Datasheet GMS90L320Q, GMS90L320PL, GMS90L320, GMS90C320Q50, GMS90C320Q40 Datasheet (HYNIX)

...
Page 1
HYNIX SEMICONDUCTOR INC.
8-BIT SINGLE-CHIP MICROCONTROLLERS
GMS90C320
User’s Manual (Ver. 1.2)
Page 2
REVISION HISTORY
VERSION 1.2 (Oct. 2000) This book
Correct the pin number of 44-MQFP package type on page 6.
VERSION 1.1 (Oct. 1999) Before version
Version 1.2 Published by
MCU Application Team Copy right 2001 Hynix semiconductor, All right reserved.
Additional information of this manual may be served by Hynix semiconductor offices in Korea or Distributors and Repre­sentatives listed at address directory.
Hynix semiconductor reserves the right to make changes to any information here in at any time without notice. The information, diagrams and other data in this manual are correct and reliable; however, Hynix semiconductor is in no
way responsible for any violations of patents or other rights of the third party generated by the use of this manual.
Page 3
GMS90C320
Device Naming Structure
H(G)MS90X320
MCU Series
Hynix semiconductor MCU
XXXX
Frequency
Blank: 24MHz 40: 40MHz 50: 50MHz
Package Type
Blank: PL: Q:
Enhanced ROM-less version
Operating Voltage
C:L:Normal voltage
40PDIP 44PLCC 44MQFP
Low voltage
OCT. 2000 Ver 1.2
Page 4
GMS90C320
GMS90C320 ordering information
Operating
Voltage (V)
4.25~5.5
2.7~5.5
Device Name
GMS90C320 40 GMS90C320 PL40 GMS90C320 Q40
GMS90C320 50 GMS90C320 PL50 GMS90C320 Q50
GMS90L320 GMS90L320 PL GMS90L320 Q
ROM size
(bytes)
ROM-less 256 40
ROM-less 256 50
ROM-less 256 24
RAM size
(bytes)
Operating max.
Frequency (MHz)
Package Type
40PDIP 44PLCC 44MQFP
40PDIP 44PLCC 44MQFP
40PDIP 44PLCC 44MQFP
OCT. 2000 Ver 1.2
Page 5
GMS90C320/L320
CMOS SINGLE-CHIP 8-BIT MICROCONT ROLLER
ROM-less Version for 90C52
GMS90C320
Operating Voltage (V) Device Name ROM RAM
4.25~5.5 GMS90C320 ROM-less 256 ×××× 8bit 40/50
2.7~5.5 GMS90L320 ROM-less 256 ×××× 8bit 24

Features

• Fully compatible to standard MCS-51 microcontroller
• Versions for 40/50 MHz operating frequency
• Low voltage version for 24MHz operating frequency
• 256 bytes of on-chip data RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Three 16-bit Timers/Counters (Timer 2 with up/down counter feature)
•USART
• Six interrupt sources, two priority levels
• Power saving Idle and power down mode
Operating
Frequency (MHz)
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
RAM
256 x 8
T0
T2
T1
The GMS90C320 described in this document is compatible with the standard 80C32 can be used for all present standard 80C32 applications.
CPU
ROM-less
8-BIT
USART
PORT0
PORT1
PORT2
PORT3
I/O
I/O
I/O
I/O
OCT. 2000 Ver 1.2 1
Page 6
GMS90C320
44-PLCC Pin Configuration
(top view)
RESET
RxD/P3.0
TxD/P3.1
INT0
/P3.2
INT1
/P3.3 T0/P3.4 T1/P3.5
P1.5 P1.6 P1.7
N.C.
(P-LCC-44)
P1.4
P1.2
P1.1/T2EX
P1.0/T2
N.C.
2
1
VCCP0.0/AD0
4443424140
P1.3
6
543 7 8 9
10 11 12 13 14 15 16 17
1819202122232425262728
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
39
P0.5/AD5
38
P0.6/AD6
37
P0.7/AD7
36
EA
35
N.C.
34
ALE
33
PSEN
32
P2.7/A15
31
P2.6/A14
30
P2.5/A13
29
/P3.6RD/P3.7 WR
SS
N.C.
V
XTAL2
XTAL1
P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
2 OCT. 2000 Ver 1.2
Page 7
40-PDIP Pin Configuration
(top view)
GMS90C320
(P-DIP-40)
T2/P1.0
T2EX/P1.1
P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
RESET
RxD/P3.0
TxD/P3.1
INT0
/P3.2
INT1
/P3.3 T0/P3.4 T1/P3.5
/P3.6
WR
RD
/P3.7
XTAL2 XTAL1
V
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20
SS
V
40
CC
P0.0/AD0
39
P0.1/AD1
38
P0.2/AD2
37
P0.3/AD3
36 35
P0.4/AD4
34
P0.5/AD5
33
P0.6/AD6
32
P0.7/AD7
31
EA
30
ALE
29
PSEN P2.7/A15
28
P2.6/A14
27
P2.5/A13
26
P2.4/A12
25
P2.3/A11
24
P2.2/A10
23
P2.1/A9
22
P2.0/A8
21
OCT. 2000 Ver 1.2 3
Page 8
GMS90C320
44-PLCC Pin Configuration
(top view)
(P-MQFP-44)
P1.4
P1.2
P1.1/T2EX
P1.0/T2
N.C.
VCCP0.0/AD0
P0.1/AD1
P0.2/AD2
P1.3
P0.3/AD3
P1.5 P1.6 P1.7
RESET
RxD/P3.0
N.C.
TxD/P3.1
INT0
/P3.2
INT1
/P3.3 T0/P3.4 T1/P3.5
4443424140
1 2 3 4 5 6 7 8
9 10 11
1213141516171819202122
/P3.6RD/P3.7
XTAL2
WR
XTAL1
3837363534
39
SS
N.C.
V
P2.0/A8
P2.1/A9
P2.2/A10
33 32 31 30 29 28 27 26 25 24 23
P2.3/A11
P2.4/A12
P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA N.C. ALE PSEN P2.7/A15 P2.6/A14 P2.5/A13
4 OCT. 2000 Ver 1.2
Page 9
GMS90C320
V
V
CC
SS
Logic Symbol
XTAL1 XTAL2
RESET
EA
ALE
PSEN
Port 0 8-bit Digital I/O
Port 1 8-bit Digital I/O
Port 2 8-bit Digital I/O
Port 3 8-bit Digital I/O
OCT. 2000 Ver 1.2 5
Page 10
GMS90C320

