
12⁄
GATE
TMOD
P3.2/INT0
P3.3/INT1
Figure 2 Timer/Counter 0 and 1 Input Clock Logic
OCT. 2000 Ver 1.215
Page 20
GMS90C320
Timer 2
Timer 2 is a 16-bit Timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which
is selected by bit C/T2
Table 5
Timer/Counter 2 Operating Modes
(T2CON.1).It has three operating modes as shown in Table 5.
Mode
16-bit Autoreload
16-bit
Capture
RxCLK
or
TxCLK
0
0
0
0
0
0
T2CON
CP/
RL2
0
0
0
0
1
1
TR2
1
1
1
1
1
1
T2MO
D
DECN
0
0
1
1
X
X
T2CON
EXEN
0
1
X
X
0
1
P1.1
T2EX
X
↓
0
1
reload upon overflow
reload trigger (falling edge)
Down counting
Up counting
Remarks
X↓16-bit Timer/Counter (only
up-counting)
capture
Input Clock
Internal
ƒ
OSC
--------------- -
12
ƒ
OSC
--------------- -
12
External
(P1.0/T2)
max.
max.
TH1, TL2 → RC2H, RC2L
Baud Rate
Generator
1
1
X
X
1
1
X
X
0
1
X↓no overflow interrupt request
(TF2)
extra external interrupt
ƒ
OSC
--------------- -
12
max.
(“Timer 2”)
offXX0XXXTimer 2 stops--
1Note: ↓ =fallingedge
ƒ
OSC
--------------- -
24
ƒ
OSC
--------------- -
24
ƒ
OSC
--------------- -
24
16OCT. 2000 Ver 1.2
Page 21
GMS90C320
Serial Interface (USART)
The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated
in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.
Table 6
USART Operating Modes
Mode
BaudrateDescription
SM0SM1
SCON
000Serial data enters and exits through RxD.
ƒ
OSC
--------------- -
12
TxD outputs the shift clock.
8-bit are transmitted/received (LSB first)
101Timer 1/2 overflow rate8-bit UART
10 bits are transmitted ( through TxD) or
received (RxD)
210
ƒ
OSC
--------------- -
32
ƒ
OSC
--------------- -
or
64
9-bit UART
11 bits are transmitted ( through TxD) or
received (RxD)
The GMS90C320 provides 6 interrupt sources with two priority levels. Figure 3 gives a general overview of the interrupt
sources and illustrates the request and control flags.
High Priority
Timer 0 Overflow
TF0
TCON.5
ET0
IE.1
PT0
IP.1
Low Priority
P1.1/
T2EX
Timer 2 Overflow
P3.2/
INT0
P3.3/
INT1
EXEN2
T2CON.3
USART
IT0
TCON.0
IT1
TCON.2
Timer 1 Overflow
TF2
T2CON.7
EXF2
T2CON.6
RI
SCON.0
SCON.1
TF1
TCON.7
TI
IE0
TCON.1
IE1
TCON.3
ET1
IE.3
ET2
IE.5
ES
IE.4
EX0
IE.0
EX1
IE.2
EA
IE.7
PT1
IP.3
PT2
IP.5
PS
IP.4
PX0
IP.0
PX1
IP.2
Figure 3
Interrupt Request Sources
18OCT. 2000 Ver 1.2
Page 23
Table 8
Interrupt Sources and their Corresponding Interrupt Vectors
Source (Request Flags)VectorVector Address
GMS90C320
IE0
TF0
IE1
TF1
RI+TI
TF2+EXF2
External interrupt 0
Timer 0 interrupt
External interrupt 1
Timer 1 interrupt
Serial port interrupt
Timer 2 interrupt
0003
000B
0013
001B
0023
002B
H
H
H
H
H
H
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority interrupt. A highpriority interrupt cannot be interrupted by any other interrupt source.
If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of
the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within
each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.
Table 9
Interrupt Priority-Within-Level
Interrupt SourcePriority
IE0
TF0
IE1
TF1
RI+TI
TF2+EXF2
External interrupt 0
Timer 0 interrupt
External interrupt 1
Timer 1 interrupt
Serial port interrupt
Timer 2 interrupt
High
↓
Low
OCT. 2000 Ver 1.219
Page 24
GMS90C320
Power Saving Modes
T wopower down modes are available, the Idle Mode and Power Down Mode.
