Datasheet GAL22V10D-7LP, GAL22V10D-10LP, GAL22V10D-10LPN, GAL22V10D-15LP, GAL22V10D-15LPN Specification

...
Page 1
Product Line
Ordering Part Number
Product Status
Reference PCN
GAL22V10D
GAL22V10D-7LP
Discontinued
PCN#09-10
GAL22V10D-7LPN
GAL22V10D-10LP
PCN#13-10
GAL22V10D-10LPN
GAL22V10D-15LP
GAL22V10D-15LPN
GAL22V10D-25LP
GAL22V10D-25LPN
GAL22V10D-7LPI
PCN#09-10
GAL22V10D-7LPNI
GAL22V10D-10LPI
PCN#13-10
GAL22V10D-10LPNI
GAL22V10D-15LPI
GAL22V10D-15LPNI
GAL22V10D-20LPI
GAL22V10D-20LPNI
GAL22V10D-25LPI
GAL22V10D-25LPNI
GAL22V10D-10QP
GAL22V10D-10QPN
GAL22V10D-15QP
GAL22V10D-15QPN
GAL22V10D-25QP
GAL22V10D-25QPN
GAL22V10D-10LS
PCN#06-07
GAL22V10D-15LS
GAL22V10D-25LS
GAL22V10D-4LJ
PCN#09-10
GAL22V10D-4LJN
GAL22V10D-5LJ
PCN#13-10
GAL22V10D-5LJN
GAL®22V10 Device Datasheet
September 2010
All Devices Discontinued!
Product Change Notifications (PCNs) have been issued to discontinue all devices in this data sheet.
The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status.
5555 N.E. Moore Ct. Hillsboro, Oregon 97124-6421 Phone (503) 268-8000 FAX (503) 268-8347
Internet: http://www.latticesemi.com
Page 2
Product Line
Ordering Part Number
Product Status
Reference PCN
GAL22V10D
(Cont’d)
GAL22V10D-7LJ
Discontinued
PCN#13-10
GAL22V10D-7LJN
GAL22V10D-10LJ
GAL22V10D-10LJN
GAL22V10D-15LJ
GAL22V10D-15LJN
GAL22V10D-25LJ
GAL22V10D-25LJN
GAL22V10D-7LJI
PCN#09-10
GAL22V10D-7LJNI
GAL22V10D-10LJI
GAL22V10D-10LJNI
GAL22V10D-15LJI
PCN#13-10
GAL22V10D-15LJNI
GAL22V10D-20LJI
GAL22V10D-20LJNI
GAL22V10D-25LJI
GAL22V10D-25LJNI
GAL22V10D-10QJ
GAL22V10D-10QJN
GAL22V10D-15QJ
GAL22V10D-15QJN
GAL22V10D-25QJ
GAL22V10D-25QJN
5555 N.E. Moore Ct. Hillsboro, Oregon 97124-6421 Phone (503) 268-8000 FAX (503) 268-8347
Internet: http://www.latticesemi.com
Page 3
1
12
13
24
I/CLK
I I
I
I
I
I I
I
I I
GND
Vcc I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I
6
18
Lead-Free
ALL DEVICES
DISCONTINUED
Package
Options
Available!
Specifications GAL22V10
GAL22V10
High Performance E2CMOS PLD
Generic Array Logic™
Features
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY — 4 ns Maximum Propagation Delay — Fmax = 250 MHz — 3.5 ns Maximum from Clock Input to Data Output — UltraMOS® Advanced CMOS Technology
• ACTIVE PULL-UPS ON ALL PINS
• COMPATIBLE WITH STANDARD 22V10 DEVICES — Fully Function/Fuse-Map/Parametric Compatible
with Bipolar and UVCMOS 22V10 Devices
• 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR — 90mA T ypical Icc on Low Power Device — 45mA Typical Icc on Quarter Power Device
2
•E
CELL TECHNOLOGY
Functional Block Diagram
I/CLK
I
I
I
I
I
RESET
10
12
14
16
8
OLMC
OLMC
OLMC
OLMC
OLMC
— Reconfigurable Logic — Reprogrammable Cells — 100% Tested/100% Yields — High Speed Electrical Erasure (<100ms)
— 20 Year Data Retention
• TEN OUTPUT LOGIC MACROCELLS — Maximum Flexibility for Complex Logic Designs
• PRELOAD AND POWER-ON RESET OF REGISTERS — 100% Functional Testability
• APPLICATIONS INCLUDE:
I
I
AND-ARRAY
PROGRAMMABLE
I
I
16
(132X44)
OLMC
14
OLMC
12
OLMC
10
OLMC
— DMA Control — State Machine Control — High Speed Graphics Processing — Standard Logic Speed Upgrade
• ELECTRONIC SIGNA TURE FOR IDENTIFICATION
• LEAD-FREE P ACKAGE OPTIONS
Pin Configuration
ESCRIPTION
Description
The GAL22V10, at 4ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E floating gate technology to provide the highest performance avail­able of any 22V10 device on the market. CMOS circuitry allows the GAL22V10 to consume much less power when compared to bipolar 22V10 devices. E
2
technology offers high speed (<100ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently.