Pin Definitions and functions

Pin Number
Symbol
P-LCC-44 P-DIP-40
P1.0-P1.7 2-9 1-8 40-44,
2 3
P3.0-P3.7 11,13-1910-17 5,7-
11 10 5 P3.0/RxD receiver data input (asynchronous) or data input
13 11 7 P3.1 / TxD transmitter data output (asynchronous) or clock
14 12 8 P3.2 / INT0 interrupt 0 input /timer0gatecontrol 15 13 9 P3.3 / INT1 interrupt 1 input /timer1gatecontrol 16 14 10 P3.4 / T0 counter 0 input 17 15 11 P3.5 / T1 counter 1 input 18 16 12 P3.6 / WR the write control signal latches the data byte from
19 17 13 P3.7 / RD the read control signal enables the external data
XTAL2 20 18 14 O XTAL2
XTAL1 21 19 15 I XTAL1
P-MQFP-
44
1-3
1 2
40 41
13
Input/
Output
I/O Port1
is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the pulls-ups (IIL, in the DC characteristics). Pins P1.0 and P1.1 also. Port 1 also receives the low-order address byte during program memory verification. Port1 also serves alternate functions of Timer 2.
P1.0/T2: Timer/counter 2 external count input P1.1/T2EX: Timer/counter 2 trigger input
I/O Port 3
is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state they can be used as inputs. As inputs, port 3 pins being externally pulled low will source current (IIL,in the DC characteristics) because of internal pulls-up resistors. Port 3 also serves the special features of the 80C51 family, as listed below.
Output of the inverting oscillator amplifier
Input to the inverting oscillator amplifier and input to the internal clock generator circuits. To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no require­ments on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide­by-two flip-flop. Minimum and maximum high and low times as well as rise fall times specified in the AC characteristics must be observed.
Function
output (synchronous) of the serial interface 0
output (synchronous) of the serial interface 0
port 0 into the external data memory
memory to port 0
6 OCT. 2000 Ver 1.2
Page 11
GMS90C320
Symbol
Pin Number
P-LCC-44 P-DIP-40
P-MQFP-
44
Input/
Output
P2.0-P2.7 24-31 21-28 18-25 I/O Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors and can be used as inputs. As inputs, port 2 pins that are externally pulled low will source current because of the pulls-ups (IIL, in the DC characteristics). Port 2 emits the high­order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 special function register.
PSEN 32 29 26 O The Program Store Enable
The read strobe to external program memory when the device is executing code from the external program memory. PSEN is acti­vated twice each machine cycle, except that two PSEN activation are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
RESET 10 9 4 I RESET
A high level on this pin for two machine cycles while the oscillator is running resets the device. An internal diffused resistor to V permits power-on reset using only an external capacitor to VCC.
ALE 33 30 27 O The Address Latch Enable
Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory.
EA 35 31 29 I External Access Enable
EA must be external held low to enable the device to fetch code from external program memory locations 0000Hto FFFFH.IfEAis held high, the device executes from internal program memory unless the program counter contains an address greater than its internal memory size.
P0.0-P0.7 43-36 39-32 37-30 I/O Port 0
Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the GMS97C5x. External pull-up resistors are required during program verification.
V
SS
V
CC
N.C. 1,12,
22 20 16 - Circuit ground potential 44 40 38 - Supply terminal for all operating modes
23,34
-
6,17,
28,39
- No connection
Function
SS
OCT. 2000 Ver 1.2 7
Page 12
GMS90C320

Function Description

The GMS90 series is fully compatible to the standard 8051 microcontroller family. It is compatible with the standard 80C32. While maintaining all architectural and operational characteristics of the standard
80C32, the GMS90C320 incorporates some enhancements in the Timer 2 unit. Figure 1 shows a block diagram of the GMS90C320
XTAL1 XTAL2
RESET
ALE
PSEN
EA
OSC & Timing
CPU
Timer 0
Timer 1
Timer 2
Interrupt Unit
Serial Channel
RAM
256 x 8
Port 0
Port 1
Port 2
Port 3
Port 0 8-bit Digital I/O
Port 1 8-bit Digital I/O
Port 2 8-bit Digital I/O
Port 3 8-bit Digital I/O
Figure 1 Block Diagram of the GMS90C320
8 OCT. 2000 Ver 1.2
Page 13
GMS90C320
CPU
The GMS90C320is efficientbothasa controller and as an arithmetic processor.IthasextensivefacilitiesforbinaryandBCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an instruction set con­sisting of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% o f the instructions are executed in 1.0µs.

Special Function R egister PSW

MSB LSB
BitNo.76543210
Addr. D0
CY AC F0 RS1 RS2 OV F1 P PSW
H
Bit Function CY Carry Flag AC Auxiliary Carry Flag (for BCD operation) F0 General Purpose Flag RS1
0 0 1 1
RS0
0 1 0 1
Register Bank select control bits
Bank 0 selected, data address 00H-07 Bank 1 selected, data address 08H-0F Bank 2 selected, data address 10H-17 Bank 3 selected, data address 18H-1F
OV Overflow Flag F1 General Purpose Flag P Parity Flag
Set/cleared by hardware each instruction cycle to indicate an odd/ even number of “one” bits in the accumulator, i.e. even parity.
Reset value of PSW is 00
H.
H
H
H
H
OCT. 2000 Ver 1.2 9
Page 14
GMS90C320