The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively.IfthePower Down
mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview
of the power saving modes.
Table 10
Power Saving Modes Overview
ModeEntering Instruction
Idle modeORL PCON,#01H- enabled interrupt
Power-Down
Mode
Example
ORL PCON,#02HHardware ResetOscillator is stopped, contents of
In the Power Down mode of operation, V
that V
is not reduced before the Power Down mode is invoked, and that VCCis restored to its normal operating level, before
CC
Leaving byRemarks
CPU is gated off
- Hardware Reset
can be reduced to minimize power consumption. It must be ensured, however,
CC
CPU status registers maintain
their data.
Peripherals are active
on-chip RAM and SFR’s are maintained (leaving Power Down Mode
means redefinition of SFR contents).
the Power Down mode is terminated. The reset signal that terminates the Power Down Mode also restarts the oscillator. The
reset should not be activated before V
is restored to its normal operating level and must be held active long enough to allow
CC
the oscillator to restart and stabilize (similar to power-on reset).
20OCT. 2000 Ver 1.2
Page 25
GMS90C320
Absolute Maximum Ratings
Ambient temperature under bias (TA) .......................................................................................................-40 to + 85°C
Storage temperature (T
Voltage on V
pins with respect to ground (VSS).....................................................................................-0.5 V to 6.5 V
).......................................................................................-0.5 to VCC+0.5V
SS
Input current on any pin during overload condition..................................................................................-10mAto+10mA
Absolute sum of all input currents during overload condition..................................................................| 100 mA |
Power dissipation.......................................................................................................................................TBD
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage of the device. This is
a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may
affect device reliability. During overload conditions (VIN> VCCor V
must not exceed the values defined by the absolute maximum ratings.
<
VSS) the Voltageon VCCpins with respect to ground (VSS)
IN
OCT. 2000 Ver 1.221
Page 26
GMS90C320
DC Characteristics
DC Characteristics for GMS90C320
VCC=5V+10%,-15%;VSS=0V; TA=0°Cto70°C
ParameterSymbol
Input low voltage
(except EA, RESET)
Input low voltage (EA)V
Input low voltage (RESET)V
Input high voltage (except
XTAL1, EA, RESET)
Input high voltage to XTAL1V
Input high voltage to EA,
RESET
V
IL
IL1
IL2
V
IH
IH1
V
IH2
0.2VCC+0.9VCC+0.5
Output low voltage
(ports 1, 2, 3)
V
OL
Output low voltage
(port0,ALE,PSEN)
Output high voltage
(ports 1, 2, 3)
V
OL1
V
OH
Output high voltage
(port 0 in external bus mode,
V
OH1
ALE, PSEN)
Logic 0 input current
(ports 1, 2, 3)
Logical 1-to-0 transition cur-
rent (ports 1, 2, 3)
Input leakage current
(port 0, EA)
Pin capacitanceC
I
IL
I
TL
I
LI
IO
Power supply current:
Active mode, 12MHz
Idle mode, 12MHz
3)
Active mode, 24 MHz
Idle mode, 24MHz
3)
Active mode, 40 MHz
Idle mode, 40 MHz
3)
Active mode, 50 MHz
Idle mode, 50 MHz
Power Down Mode
Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLof ALE and port 3. The
noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions
during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may
exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitttrigger strobe input.
2)
Capacitive loading on ports 0 and 2 may cause the VOHon ALE a nd PSEN to momentarily fall below the 0.9VCCspecification
when the address lines are stabilizing.
3)
I
at other frequencies is given by:
CC m ax
active mode: I
idle mode: I
where ƒ
OSC
4)
ICC(active mode) is measured with:
XTAL1 driven with t
EA
=Port0=RESET=VCC; all other pins are disconnected. ICCwould be slightly higher if a crys t al oscillator is used (appr.
=1.0׃
CC
=0.37׃
CC
OSC
OSC
+3.16
+3.63
is the oscillator frequency in MHz. ICCvalues are given in mA and measured at VCC=5V.
CLCH,tCHCL
=5ns,VIL=VSS+0.5V,VIH=VCC- 0.5V; XTAL2 = N.C.;
1mA).
5)
ICC(Idle mode) is me asured with all output pins disconnected a nd with all peripherals disabled;
XTAL1 driven with t
RESET=EA
6)
IPD(Power Down Mode) is measured under following conditions:
=Port0=VCC; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.