The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10 is fully function/fuse map/parametric com­patible with standard bipolar and CMOS 22V10 devices.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lat­tice Semiconductor delivers 100% field programmability and func­tionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified.
Copyright © 2006 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. December 2006
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
22v10_12
2
)
1
I
I
PLCC
I/O/Q
I/CLK
I
I
228
426
5
I I I
7
GAL22V10
NC
I I I
9
11
I
T op View
I
GND
I/O/Q
NC
Vcc
25
23
21
19
18
161412
I
NC
I/O/Q
I/O/Q
SOIC
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
Vcc
I/O/Q
24
GAL22V10
Top V iew
1
IIIIIII
I
I
I/CLK
18
6
I/O/Q
I
I/O/Q I/O/Q I/O/Q NC I/O/Q I/O/Q I/O/Q
I
13
12
GND
8
PRESET
OLMC
DIP
GAL
22V10
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
Page 4
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10 Ordering Information
Conventional Packaging Commercial Grade Specifications
)sn(dpT)sn(usT)sn(ocT)Am(ccI#gniredOr geakcaP
45.25.3041JL4-D01V22LAG CCLPdaeL-82
534 041JL5-D01V22LAG CCLPdaeL-82
5.75.45.4041PL7-D01V22LAG PIDcitsalPniP-42
5.45.4041JL7-D01V22LAG CCLPdaeL-82
017755PQ01-D0
55JQ01-D01V22LAG CCLPdaeL-82
130
031JL01-D01V22LAG CCLPdaeL-82
03L
5101855PQ51-D01V22LAG PIDcitsalPniP-42
55JQ51-D01V22LAG CCLPdaeL-82
90
90
90
52515155PQ52-D01V22LAG PIDcitsalPniP-42
55JQ52-D01V22LAG CCLPdaeL-82
09PL52-D01V22LAG piDcitsalPniP-42
09JL52-D01V22LAG CCLPdaeL-82
09S
1. Discontinued per PCN #06-07. Contact Rochester Electronics for available inventory.
1V22LAG PIDcitsalPniP-42
LP01-D01V22LAG PIDcitsalPniP-42
1
S
01-D01V22LAG CIOSniP-42
LP51-D01V22LAG PIDcitsalPniP-42
LJ51-D01V22LAG CCLPdaeL-82
1
LS
51-D01V22LAG CIOSniP-42
1
L52-D01V22LAG CIOSniP-42
Industrial Grade Specifications
)sn(dpT)sn(usT)sn(ocT)Am(ccI#gniredrOegakcaP
5.755.4061
5.45.4061
0177 061
061
51018 031G IPL51-D01V22LA PIDcitsalPniP-42
031IJL51-D01V22LAG CCLPdaeL-82
024101031IPL02-D01V22LAG PIDcitsalPniP-42
031IJL02-D01V22LAG CCLPdaeL-82
525151031IPL52-D01V22LAG PIDcitsalPniP-42
031IJL52-D01V22LAG CCLPdaeL-82
01V22LAGDIPL7­01V22LAGDIJL7­01V22LAGDIPL01­01V22LAGDIJL01-
PIDcitsalPniP-42
CCLPdaeL-82
PIDcitsalPniP-42
daeL-82
CCLP
2
Page 5
Lead-Free Packaging
ALL DEVICES
DISCONTINUED
Commercial Grade Specifications
)sn(dpT)sn(usT)sn(ocT)Am(ccI#gniredrOegakcaP
45.25.3041NJL4-D01V22LAG CCLPdaeL-82eerF-daeL 534 041NJL5-D01V22LAG CCLPdaeL-82eerF-daeL
5.75.45.4041NPL7-D01V22LAG PIDcitsalPniP-42eerF-daeL
5.45.4041NJL7-D01V22LAG CCLPdaeL-82eerF-daeL
017755NPQ01
55NJQ01-D01V22LAG CCLPdaeL-82eerF-daeL
031NPL01-D01V22LAG PIDcitsalPniP-42eerF-daeL 031NJL01-D01V22LAG CCLPdaeL-82eerF-daeL
5101855NPQ51-D01V22LAG PIDcitsalPniP-42eerF-daeL
55NJQ51-D01V22LAG CCLPdaeL-82eerF-daeL 09NPL51-D01V22LAG PIDcitsalPniP-42eerF-daeL 09NJL51-D01V22LAG CCLPdaeL-82eerF-daeL
52515155NPQ52-D01V22LAG PIDcitsalPniP-42eerF-daeL
55NJQ52-D01V22LAG CCLPdaeL-82eerF-daeL 09NPL52-D01V22LAG piDcitsalPniP-42eerF-daeL 09NJL52-D01V22LAG CCLPdaeL-82eerF-daeL
Industrial Grade Specifications
-D01V22LAG PIDcitsalPniP-42eerF-daeL