Special Function Registers

All registers, except the program counter and the four general purpose register banks, reside in the special function register area.
The 27 special function registers (SFR) include pointers and registers that provide an interface between theCPUand the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.
All SFRs are listed in Table 1, Table 2,andTable 3. In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which refer to the
functional blocks of the GMS90C320. Table 3 illustrates the contents of the SFRs.
Table 1 Special Function Registers in Numeric Order of their Addresses
Address Register
80
H
81
H
82
H
83
H
84
H
85
H
86
H
87
H
88
H
89
H
8A
H
8B
H
8C
H
8D
H
8E
H
8F
H
90
H
91
H
92
H
93
H
94
H
95
H
96
H
97
H
98
H
99
H
9A
H
9B
H
9C
H
9D
H
9E
H
9F
H
1)
: Bit-addressable Special Function Register
2)
: X means that the value is indeterminate and the location is reserved
1)
P0
SP
DPL
DPH reserved reserved reserved
PCON
TCON
TMOD
TL0 TL1 TH0
TH1 reserved reserved
1)
P1
reserved reserved reserved reserved reserved reserved reserved
SCON
SBUF reserved reserved reserved reserved reserved reserved
1)
1)
Contents after
Reset
FF
H
07
H
00
H
00
H
2)
XX
H
2)
XX
H
2)
XX
H
00
00 00 00 00 00
FF
00
00
2)
B
H
H H H H H
2)
H
2)
H
H
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
0XXX0000
XX XX
XX XX XX XX XX XX
XX XX
XX XX XX XX XX
Address Register
A0
A1 A2 A3 A4 A5 A6 A7
A8
A9 AA AB AC AD AE AF
B0
B1 B2 B3 B4 B5 B6 B7
B8
B9 BA BB BC BD BE BF
H
H H H H H H H
H
H H H
H
H H H
H
H H H H H H H
H
H H H
H
H H H
1)
P2
reserved reserved reserved reserved reserved reserved reserved
1)
IE
reserved reserved reserved reserved reserved reserved reserved
1)
P3
reserved reserved reserved reserved reserved reserved reserved
1)
IP
reserved reserved reserved reserved reserved reserved reserved
Contents after
Reset
FF
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
FF
2)
B
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
B
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
0X000000
XX XX
XX XX XX XX XX
XX XX
XX XX XX XX XX
XX000000
XX XX
XX XX XX XX XX
10 OCT. 2000 Ver 1.2
Page 15
Table 1 Special Function Registers in numeric order of their addresses (cont’d)
GMS90C320
Address Register
C0
H
C1
H
C2
H
C3
H
C4
H
C5
H
C6
H
C7
H
C8
H
C9
H
CA
H
CB
H
CC
H
CD
H
CE
H
CF
H
D0
H
D1
H
D2
H
D3
H
D4
H
D5
H
D6
H
D7
H
D8
H
D9
H
DA
H
DB
H
DC
H
DD
H
DE
H
DF
H
1)
: Bit-addressable Special Function Register
2)
: X means that the value is indeterminate and the location is reserved
reserved reserved reserved reserved reserved reserved reserved reserved
T2CON
T2MOD
RC2L
RC2H
TL2
TH2 reserved reserved
PSW
reserved reserved reserved reserved reserved reserved reserved
reserved reserved reserved reserved reserved reserved reserved reserved
1)
1)
Contents after
Reset
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
00
H
XXXXXXX0
00 00 00
00 XX XX
00
XX XX XX XX XX XX XX
XX XX XX XX XX XX XX XX
B H H H H
2)
H
2)
H
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
2)
H
Address Register
E0
H
E1
H
E2
H
E3
H
E4
H
E5
H
E6
H
E7
H
E8
2)
E9 EA EB EC ED EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB FC FD
FE
FF
H
H H H
H
H H H
H
H H H H H H H
H
H
H H H H H H
1)
ACC
reserved reserved reserved reserved reserved reserved reserved
reserved reserved reserved reserved reserved reserved reserved reserved
1)
B
reserved reserved reserved reserved reserved reserved reserved
reserved reserved reserved reserved reserved reserved reserved reserved
Contents after
Reset
00
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
00
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
2)
XX
H
OCT. 2000 Ver 1.2 11
Page 16
GMS90C320
Table 2 Special Function Registers - Functional Blocks
Block Symbol Name Address
CPU ACC
B DPH DPL PSW SP
Interrupt System IE
IP
Ports P0
P1 P2 P3
Serial Channels PCON
SBUF SCON
Timer 0 / Timer 1 TCON
TH0 TH1 TL0 TL1 TMOD
Timer 2 T2CON
T2MOD RC2H RC2L TH2 TL2
Power Saving
PCON Power Control Register 87
Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Register Stack Pointer
Interrupt Enable Register Interrupt Priority Register
Port 0 Port 1 Port 2 Port 3
Power Control Register Serial Channel Buffer Register Serial Channel 0 Control Register
Timer 0/1 Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register
Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload Capture Register, High Byte Timer 2 Reload Capture Register, Low Byte Timer 2, High Byte Timer 2, Low Byte
E0 F0
83 82
D0
81
A8 B8
80 90 A0 B0
87 99
98 88
8C 8D 8A 8B 89
C8
C9 CB CA CD CC
1)
H
1)
H
H H
1)
H
H
1)
H
1)
H
1)
H
1)
H
1)
H
1)
H
H H
1)
H
1)
H
H
H H H H
1)
H
H
H H H H
H
Modes
1)
Bit-addressable Special Function Registers
2)
This special function register is listed repeatedly since some bits of it also belong to other functional blocks
3)
X means that the value is indeterminate and the locationis reserved
Content
after Reset
00
H
00
H
00
H
00
H
00
H
07
H
0X000000 XX000000
FF
H
FF
H
FF
H
FF
H
0XXX0000
3)
XX
H
00
H
00
H
00
H
00
H
00
H
00
H
00
H
00
H
XXXXXXX0
00
H
00
H
00
H
00
H
0XXX0000
2)
B
2)
B
2)
B
2)
B
2)
B
12 OCT. 2000 Ver 1.2
Page 17
Table 3 Contents of SFRs, SFRs in Numeric Order
GMS90C320
Address Register
80 81 82 83 87 88
89 8A 8B 8C 8D
90
98
H
H
H
H
H
H
H
H
H
H
H
H
H
P0 SP
DPL
DPH PCON SMOD - - - GF1 GF0 PDE IDLE TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 TMOD GATE C/T M1 M0 GATE C/T M1 M0
TL0 TL1 TH0 TH1
P1
SCON SM0 SM1 SM2 REN TB8 RB8 TI RI
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
99 A0 A8 B0 B8 C8 C9
H
H
H
H
H
H
H
SBUF
P2
IE EA - ET2 ES ET1 EX1 ET0 EX0
P3
IP - - PT2 PS PT1 PX1 PT0 PX0 T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 T2MOD -------DCEN
SFR bit and byte addressable
SFR not bit addressable
-
This bit location is reserved.
OCT. 2000 Ver 1.2 13
Page 18
GMS90C320
Table 3 Contents of SFRs, SFRs in Numeric Order (cont’d)
Address Register
CA CB CC CD D0 E0
F0
H
H
H
H
H
H
H
RC2L
RC2H
TL2 TH2
PSW CY AC F0 RS1 RS0 OV F1 P
ACC
B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SFR bit and byte addressable
SFR not bit addressable
-
This bit location is reserved.
14 OCT. 2000 Ver 1.2
Page 19

Timer/Counter0and1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:
Table 4 Timer/Counter 0 and 1 Operating Modes
TMOD Input Clock
Mode Description
GATE C/T M1 M0 Internal
GMS90C320
External
(Max.)
0 8-bit timer/counter with a
divide-by-32 prescaler
1 16-bit timer/counter
2 8-bit timer/counter with 8-bit
autoreload
XX00
XX01
XX10
ƒ
OSC
------------------ -
12 32×
ƒ
OSC
--------------- -
12
ƒ
OSC
--------------- -
12
ƒ
OSC
------------------ -
24 32×
ƒ
OSC
--------------- -
24
ƒ
OSC
--------------- -
24
3 Timer/counter 0 used as one
8-bit timer/counter and one 8­bit timer
XX11
ƒ
OSC
--------------- -
12
ƒ
OSC
--------------- -
24
Timer 1 stops
In the “timer” function (C/T
= “0”) the register is incremented every machine cycle. Therefore the count rate is .
ƒ
OSC
12
In the “counter” function the register is incremented in response to a 1-to-0 transition at its corresponding external input pin (P3.4/T0,P3.5/T1).Sinceittakestwo machinecyclestodetectafallingedge the max. count rate is . External inputs INT0
and INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width measurements.
ƒ
OSC
24
Figure 2 illustrates the input clock logic.
P3.4/T0 P3.5/T1 max. f
OSC
/24
f
OSC
TR 0/1 TCON
÷12
C/T
TMOD
0
1
Control
ƒ
OSC
Timer 0/1 Input Clock
12
GATE TMOD
P3.2/INT0 P3.3/INT1
Figure 2 Timer/Counter 0 and 1 Input Clock Logic
OCT. 2000 Ver 1.2 15
Page 20
GMS90C320