EA
CLCH,tCHCL
=VSS;Port0=VCC; all other pins are disconnected;
=5ns,VIL=VSS+0.5V,VIH=VCC- 0.5V; XTAL2 = N.C.;
GMS90C320
OCT. 2000 Ver 1.223
Page 28
GMS90C320
DC Characteristics for GMS90L320
VCC= 3.3V + 0.3V, -0.6V; VSS=0V; TA=0°Cto70°C
ParameterSymbol
Input low voltageV
Input high voltageV
Output low voltage
(ports 1, 2, 3)
Output low voltage
(port0,ALE,PSEN)
V
Output high voltage
(ports 1, 2, 3)
Output high voltage
(port 0 in external bus mode, ALE,
V
PSEN)
Logic 0 input current
(ports 1, 2, 3)
Logical 1-to-0 transition current
(ports 1, 2, 3)
Input leakage current
(port 0, EA)
Pin capacitance
Power supply current:
Active mode, 16 MHz
Idle mode, 16MHz
Active mode, 24MHz
Idle mode, 24MHz
Power Down Mode
3)
3)
3)
3)
3)
V
V
C
I
I
I
I
I
OL1
OH1
I
I
TL
I
CC
CC
CC
CC
PD
IL
IH
OL
OH
IL
LI
IO
Limit Values
UnitTest Conditions
Min.Max.
-0.50.8V-
2.0
-
-
2.0
0.9V
CC
2.0
0.9V
CC
-1-50µA
-25-250µA
-±1µA
-10pF
-
-
-
-
-
VCC+0.5
0.45
0.30
0.45
0.30
V-
V
V
-V
-V
10
5.25
mA
mA
16
8.25
10
µA
IOL=1.6mA
IOL=100µA
IOL=3.2mA
IOL=200µA
IOH=-20µA
IOH=-10µA
IOH=-800µA
IOH=-80µA
VIN=0.45V
VIN=2.0V
0.45 < VIN< V
fC=1MHz
TA=25°C
VCC=3.3V
VCC=3.3V
VCC=3.3V
VCC=3.3V
VCC=3.6V
1)
1)
1)
1)
2)
2)
CC
4)
5)
4)
5)
6)
24OCT. 2000 Ver 1.2
Page 29
GMS90C320
AC Characteristics
Explanation of the AC Symbols
Each timing symbol has 5 characters. The first character is always a ‘t’ (stand for time). The other characters, depending on
their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters
and what they stand for.
A: Address
C: Clock
D: Input Data
H: Logic level HIGH
I: Instruction (program memory contents)
L: Logic level LOW, or ALE
P: PSEN
Q: Output Data
R: RD signal
T: Time
V: Valid
W: WR signal
X: No longer a valid logic level
Z: Float
For example,
t
= Time from Address Valid to ALE Low
AVLL
t
= Time from ALE Low to PSEN Low
LLPL
OCT. 2000 Ver 1.225
Page 30
GMS90C320
AC Characteristics for 12MHz version
VCC=5V:VCC=5V+ 10%, −15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock:Vcc = 5V: 1/t
Vcc = 3.3V: 1/t
=3.5MHzto12MHz
CLCL
=1MHzto12MHz
CLCL
External Program Memory Characteristics
ParameterSymbol
12 MHz Oscillator
Min.Max.Min.Max.
Variable Oscillator
1/t
= 3.5 to 12MHz
CLCL
Unit
ALE pulse width
Address setup to ALE
Address hold after ALE
ALE low to valid instruction in
ALE to PSEN
PSEN pulse width
PSEN to valid instruction in
Input instruction hold after PSEN
Input instruction float after PSEN
Address valid after PSEN
Address to valid instruction in
Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage
to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
127-2t
43-t
43-t
-233 -4t
58-t
215-3t
-150 -3t
-40-
CLCL
-40-ns
CLCL
-40-
CLCL
-100ns
CLCL
-25-
CLCL
-35-ns
CLCL
-100
CLCL
0- 0- ns
-63 - t
75-t
-8-ns
CLCL
-302 -5t
CLCL
CLCL
-20
-115
-10--10-ns
ns
ns
ns
ns
ns
ns
26OCT. 2000 Ver 1.2
Page 31
AC Characteristics for 12MHz version
External Data Memory Characteristics
ParameterSymbol
12 MHz Oscillator
Variable Oscillator
1/t
=3.5to12MHz
CLCL
Min.Max.Min.Max.