Specifications GAL22V10
)sn(dpT)sn(usT)sn(ocT)Am(ccI#gniredrOegakcaP
5.755.4061INPL7-D01V22LAG PIDcitsalPniP-42eerF-daeL
5.45.4061INJL7-D01V22LAG CCLPdaeL-82eerF-daeL
0177 061INPL01-D01V22LAG PIDcitsalPniP-42eerF-daeL
061INJL01-D01V22LAG CCLPdaeL-82eerF-daeL
51018 031INPL51
031INJL51-D01V22LAG CCLPdaeL-82eerF-daeL
024101031INPL02-D01V22LAG PIDcitsalPniP-42eerF-daeL
031INJL02-D01V22LAG CCLPdaeL-82eerF-daeL
525151031INPL52-D01V22LAG piDcitsalPniP-42eerF-daeL
031INJL52-D01V22LAG CCLPdaeL-82eerF-daeL
-D01V22LAG PIDcitsalPniP-42eerF-daeL
Part Number Description
_
GAL22V10D
XXXXXXXX XX X XX X
Device Name
Speed (ns)
Grade
Blank = Commercial I = Industrial
PowerL = Low Power
Q = Quarter Power
3
Package
P = Plastic DIP PN = Lead-Free Plastic DIP J = PLCC JN = Lead-Free PLCC S = SOIC
Page 6
Output Logic Macrocell (OLMC)
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
The GAL22V10 has a variable number of product terms per OLMC. Of the ten available OLMCs, two OLMCs have access to eight product terms (pins 14 and 23, DIP pinout), two have ten product terms (pins 15 and 22), two have twelve product terms (pins 16 and
21), two have fourteen product terms (pins 17 and 20), and two OLMCs have sixteen product terms (pins 18 and 19). In addition to the product terms available for logic, each OLMC has an addi­tional product-term dedicated to output enable control.
The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configured as either active high or active low.
AR
D
The GAL22V10 has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two prod­uct terms are common to all registered OLMCs. The Asynchronous Reset sets all registers to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted.
NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen.
Q
QCLK
4 TO 1
MUX
SP
2 TO 1
MUX
GAL22V10 OUTPUT LOGIC MACROCELL (OLMC)
Output Logic Macrocell Configurations
Each of the Macrocells of the GAL22V10 has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the following page.
REGISTERED
In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC’s D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an in­dividual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop’s /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array.
NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as reg­istered is an output only, and cannot be used for dynamic I/O, as can the combinatorial pins.
COMBINAT ORIAL I/O
In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Out­put tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either “on” (dedicated output), “off” (dedicated input), or “product-term driven” (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array.
4
Page 7
Registered Mode
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
CLK
S0 = 0 S1 = 0
Combinatorial Mode
AR
D
SP
Q
Q
S0 = 1 S1 = 0
CLK
AR
D
ACTIVE HIGHACTIVE LOW
Q
Q
SP
ACTIVE HIGHACTIVE LOW
S0 = 0 S1 = 1
S0 = 1 S1 = 1
5
Page 8
GAL22V10 Logic Diagram / JEDEC Fuse Map
ALL DEVICES
DISCONTINUED
DIP (PLCC) Package Pinouts
1 (2)
2 (3)
3 (4)
4 (5)
5 (6)
6 (7)
7 (9)
8 (10)
9 (11)
10 (12)
11 (13) 13 (16)
0 4 8 1216202428323640
0000 0044
. . .