Timer 2

Timer 2 is a 16-bit Timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which is selected by bit C/T2
Table 5 Timer/Counter 2 Operating Modes
(T2CON.1). It has three operating modes as shown in Table 5.
Mode
16-bit Auto­reload
16-bit Capture
RxCLK
or
TxCLK
0 0 0 0
0 0
T2CON
CP/
RL2
0 0 0 0
1 1
TR2
1 1 1 1
1 1
T2MO
D
DECN
0 0 1 1
X X
T2CON
EXEN
0 1 X X
0 1
P1.1
T2EX
X
0 1
reload upon overflow reload trigger (falling edge) Down counting Up counting
Remarks
X↓16-bit Timer/Counter (only
up-counting) capture
Input Clock
Internal
ƒ
OSC
--------------- -
12
ƒ
OSC
--------------- -
12
External
(P1.0/T2)
max.
max.
TH1, TL2 RC2H, RC2L
Baud Rate Generator
1 1
X X
1 1
X X
0 1
X↓no overflow interrupt request
(TF2) extra external interrupt
ƒ
OSC
--------------- -
12
max.
(“Timer 2”)
off X X 0 X X X Timer 2 stops - -
1Note: = fallingedge
ƒ
OSC
--------------- -
24
ƒ
OSC
--------------- -
24
ƒ
OSC
--------------- -
24
16 OCT. 2000 Ver 1.2
Page 21
GMS90C320

Serial Interface (USART)

The serial port is full duplex and can operate in four modes (one synchronous mode, three asynchronous modes) as illustrated in Table 6. The possible baud rates can be calculated using the formulas given in Table 7.
Table 6 USART Operating Modes
Mode
Baudrate Description
SM0 SM1
SCON
0 0 0 Serial data enters and exits through RxD.
ƒ
OSC
--------------- -
12
TxD outputs the shift clock. 8-bit are transmitted/received (LSB first)
1 0 1 Timer 1/2 overflow rate 8-bit UART
10 bits are transmitted ( through TxD) or received (RxD)
2 10
ƒ
OSC
--------------- -
32
ƒ
OSC
--------------- -
or
64
9-bit UART 11 bits are transmitted ( through TxD) or received (RxD)
3 1 1 Timer 1/2 overflow rate 9-bit UART
Like mode 2 except the variable baud rate
Table 7 Formulas for Calculating Baud rates
Baud Rate
derived from
Oscillator 0
Interface Mode Baud rate
ƒ
OSC
--------------- -
12
2
Timer 1 (16-bit timer)
1, 3 (8-bit timer with 8-bit autore­load)
1, 3
Timer 2 1, 3
SMOD
2
------------------------------------- -----
SMOD
2
----------------------------------- --------------------------------------------- -
SMOD
2
----------------------------------- ----------------------- ­32 12 256 TH1
-------------------------------------- ----------------------------------------
32 65536
64
timer 1 overflow rate×
32
()××
ƒ
OSC
()[]×
ƒ
×
OSC
ƒ
×
OSC
RC2H,RC2L
OCT. 2000 Ver 1.2 17
Page 22
GMS90C320

Interrupt System

The GMS90C320 provides 6 interrupt sources with two priority levels. Figure 3 gives a general overview of the interrupt sources and illustrates the request and control flags.
High Priority
Timer 0 Overflow
TF0
TCON.5
ET0 IE.1
PT0 IP.1
Low Priority
P1.1/ T2EX
Timer 2 Overflow
P3.2/ INT0
P3.3/ INT1
EXEN2
T2CON.3
USART
IT0
TCON.0
IT1
TCON.2
Timer 1 Overflow
TF2
T2CON.7
EXF2
T2CON.6
RI
SCON.0
SCON.1
TF1
TCON.7
TI
IE0
TCON.1
IE1
TCON.3
ET1 IE.3
ET2 IE.5
ES
IE.4
EX0 IE.0
EX1 IE.2
EA
IE.7
PT1 IP.3
PT2 IP.5
PS
IP.4
PX0 IP.0
PX1 IP.2
Figure 3 Interrupt Request Sources
18 OCT. 2000 Ver 1.2
Page 23
Table 8 Interrupt Sources and their Corresponding Interrupt Vectors
Source (Request Flags) Vector Vector Address
GMS90C320
IE0 TF0 IE1 TF1 RI+TI TF2+EXF2
External interrupt 0 Timer 0 interrupt External interrupt 1 Timer 1 interrupt Serial port interrupt Timer 2 interrupt
0003 000B 0013 001B 0023 002B
H H H H H H
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority interrupt. A high­priority interrupt cannot be interrupted by any other interrupt source.
If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.
Table 9 Interrupt Priority-Within-Level
Interrupt Source Priority
IE0 TF0 IE1 TF1 RI+TI TF2+EXF2
External interrupt 0 Timer 0 interrupt External interrupt 1 Timer 1 interrupt Serial port interrupt Timer 2 interrupt
High
Low
OCT. 2000 Ver 1.2 19
Page 24
GMS90C320

Power Saving Modes

T wopower down modes are available, the Idle Mode and Power Down Mode. The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively.IfthePower Down
mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview of the power saving modes.
Table 10 Power Saving Modes Overview
Mode Entering Instruction
Idle mode ORL PCON,#01H - enabled interrupt
Power-Down Mode
Example
ORL PCON,#02H Hardware Reset Oscillator is stopped, contents of
In the Power Down mode of operation, V that V
is not reduced before the Power Down mode is invoked, and that VCCis restored to its normal operating level, before
CC
Leaving by Remarks
CPU is gated off
- Hardware Reset
can be reduced to minimize power consumption. It must be ensured, however,
CC
CPU status registers maintain their data. Peripherals are active
on-chip RAM and SFR’s are main­tained (leaving Power Down Mode means redefinition of SFR con­tents).
the Power Down mode is terminated. The reset signal that terminates the Power Down Mode also restarts the oscillator. The reset should not be activated before V
is restored to its normal operating level and must be held active long enough to allow
CC
the oscillator to restart and stabilize (similar to power-on reset).
20 OCT. 2000 Ver 1.2
Page 25
GMS90C320

Absolute Maximum Ratings

Ambient temperature under bias (TA) .......................................................................................................-40 to + 85°C
Storage temperature (T Voltage on V
pins with respect to ground (VSS).....................................................................................-0.5 V to 6.5 V
CC
Voltage on any pin with respect to ground (V
)..........................................................................................................................-65 to+150°C
ST
).......................................................................................-0.5 to VCC+0.5V
SS
Input current on any pin during overload condition..................................................................................-10mAto+10mA
Absolute sum of all input currents during overload condition..................................................................| 100 mA |
Power dissipation.......................................................................................................................................TBD
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage of the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the oper­ational sections of this specification is not implied. Exposure to absolute maximum rating conditions for longer periods may affect device reliability. During overload conditions (VIN> VCCor V must not exceed the values defined by the absolute maximum ratings.
<
VSS) the Voltageon VCCpins with respect to ground (VSS)
IN
OCT. 2000 Ver 1.2 21
Page 26
GMS90C320