GMS90C320
Unit
RD pulse width
WR pulse width
Address hold after ALE
RD to valid data in
Data hold after RD
Data float after RD
ALE to valid data in
Address to valid data in
ALE to WR or RD
Address valid to WR or RD
WR or RD high to ALE high
Data valid to WR transition
Data setup before WR
Data hold after WR
Address float after RD
Advance Information (12MHz)
External Clock Drive
ParameterSymbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
400-6t
400-6t
127-2t
-252 -5t
0- 0-
-97 -2t
-517 -8t
-585 -9t
2003003t
203-4t
43123t
33-t
433-7t
33-t
-100-
CLCL
-100-ns
CLCL
-40-
CLCL
-165ns
CLCL
-70ns
CLCL
-150
CLCL
-165ns
CLCL
-503t
CLCL
-130-ns
CLCL
-40t
CLCL
-50-ns
CLCL
-150-ns
CLCL
-50-
CLCL
CLCL
CLCL
+50
+40
ns
ns
ns
ns
ns
ns
ns
-0 -0ns
Variable Oscillator
(Freq. = 3.5 to 12MHz)
Unit
Min.Max.
Oscillator period (VCC=5V)
Oscillator period (VCC=3.3V)
High time
Low time
Rise time
Fall time
t
CLCL
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
83.3
83.3
20t
20t
285.7
1
CLCL-tCLCX
CLCL-tCHCX
ns
ns
ns
-20ns
-20
ns
OCT. 2000 Ver 1.227
Page 32
GMS90C320
AC Characteristics for 16MHz version
VCC=5V:VCC=5V+ 10%, −15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock:Vcc = 5V: 1/t
Vcc = 3.3V: 1/t
=3.5MHzto16MHz
CLCL
=1MHzto16MHz
CLCL
External Program Memory Characteristics
ParameterSymbol
16 MHz Oscillator
Min.Max.Min.Max.
ALE pulse width
Address setup to ALE
Address hold after ALE
ALE low to valid instruction in
ALE to PSEN
PSEN pulse width
PSEN to valid instruction in
Input instruction hold after PSEN
Input instruction float after PSEN
Address valid after PSEN
Address to valid instruction in
Address float to PSEN
1)
InterfacingtheGMS90C320 to devices with float times up to 35 ns is permissible. This limitedbus contentionwill not cause
any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
85-2t
23-t
43-t
-150 -4t
38-t
153-3t
-88 -3t
0- 0-ns
-43 - t
55-t
-198 -5t
-10--10-ns
Variable Oscillator
1/t
=3.5to16MHz
CLCL
-40-
CLCL
-40-ns
CLCL
-40-
CLCL
CLCL
-25-
CLCL
-35-ns
CLCL
CLCL
CLCL
-8-ns
CLCL
CLCL
Unit
ns
ns
-100ns
ns
-100
-20
-115
ns
ns
ns
28OCT. 2000 Ver 1.2
Page 33
AC Characteristics for 16MHz
External Data Memory Characteristics
ParameterSymbol
16 MHz Oscillator
Variable Oscillator
1/t
=3.5to16MHz
CLCL
Min.Max.Min.Max.
GMS90C320
Unit
RD pulse width
WR pulse width
Address hold after ALE
RD to valid data in
Data hold after RD
Data float after RD
ALE to valid data in
Address to valid data in
ALE to WR or RD
Address valid to WR or RD
WR or RD high to ALE high
Data valid to WR transition
Data setup before WR
Data hold after WR
Address float after RD
Advance Information (16MHz)
External Clock Drive
ParameterSymbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
275-6t
275-6t
127-2t
-183 -5t
0- 0-
-75 -2t
-350 -8t
-398 -9t
1382383t
120-4t
2897t
13-t
288-7t
23-t
-100-
CLCL
-100-ns
CLCL
-40-
CLCL
-130ns
CLCL
-50ns
CLCL
-150
CLCL
-165ns
CLCL
−503t
CLCL
-130-ns
CLCL
−35t
CLCL
−50-ns
CLCL
-150-ns
CLCL
−40-
CLCL
CLCL
CLCL
+50
+35
ns
ns
ns
ns
ns
ns
ns
-0 -0ns
Variable Oscillator
(Freq. = 3.5 to 16MHz)
Unit
Min.Max.
Oscillator period
High time
Low time
Rise time
Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
62.5285.7
17t
17t
CLCL-tCLCX
CLCL-tCHCX
ns
ns
ns
-17ns
-17
ns
OCT. 2000 Ver 1.229
Page 34
GMS90C320
AC Characteristics for 24MHz version
VCC=5V:VCC=5V+ 10%, −15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock:Vcc = 5V: 1/t
Vcc = 3.3V: 1/t
=3.5MHzto24MHz
CLCL
=1MHzto24MHz
CLCL
External Program Memory Characteristics
ParameterSymbol
24 MHz Oscillator
Min.Max.Min.Max.
ALE pulse width
Address setup to ALE
Address hold after ALE
ALE low to valid instruction in
ALE to PSEN
PSEN pulse width
PSEN to valid instruction in
Input instruction hold after PSEN
Input instruction float after PSEN
Address valid after PSEN
Address to valid instruction in
Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 35 ns is permissible. This limited bus contention will not cause
any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
43-2t
17-t
17-t
-80 -4t
22-t
95-3t
-60 -3t
0- 0-ns
-32 - t
37-t
-148 - 5t
-10--10-ns
Variable Oscillator
1/t
=3.5to24MHz
CLCL
-40-
CLCL
-25-ns
CLCL
-25-
CLCL
CLCL
-20-
CLCL
-30-ns
CLCL
CLCL
CLCL
-5-ns
CLCL
CLCL
-87ns
-65
-10
-60
Unit
ns
ns
ns
ns
ns
ns
30OCT. 2000 Ver 1.2
Page 35
AC Characteristics for 24MHz
External Data Memory Characteristics
ParameterSymbol
24 MHz Oscillator
Variable Oscillator
1/t
=3.5to24MHz
CLCL
Min.Max.Min.Max.
GMS90C320
Unit
RD pulse width
WR pulse width
Address hold after ALE
RD to valid data in
Data hold after RD
Data float after RD
ALE to valid data in
Address to valid data in
ALE to WR or RD
Address valid to WR or RD
WR or RD high to ALE high
Data valid to WR transition
Data setup before WR
Data hold after WR
Address float after RD
Advance Information (24MHz)
External Clock Drive
Table 11.
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
180-6t
180-6t
56-2t
-118 - 5t
0- 0-
-63 -2t
-200 -8t
-220 -9t
751753t
67-4t
1767t
5-t
170-7t
15-t
-70-
CLCL
-70-ns
CLCL
-27-
CLCL
-90ns
CLCL
-20ns
CLCL
-133
CLCL
-155ns
CLCL
-503t
CLCL
-97-ns
CLCL
-25t
CLCL
-37-ns
CLCL
-122-ns
CLCL
-27-
CLCL
CLCL
CLCL
+50
+25
ns
ns
ns
ns
ns
ns
ns
-0 -0ns
Variable Oscillator
ParameterSymbol
(Freq. = 3.5 to 24MHz)
Unit
Min.Max.
Oscillator period
High time
Low time
Rise time
Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
41.7285.7
12t
12t
CLCL-tCLCX
CLCL-tCHCX
ns
ns
ns
-12ns
-12
ns
OCT. 2000 Ver 1.231
Page 36
GMS90C320
AC Characteristics for 40MHz version
VCC=5V+10%,− 15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
External Program Memory Characteristics
40 MHz Oscillator
ParameterSymbol
Min.Max.Min.Max.
Variable Oscillator
1/t
=3.5to40MHz
CLCL
Unit
ALE pulse width
Address setup to ALE
Address hold after ALE
ALE low to valid instruction in
ALE to PSEN
PSEN pulse width
PSEN to valid instruction in
Input instruction hold after PSEN
Input instruction float after PSEN
Address valid after PSEN
Address to valid instruction in
Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage
to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
35-2t
10-t
10-t
-55 -4t
10-t
60-3t
-25 -3t
−15-
CLCL
−15-ns
CLCL
−15-
CLCL
−45ns
CLCL
−15-
CLCL
−15-ns
CLCL
−50
CLCL
0- 0-ns
-15 -t
20-t
−5-ns
CLCL
-65 -5t
CLCL
CLCL
−10
−60
-5--5-ns
ns
ns
ns
ns
ns
ns
32OCT. 2000 Ver 1.2
Page 37
AC Characteristics for 40MHz
External Data Memory Characteristics
ParameterSymbol
at 40 MHz Clock
Variable Clock
1/t
=3.5to40MHz
CLCL
Min.Max.Min.Max.