DC Characteristics

DC Characteristics for GMS90C320

VCC=5V+10%,-15%;VSS=0V; TA=0°Cto70°C
Parameter Symbol
Input low voltage (except EA, RESET)
Input low voltage (EA)V Input low voltage (RESET) V Input high voltage (except
XTAL1, EA, RESET) Input high voltage to XTAL1 V Input high voltage to EA,
RESET
V
IL
IL1 IL2
V
IH
IH1
V
IH2
0.2VCC+0.9 VCC+0.5
Output low voltage (ports 1, 2, 3)
V
OL
Output low voltage (port0,ALE,PSEN)
Output high voltage (ports 1, 2, 3)
V
OL1
V
OH
Output high voltage (port 0 in external bus mode,
V
OH1
ALE, PSEN) Logic 0 input current
(ports 1, 2, 3) Logical 1-to-0 transition cur-
rent (ports 1, 2, 3) Input leakage current
(port 0, EA) Pin capacitance C
I
IL
I
TL
I
LI
IO
Power supply current:
Active mode, 12MHz Idle mode, 12MHz
3)
Active mode, 24 MHz Idle mode, 24MHz
3)
Active mode, 40 MHz Idle mode, 40 MHz
3)
Active mode, 50 MHz Idle mode, 50 MHz Power Down Mode
3)
3)
3)
3)
3)
3)
I I I I I I I I I
CC CC CC CC CC CC CC CC PD
Limit Values
Unit Test Conditions
Min. Max.
-0.5
-0.5
-0.5
0.2VCC-0.1
0.2VCC-0.3
0.2VCC+0.1
V­V-
V­V-
0.7V
CC
0.6V
CC
-
-
2.4
0.9V
CC
2.4
0.9V
CC
-10 -50 µA
-65 -650 µA
- ±1 µA
-10pF
-
-
-
-
-
-
-
-
-
VCC+0.5 VCC+0.5
V­V-
0.3
0.45
V
1.0
0.3
0.45
V
1.0
-V
-V
16
7.5 26
13.5 44 18 55
22.5 50
mA mA mA mA mA mA mA mA
µA
IOL=100µA IOL=1.6mA IOL=3.5mA
IOL=200µA IOL=3.2mA IOL=7.0mA
IOH=-80µA IOH=-10µA
IOH=-800µA IOH=-80µA
VIN=0.45V
VIN=2.0V
0.45 < VIN< V fC=1MHz, TA=25°C
VCC=5V VCC=5V VCC=5V VCC=5V VCC=5V VCC=5V VCC=5V VCC=5V VCC=5.5V
1)
1)
2)
2)
CC
4)
5)
4)
5)
4)
5)
4)
5)
6)
22 OCT. 2000 Ver 1.2
Page 27
1)
Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLof ALE and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt­trigger strobe input.
2)
Capacitive loading on ports 0 and 2 may cause the VOHon ALE a nd PSEN to momentarily fall below the 0.9VCCspecification when the address lines are stabilizing.
3)
I
at other frequencies is given by:
CC m ax
active mode: I idle mode: I where ƒ
OSC
4)
ICC(active mode) is measured with: XTAL1 driven with t EA
=Port0=RESET=VCC; all other pins are disconnected. ICCwould be slightly higher if a crys t al oscillator is used (appr.
=1.0׃
CC
=0.37׃
CC
OSC
OSC
+3.16
+3.63
is the oscillator frequency in MHz. ICCvalues are given in mA and measured at VCC=5V.
CLCH,tCHCL
=5ns,VIL=VSS+0.5V,VIH=VCC- 0.5V; XTAL2 = N.C.;
1mA).
5)
ICC(Idle mode) is me asured with all output pins disconnected a nd with all peripherals disabled; XTAL1 driven with t RESET=EA
6)
IPD(Power Down Mode) is measured under following conditions:
=Port0=VCC; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.
EA
CLCH,tCHCL
=VSS;Port0=VCC; all other pins are disconnected;
=5ns,VIL=VSS+0.5V,VIH=VCC- 0.5V; XTAL2 = N.C.;
GMS90C320
OCT. 2000 Ver 1.2 23
Page 28
GMS90C320

DC Characteristics for GMS90L320

VCC= 3.3V + 0.3V, -0.6V; VSS=0V; TA=0°Cto70°C
Parameter Symbol
Input low voltage V Input high voltage V Output low voltage
(ports 1, 2, 3) Output low voltage
(port0,ALE,PSEN)
V
Output high voltage (ports 1, 2, 3)
Output high voltage (port 0 in external bus mode, ALE,
V
PSEN) Logic 0 input current
(ports 1, 2, 3) Logical 1-to-0 transition current
(ports 1, 2, 3) Input leakage current
(port 0, EA) Pin capacitance
Power supply current:
Active mode, 16 MHz Idle mode, 16MHz Active mode, 24MHz Idle mode, 24MHz Power Down Mode
3)
3)
3)
3)
3)
V
V
C
I I I I I
OL1
OH1
I
I
TL
I
CC CC CC CC PD
IL
IH
OL
OH
IL
LI
IO
Limit Values
Unit Test Conditions
Min. Max.
-0.5 0.8 V -
2.0
-
-
2.0
0.9V
CC
2.0
0.9V
CC
-1 -50 µA
-25 -250 µA
- ±1 µA
-10pF
-
-
-
-
-
VCC+0.5
0.45
0.30
0.45
0.30
V-
V
V
-V
-V
10
5.25
mA mA
16
8.25 10
µA
IOL=1.6mA IOL=100µA
IOL=3.2mA IOL=200µA
IOH=-20µA IOH=-10µA
IOH=-800µA IOH=-80µA
VIN=0.45V
VIN=2.0V
0.45 < VIN< V fC=1MHz
TA=25°C
VCC=3.3V VCC=3.3V VCC=3.3V VCC=3.3V VCC=3.6V
1)
1)
1)
1)
2)
2)
CC
4)
5)
4)
5)
6)
24 OCT. 2000 Ver 1.2
Page 29
GMS90C320

AC Characteristics

Explanation of the AC Symbols
Each timing symbol has 5 characters. The first character is always a ‘t’ (stand for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
A: Address C: Clock D: Input Data H: Logic level HIGH I: Instruction (program memory contents) L: Logic level LOW, or ALE P: PSEN Q: Output Data R: RD signal
T: Time V: Valid W: WR signal X: No longer a valid logic level Z: Float
For example, t
= Time from Address Valid to ALE Low
AVLL
t
= Time from ALE Low to PSEN Low
LLPL
OCT. 2000 Ver 1.2 25
Page 30
GMS90C320
AC Characteristics for 12MHz version
VCC=5V: VCC=5V+ 10%, 15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
VCC=3.3V: VCC=3.3V+ 0.3V, 0.6V; VSS=0V;TA=0°Cto70°C
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock: Vcc = 5V: 1/t
Vcc = 3.3V: 1/t
=3.5MHzto12MHz
CLCL
=1MHzto12MHz
CLCL
External Program Memory Characteristics
Parameter Symbol
12 MHz Oscillator
Min. Max. Min. Max.
Variable Oscillator
1/t
= 3.5 to 12MHz
CLCL
Unit
ALE pulse width Address setup to ALE Address hold after ALE ALE low to valid instruction in ALE to PSEN PSEN pulse width PSEN to valid instruction in Input instruction hold after PSEN Input instruction float after PSEN Address valid after PSEN Address to valid instruction in Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
127 - 2t
43 - t 43 - t
-233 -4t
58 - t
215 - 3t
-150 -3t
-40 -
CLCL
-40 - ns
CLCL
-40 -
CLCL
-100 ns
CLCL
-25 -
CLCL
-35 - ns
CLCL
-100
CLCL
0- 0 - ns
-63 - t
75 - t
-8 - ns
CLCL
-302 -5t
CLCL
CLCL
-20
-115
-10 - -10 - ns
ns
ns
ns
ns
ns
ns
26 OCT. 2000 Ver 1.2
Page 31
AC Characteristics for 12MHz version
External Data Memory Characteristics
Parameter Symbol
12 MHz Oscillator
Variable Oscillator
1/t
=3.5to12MHz
CLCL
Min. Max. Min. Max.
GMS90C320
Unit
RD pulse width WR pulse width Address hold after ALE RD to valid data in Data hold after RD Data float after RD ALE to valid data in Address to valid data in ALE to WR or RD Address valid to WR or RD
WR or RD high to ALE high Data valid to WR transition Data setup before WR Data hold after WR Address float after RD
Advance Information (12MHz)
External Clock Drive
Parameter Symbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
400 - 6t 400 - 6t 127 - 2t
-252 -5t
0- 0 -
-97 -2t
-517 -8t
-585 -9t 200 300 3t 203 - 4t
43 123 t 33 - t
433 - 7t
33 - t
-100 -
CLCL
-100 - ns
CLCL
-40 -
CLCL
-165 ns
CLCL
-70 ns
CLCL
-150
CLCL
-165 ns
CLCL
-50 3t
CLCL
-130 - ns
CLCL
-40 t
CLCL
-50 - ns
CLCL
-150 - ns
CLCL
-50 -
CLCL
CLCL
CLCL
+50
+40
ns
ns
ns
ns
ns
ns
ns
-0 - 0ns
Variable Oscillator
(Freq. = 3.5 to 12MHz)
Unit
Min. Max.
Oscillator period (VCC=5V) Oscillator period (VCC=3.3V)
High time Low time Rise time Fall time
t
CLCL
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
83.3
83.3 20 t 20 t
285.7 1
CLCL-tCLCX
CLCL-tCHCX
ns ns
ns
-20ns
-20
ns
OCT. 2000 Ver 1.2 27
Page 32
GMS90C320
AC Characteristics for 16MHz version
VCC=5V: VCC=5V+ 10%, 15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
VCC=3.3V: VCC=3.3V+ 0.3V, 0.6V; VSS=0V;TA=0°Cto70°C
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock: Vcc = 5V: 1/t
Vcc = 3.3V: 1/t
=3.5MHzto16MHz
CLCL
=1MHzto16MHz
CLCL
External Program Memory Characteristics
Parameter Symbol
16 MHz Oscillator
Min. Max. Min. Max.
ALE pulse width Address setup to ALE Address hold after ALE ALE low to valid instruction in ALE to PSEN PSEN pulse width PSEN to valid instruction in Input instruction hold after PSEN Input instruction float after PSEN Address valid after PSEN Address to valid instruction in Address float to PSEN
1)
InterfacingtheGMS90C320 to devices with float times up to 35 ns is permissible. This limitedbus contentionwill not cause
any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
85 - 2t 23 - t 43 - t
-150 -4t
38 - t
153 - 3t
-88 -3t
0- 0 -ns
-43 - t
55 - t
-198 -5t
-10 - -10 - ns
Variable Oscillator
1/t
=3.5to16MHz
CLCL
-40 -
CLCL
-40 - ns
CLCL
-40 -
CLCL
CLCL
-25 -
CLCL
-35 - ns
CLCL
CLCL
CLCL
-8 - ns
CLCL
CLCL
Unit
ns
ns
-100 ns ns
-100
-20
-115
ns
ns
ns
28 OCT. 2000 Ver 1.2
Page 33
AC Characteristics for 16MHz
External Data Memory Characteristics
Parameter Symbol
16 MHz Oscillator
Variable Oscillator
1/t
=3.5to16MHz
CLCL
Min. Max. Min. Max.
GMS90C320
Unit
RD pulse width WR pulse width Address hold after ALE RD to valid data in Data hold after RD Data float after RD ALE to valid data in Address to valid data in ALE to WR or RD Address valid to WR or RD
WR or RD high to ALE high Data valid to WR transition Data setup before WR Data hold after WR Address float after RD
Advance Information (16MHz)
External Clock Drive
Parameter Symbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
275 - 6t 275 - 6t 127 - 2t
-183 -5t
0- 0 -
-75 -2t
-350 -8t
-398 -9t 138 238 3t 120 - 4t
28 97 t 13 - t
288 - 7t
23 - t
-100 -
CLCL
-100 - ns
CLCL
-40 -
CLCL
-130 ns
CLCL
-50 ns
CLCL
-150
CLCL
-165 ns
CLCL
50 3t
CLCL
-130 - ns
CLCL
35 t
CLCL
50 - ns
CLCL
-150 - ns
CLCL
40 -
CLCL
CLCL
CLCL
+50
+35
ns
ns
ns
ns
ns
ns
ns
-0 - 0ns
Variable Oscillator
(Freq. = 3.5 to 16MHz)
Unit
Min. Max.
Oscillator period High time Low time Rise time Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
62.5 285.7 17 t 17 t
CLCL-tCLCX
CLCL-tCHCX
ns ns ns
-17ns
-17
ns
OCT. 2000 Ver 1.2 29
Page 34
GMS90C320
AC Characteristics for 24MHz version
VCC=5V: VCC=5V+ 10%, 15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
VCC=3.3V: VCC=3.3V+ 0.3V, 0.6V; VSS=0V;TA=0°Cto70°C
(CLforport0.ALEandPSENoutputs = 50pF; CLfor all other outputs = 50pF)
Variable clock: Vcc = 5V: 1/t
Vcc = 3.3V: 1/t
=3.5MHzto24MHz
CLCL
=1MHzto24MHz
CLCL
External Program Memory Characteristics
Parameter Symbol
24 MHz Oscillator
Min. Max. Min. Max.
ALE pulse width Address setup to ALE Address hold after ALE ALE low to valid instruction in ALE to PSEN PSEN pulse width PSEN to valid instruction in Input instruction hold after PSEN Input instruction float after PSEN Address valid after PSEN Address to valid instruction in Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 35 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
43 - 2t 17 - t 17 - t
-80 -4t 22 - t 95 - 3t
-60 -3t
0- 0 -ns
-32 - t 37 - t
-148 - 5t
-10 - -10 - ns
Variable Oscillator
1/t
=3.5to24MHz
CLCL
-40 -
CLCL
-25 - ns
CLCL
-25 -
CLCL
CLCL
-20 -
CLCL
-30 - ns
CLCL
CLCL
CLCL
-5 - ns
CLCL
CLCL
-87 ns
-65
-10
-60
Unit
ns
ns
ns
ns
ns
ns
30 OCT. 2000 Ver 1.2
Page 35
AC Characteristics for 24MHz
External Data Memory Characteristics
Parameter Symbol
24 MHz Oscillator
Variable Oscillator
1/t
=3.5to24MHz
CLCL
Min. Max. Min. Max.
GMS90C320
Unit
RD pulse width WR pulse width Address hold after ALE RD to valid data in Data hold after RD Data float after RD ALE to valid data in Address to valid data in ALE to WR or RD Address valid to WR or RD