GMS90C320
Unit
RD pulse width
WR pulse width
Address hold after ALE
RD to valid data in
Data hold after RD
Data float after RD
ALE to valid data in
Address to valid data in
ALE to WR or RD
Address valid to WR or RD
WR or RD high to ALE high
Data valid to WR transition
Data setup before WR
Data hold after WR
Address float after RD
Advance Information (40MHz)
External Clock Drive
ParameterSymbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
120-6t
120-6t
10-t
-75 -5t
0- 0-
-38 -2t
-150 - 8t
-150 - 9t
60903t
70-4t
1040t
5-t
125-7t
5-t
-30-
CLCL
-30-ns
CLCL
-15-
CLCL
-50ns
CLCL
-12ns
CLCL
-50
CLCL
-75ns
CLCL
-153t
CLCL
-30-ns
CLCL
-15t
CLCL
-20-ns
CLCL
-50-ns
CLCL
-20-
CLCL
CLCL
CLCL
+15
+15
ns
ns
ns
ns
ns
ns
ns
-0 -0ns
Variable Oscillator
(Freq. = 3.5 to 40MHz)
Unit
Min.Max.
Oscillator period
High time
Low time
Rise time
Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
25285.7
10t
10t
CLCL-tCLCX
CLCL-tCHCX
ns
ns
ns
-10ns
-10
ns
OCT. 2000 Ver 1.233
Page 38
GMS90C320
AC Characteristics for 50MHz version
VCC=5V+10%,− 15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
Variable Clock : VCC=5V,1/t
=3.5MHzto50MHz
CLCL
External Program Memory Characteristics
ParameterSymbol
50 MHz Oscillator
Min.Max.Min.Max.
ALE pulse width
Address setup to ALE
Address hold after ALE
ALE low to valid instruction in
ALE to PSEN
PSEN pulse width
PSEN to valid instruction in
Input instruction hold after PSEN
Input instruction float after PSEN
Address valid after PSEN
Address to valid instruction in
Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage
to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
25-2t
5-t
5-t
-40 -4t
5-t
45-3t
-20 -3t
0- 0-ns
-10 -t
15-t
-45 -5t
-5--5-ns
Variable Oscillator
1/t
=3.5to50MHz
CLCL
−15-
CLCL
−15-ns
CLCL
−15-
CLCL
−40ns
CLCL
−15-
CLCL
−15-ns
CLCL
−40
CLCL
−10
CLCL
−5-ns
CLCL
−55
CLCL
Unit
ns
ns
ns
ns
ns
ns
34OCT. 2000 Ver 1.2
Page 39
AC Characteristics for 50MHz
External Data Memory Characteristics
ParameterSymbol
at 50 MHz Clock
Variable Clock
1/t
=3.5to50MHz
CLCL
Min.Max.Min.Max.
GMS90C320
Unit
RD pulse width
WR pulse width
Address hold after ALE
RD to valid data in
Data hold after RD
Data float after RD
ALE to valid data in
Address to valid data in
ALE to WR or RD
Address valid to WR or RD
WR or RD high to ALE high
Data valid to WR transition
Data setup before WR
Data hold after WR
Address float after RD
Advance Information (50MHz)
External Clock Drive
ParameterSymbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
90-6t
90-6t
25-2t
-60 -5t
0- 0-
-28 -2t
-120-8t
-125-9t
45753t
50-4t
535t
5-t
100-7t
5-t
-30-
CLCL
-30-ns
CLCL
-15-
CLCL
-40ns
CLCL
-12ns
CLCL
-40
CLCL
-55ns
CLCL
-153t
CLCL
-30-ns
CLCL
-15t
CLCL
-15-ns
CLCL
-40-ns
CLCL
-15-
CLCL
CLCL
CLCL
+15
+15
ns
ns
ns
ns
ns
ns
ns
-0 -0ns
Variable Oscillator
(Freq. = 3.5 to 50MHz)
Unit
Min.Max.