WR or RD high to ALE high Data valid to WR transition Data setup before WR Data hold after WR Address float after RD
Advance Information (24MHz)
External Clock Drive
Table 11.
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
180 - 6t 180 - 6t
56 - 2t
-118 - 5t
0- 0 -
-63 -2t
-200 -8t
-220 -9t 75 175 3t 67 - 4t 17 67 t
5-t
170 - 7t
15 - t
-70 -
CLCL
-70 - ns
CLCL
-27 -
CLCL
-90 ns
CLCL
-20 ns
CLCL
-133
CLCL
-155 ns
CLCL
-50 3t
CLCL
-97 - ns
CLCL
-25 t
CLCL
-37 - ns
CLCL
-122 - ns
CLCL
-27 -
CLCL
CLCL
CLCL
+50
+25
ns
ns
ns
ns
ns
ns
ns
-0 - 0ns
Variable Oscillator
Parameter Symbol
(Freq. = 3.5 to 24MHz)
Unit
Min. Max.
Oscillator period High time Low time Rise time Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
41.7 285.7 12 t 12 t
CLCL-tCLCX
CLCL-tCHCX
ns ns ns
-12ns
-12
ns
OCT. 2000 Ver 1.2 31
Page 36
GMS90C320
AC Characteristics for 40MHz version
VCC=5V+10%,15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
External Program Memory Characteristics
40 MHz Oscillator
Parameter Symbol
Min. Max. Min. Max.
Variable Oscillator
1/t
=3.5to40MHz
CLCL
Unit
ALE pulse width Address setup to ALE Address hold after ALE ALE low to valid instruction in ALE to PSEN PSEN pulse width PSEN to valid instruction in Input instruction hold after PSEN Input instruction float after PSEN Address valid after PSEN Address to valid instruction in Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
35 - 2t 10 - t 10 - t
-55 -4t 10 - t 60 - 3t
-25 -3t
15 -
CLCL
15 - ns
CLCL
15 -
CLCL
45 ns
CLCL
15 -
CLCL
15 - ns
CLCL
50
CLCL
0- 0 -ns
-15 -t 20 - t
5-ns
CLCL
-65 -5t
CLCL
CLCL
10
60
-5 - -5 - ns
ns
ns
ns
ns
ns
ns
32 OCT. 2000 Ver 1.2
Page 37
AC Characteristics for 40MHz
External Data Memory Characteristics
Parameter Symbol
at 40 MHz Clock
Variable Clock
1/t
=3.5to40MHz
CLCL
Min. Max. Min. Max.
GMS90C320
Unit
RD pulse width WR pulse width Address hold after ALE RD to valid data in Data hold after RD Data float after RD ALE to valid data in Address to valid data in ALE to WR or RD Address valid to WR or RD
WR or RD high to ALE high Data valid to WR transition Data setup before WR Data hold after WR Address float after RD
Advance Information (40MHz)
External Clock Drive
Parameter Symbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
120 - 6t 120 - 6t
10 - t
-75 -5t
0- 0 -
-38 -2t
-150 - 8t
-150 - 9t 60 90 3t 70 - 4t 10 40 t
5-t
125 - 7t
5-t
-30 -
CLCL
-30 - ns
CLCL
-15 -
CLCL
-50 ns
CLCL
-12 ns
CLCL
-50
CLCL
-75 ns
CLCL
-15 3t
CLCL
-30 - ns
CLCL
-15 t
CLCL
-20 - ns
CLCL
-50 - ns
CLCL
-20 -
CLCL
CLCL
CLCL
+15
+15
ns
ns
ns
ns
ns
ns
ns
-0 - 0ns
Variable Oscillator
(Freq. = 3.5 to 40MHz)
Unit
Min. Max.
Oscillator period High time Low time Rise time Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
25 285.7 10 t 10 t
CLCL-tCLCX
CLCL-tCHCX
ns ns ns
-10ns
-10
ns
OCT. 2000 Ver 1.2 33
Page 38
GMS90C320
AC Characteristics for 50MHz version
VCC=5V+10%,15%; VSS=0V;TA=0°Cto70°C
(CLfor port 0. ALE and PSEN outputs = 100pF; CLfor all other outputs = 80pF)
Variable Clock : VCC=5V,1/t
=3.5MHzto50MHz
CLCL
External Program Memory Characteristics
Parameter Symbol
50 MHz Oscillator
Min. Max. Min. Max.
ALE pulse width Address setup to ALE Address hold after ALE ALE low to valid instruction in ALE to PSEN PSEN pulse width PSEN to valid instruction in Input instruction hold after PSEN Input instruction float after PSEN Address valid after PSEN Address to valid instruction in Address float to PSEN
1)
Interfacing the GMS90C320 to devices with float times up to 20 ns is permissible. This limited bus contention will not cause any damage to port 0 Drivers.
t
LHLL
t
AVLL
t
LLAX
t
LLIV
t
LLPL
t
PLPH
t
PLIV
t
PXIX
t
PXIZ
t
PXAV
t
AVIV
t
AZPL
1)
1)
25 - 2t
5-t 5-t
-40 -4t
5-t
45 - 3t
-20 -3t
0- 0 -ns
-10 -t 15 - t
-45 -5t
-5 - -5 - ns
Variable Oscillator
1/t
=3.5to50MHz
CLCL
15 -
CLCL
15 - ns
CLCL
15 -
CLCL
40 ns
CLCL
15 -
CLCL
15 - ns
CLCL
40
CLCL
10
CLCL
5-ns
CLCL
55
CLCL
Unit
ns
ns
ns
ns
ns
ns
34 OCT. 2000 Ver 1.2
Page 39
AC Characteristics for 50MHz
External Data Memory Characteristics
Parameter Symbol
at 50 MHz Clock
Variable Clock
1/t
=3.5to50MHz
CLCL
Min. Max. Min. Max.
GMS90C320
Unit
RD pulse width WR pulse width Address hold after ALE RD to valid data in Data hold after RD Data float after RD ALE to valid data in Address to valid data in ALE to WR or RD Address valid to WR or RD
WR or RD high to ALE high Data valid to WR transition Data setup before WR Data hold after WR Address float after RD
Advance Information (50MHz)
External Clock Drive
Parameter Symbol
t
RLRH
t
WLWH
t
LLAX2
t
RLDV
t
RHDX
t
RHDZ
t
LLDV
t
AVDV
t
LLWL
t
AVWL
t
WHLH
t
QVWX
t
QVWH
t
WHQX
t
RLAZ
90 - 6t 90 - 6t 25 - 2t
-60 -5t
0- 0 -
-28 -2t
- 120 - 8t
- 125 - 9t 45 75 3t 50 - 4t
535t 5-t
100 - 7t
5-t
-30 -
CLCL
-30 - ns
CLCL
-15 -
CLCL
-40 ns
CLCL
-12 ns
CLCL
-40
CLCL
-55 ns
CLCL
-15 3t
CLCL
-30 - ns
CLCL
-15 t
CLCL
-15 - ns
CLCL
-40 - ns
CLCL
-15 -
CLCL
CLCL
CLCL
+15
+15
ns
ns
ns
ns
ns
ns
ns
-0 - 0ns
Variable Oscillator
(Freq. = 3.5 to 50MHz)
Unit
Min. Max.
Oscillator period High time Low time Rise time Fall time
t
CLCL
t
CHCX
t
CLCX
t
CLCH
t
CHCL
20 285.7 10 t 10 t
CLCL-tCLCX
CLCL-tCHCX
ns ns ns
-10ns
-10
ns
OCT. 2000 Ver 1.2 35
Page 40
GMS90C320
ALE
PSEN
PORT 0
t
LHLL
t
AVLL
t
LLAX
A0-A7
t
AZPL
t
AVIV
t
LLPL
t
PLPH
t
LLIV
t
PLIV
t
PXAV
t
PXIZ
t
PXIX
INSTR.
IN
A0-A7
PORT 2
Figure 4 External Program Memory Read Cycle
A8-A15
A8-A15
36 OCT. 2000 Ver 1.2
Page 41
GMS90C320
ALE
t
LHLL
PSEN
RD
t
AVLL
PORT 0
A0-A7 from
RI or DPL
PORT 2
Figure 5 External Data Memory Read Cycle
ALE
t
LHLL
t
LLDV
t
LLWL
t
LLAX2
t
AVWL
t
AVDV
P2.0-P2.7 or A8-A15from DPH
t
t
RLDV
RLAZ
t
RLRH
t
WHLH
t
RHDZ
t
RHDX
DATA IN A0-A7 from PCL INSTR. IN
A8-A15 from PCH
t
WHLH
PSEN
WR
t
AVLL
PORT 0
t
LLAX
A0-A7 from
RI or DPL
t
AVWL
PORT 2
Figure 6 External Data Memory Write Cycle
t
LLWL
t
QVWX
P2.0-P2.7 or A8-A15 from DPH
t
WLWH
t
QVWH
DATA OUT
t
WHQX
A0-A7 from PCL
A8-A15 from PCH
INSTR. IN
OCT. 2000 Ver 1.2 37
Page 42
GMS90C320
0.5V
V
CC
0.45V
AC Inputs during testing are driven at VCC−0.5V for a logic ‘1’ and 0.45V for a logic ‘0’. Timing measurements are made a V
Figure 7 AC Testing: Input, Output Waveforms
IH min
0.2VCC+ 0.9 Test Points
0.1
0.2V
CC
for a logic ‘1’ and V
for a logic ‘0’.
ILma x
V
0.1
OH
+ 0.1
V
OL
V
LOAD
V
V
LOAD
LOAD
+ 0.1
0.1
Timing Reference Points
0.2VCC− 0.1
For timing purposes a port pin is no longer floating when a 100mV change from load voltage occurs and begins to float when a 100mV change from the loaded VOH/VOLlevel occurs.
IOL/IOH≥ 20mA.
Figure 8 Float Waveforms
t
t
CLCH
CLCL
t
CHCX
VCC−0.5V
0.45V
0.7 V
CC
0.2 VCC−0.1
t
CHCL
t
CLCX
Figure 9 External Clock Cycle
38 OCT. 2000 Ver 1.2
Page 43