Oscillator period
High time
Low time
Rise time
Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
20285.7
10t
10t
CLCL-tCLCX
CLCL-tCHCX
ns
ns
ns
-10ns
-10
ns
OCT. 2000 Ver 1.235
Page 40
GMS90C320
ALE
PSEN
PORT 0
t
LHLL
t
AVLL
t
LLAX
A0-A7
t
AZPL
t
AVIV
t
LLPL
t
PLPH
t
LLIV
t
PLIV
t
PXAV
t
PXIZ
t
PXIX
INSTR.
IN
A0-A7
PORT 2
Figure 4 External Program Memory Read Cycle
A8-A15
A8-A15
36OCT. 2000 Ver 1.2
Page 41
GMS90C320
ALE
t
LHLL
PSEN
RD
t
AVLL
PORT 0
A0-A7 from
RI or DPL
PORT 2
Figure 5 External Data Memory Read Cycle
ALE
t
LHLL
t
LLDV
t
LLWL
t
LLAX2
t
AVWL
t
AVDV
P2.0-P2.7 or A8-A15from DPH
t
t
RLDV
RLAZ
t
RLRH
t
WHLH
t
RHDZ
t
RHDX
DATA INA0-A7 from PCLINSTR. IN
A8-A15 from PCH
t
WHLH
PSEN
WR
t
AVLL
PORT 0
t
LLAX
A0-A7 from
RI or DPL
t
AVWL
PORT 2
Figure 6 External Data Memory Write Cycle
t
LLWL
t
QVWX
P2.0-P2.7 or A8-A15 from DPH
t
WLWH
t
QVWH
DATA OUT
t
WHQX
A0-A7 from PCL
A8-A15 from PCH
INSTR. IN
OCT. 2000 Ver 1.237
Page 42
GMS90C320
−0.5V
V
CC
0.45V
AC Inputs during testing are driven at VCC−0.5V for a logic ‘1’ and 0.45V for a logic ‘0’.
Timing measurements are made a V
Figure 7 AC Testing: Input, Output Waveforms
IH min
0.2VCC+ 0.9
Test Points
− 0.1
0.2V
CC
for a logic ‘1’ and V
for a logic ‘0’.
ILma x
V
− 0.1
OH
+ 0.1
V
OL
V
LOAD
V
V
LOAD
LOAD
+ 0.1
− 0.1
Timing Reference Points
0.2VCC− 0.1
For timing purposes a port pin is no longer floating when a 100mV change from load voltage
occurs and begins to float when a 100mV change from the loaded VOH/VOLlevel occurs.
IOL/IOH≥ 20mA.
Figure 8 Float Waveforms
t
t
CLCH
CLCL
t
CHCX
VCC−0.5V
0.45V
0.7 V
CC
0.2 VCC−0.1
t
CHCL
t
CLCX
Figure 9 External Clock Cycle
38OCT. 2000 Ver 1.2
Page 43
OSCILLATOR CIRCUIT
CRYSTAL OSCILLATOR MODEDRIVING FROM EXTERNAL SOURCE
C1, C2 = 30pF ±10pF for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Figure 10 Recommended Oscillator Circuits
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic
resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external
components.
OCT. 2000 Ver 1.239
Page 44
GMS90C320
Plastic Package P-LCC-44
(Plastic Leaded Chip-Carrier)
44PLCC
0.656
0.650
0.695
0.685
0.695
0.685
0.656
0.650
UNIT: INCH
min. 0.020
0.032
0.026
0.021
0.013
0.630
0.590
0.050 BSC
0.012
0.0075
0.120
0.090
0.180
0.165
40OCT. 2000 Ver 1.2
Page 45
Plastic Package P-DIP-40
(Plastic Dual in-Line Package)
40DIP
0.200 max.
2.075
2.045
min. 0.015
UNIT: INCH
0.600 BSC
0.550
0.530
GMS90C320
0.022
0.015
0.065
0.045
0.100 BSC
0.140
0.120
0-15°
2
1
0
.
0
8
0
0
.
0
OCT. 2000 Ver 1.241
Page 46
GMS90C320
Plastic Package P-MQFP-44
(Plastic Metric Quad Flat Package)
P-MQFP-44
9.90
10.10
13.45
12.95
13.45
12.95
10.10
9.90
SEE DETAIL “A”
2.10
1.95
UNIT: MM
0-7°
3
3
2
1
.
.
0
0
2.35 max.
0.45
0.30
0.80 BSC
0.25
0.10
1.60
REF
DETAIL “A”
1.03
0.73
42OCT. 2000 Ver 1.2
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.