OSCILLATOR CIRCUIT

CRYSTAL OSCILLATOR MODE DRIVING FROM EXTERNAL SOURCE
GMS90C320
C2
C1
XTAL2 P-LCC-44/Pin 20 P-DIP-40/Pin 18 M-QFP-44/Pin 14
XTAL1 P-LCC-44/Pin 21 P-DIP-40/Pin 19 M-QFP-44/Pin 15
N.C.
External Oscillator Signal
XTAL2 P-LCC-44/Pin 20 P-DIP-40/Pin 18 M-QFP-44/Pin 14
XTAL1 P-LCC-44/Pin 21 P-DIP-40/Pin 19 M-QFP-44/Pin 15
C1, C2 = 30pF ±10pF for Crystals For Ceramic Resonators, contact resonator manufacturer.
Figure 10 Recommended Oscillator Circuits
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
OCT. 2000 Ver 1.2 39
Page 44
GMS90C320
Plastic Package P-LCC-44
(Plastic Leaded Chip-Carrier)
44PLCC
0.656
0.650
0.695
0.685
0.695
0.685
0.656
0.650
UNIT: INCH
min. 0.020
0.032
0.026
0.021
0.013
0.630
0.590
0.050 BSC
0.012
0.0075
0.120
0.090
0.180
0.165
40 OCT. 2000 Ver 1.2
Page 45
Plastic Package P-DIP-40
(Plastic Dual in-Line Package)
40DIP
0.200 max.
2.075
2.045
min. 0.015
UNIT: INCH
0.600 BSC
0.550
0.530
GMS90C320
0.022
0.015
0.065
0.045
0.100 BSC
0.140
0.120 0-15°
2
1
0
.
0
8
0
0
.
0
OCT. 2000 Ver 1.2 41
Page 46
GMS90C320
Plastic Package P-MQFP-44
(Plastic Metric Quad Flat Package)
P-MQFP-44
9.90
10.10
13.45
12.95
13.45
12.95
10.10
9.90
SEE DETAIL “A”
2.10
1.95
UNIT: MM
0-7°
3
3
2
1
.
.
0
0
2.35 max.
0.45
0.30
0.80 BSC
0.25
0.10
1.60 REF
DETAIL “A”
1.03
0.73
42 OCT. 2000 Ver 1.2
Loading...