0396
0440
. . . .
0880
0924
. . . . .
1452
1496
. . . . . .
2112
2156
. . . . . . .
2860
2904
. . . . . . .
3608
3652
. . . . . .
4268
4312
. . . . .
4840
4884
. . . .
5324
5368
. . .
5720
5764
Specifications GAL22V10
ASYNCHRONOUS RESET (TO ALL REGISTERS)
8
10
12
14
16
16
14
12
10
8
OLMC
S0
5808
S1
5809
OLMC
S0
5810
S1
5811
OLMC
S0
5812
S1
5813
OLMC
S0
5814
S1
5815
OLMC
S0
5816
S1
5817
OLMC
S0
5818
S1
5819
OLMC
S0
5820
S1
5821
OLMC
S0
5822
S1
5823
OLMC
S0
5824
S1
5825
OLMC
S0
5826
S1
5827
SYNCHRONOUS PRESET (TO ALL REGISTERS)
23 (27)
22 (26)
21 (25)
20 (24)
19 (23)
18 (21)
17 (20)
16 (19)
15 (18)
14 (17)
Byte 7 Byte 6 Byte 5 Byte 4 Byte 2 Byte 1 Byte 0Byte 3
M
L
S
S
B
B
Electronic Signature 5828, 5829 ... ... 5890, 5891
6
Page 9
Specifications GAL22V10D
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
Absolute Maximum Ratings
Supply voltage VCC....................................... -0.5 to +7V
Input voltage applied ........................... -2.5 to VCC +1.0V
Off-state output voltage applied........... -2.5 to V
Storage Temperature..................................-65 to 150°C
Ambient Temperature with
Power Applied ......................................... -55 to 125°C
1. Stresses above those listed under the “Absolute Maximum
Ratings” may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
1
+1.0V
CC
Recommended Operating Conditions
Commercial Devices:
Ambient Temperature (T Supply voltage (VCC)
with Respect to Ground ..................... +4.75 to +5.25V
Industrial Devices:
Ambient Temperature (T Supply voltage (VCC)
with Respect to Ground ..................... +4.50 to +5.50V
) ............................. 0 to +75°C
A
) ............................ -40 to 85°C
A
DC Electrical Characteristics
Over Recommended Operating Conditions (Unless Otherwise Specified)
SYMBOL P ARAMETER CONDITION MIN. TYP.3MAX. UNITS
VIL Input Low Voltage Vss – 0.5 0.8 V
VIH Input High Voltage 2.0 Vcc+1 V
1
IIL
Input or I/O Low Leakage Current 0V VIN VIL (MAX.) –100 μA
IIH Input or I/O High Leakage Current 3.5V VIN VCC ——10μA
VOL Output Low Voltage IOL = MAX. Vin = VIL or VIH 0.4 V
VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 V
IOL Low Level Output Current 16 mA IOH High Level Output Current –3.2 mA
2
IOS
Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C –30 –130 mA
COMMERCIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-4/-5/-7 90 140 mA
Supply Current f
toggle = 15MHz Outputs Open L-10 90 130 mA
L-15/-25 75 90 mA Q-10/-15/-25 45 55 mA
INDUSTRIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-7/-10 90 160 mA
Supply Current f
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Characterized but not 100% tested.
3) Typical values are at Vcc = 5V and TA = 25 °C
toggle = 15MHz Outputs Open L-15/-20/-25 75 130 mA
7
Page 10
AC Switching Characteristics
ALL DEVICES
DISCONTINUED
Specifications GAL22V10D
Specifications GAL22V10
Over Recommended Operating Conditions
PARAM
TEST
COND.
COM
1
DESCRIPTION
-4
MIN. MAX.
-5
MIN. MAX.
COM/INDCOM
-7 UNITS
MIN. MAX.
tpd A Input or I/O to Combinatorial Output 1 4 1 5 1 7.5 ns tco A Clock to Output Delay 1 3.5 1 4 1 4.5 ns
2
tcf
Clock to Feedback Delay 2.5 3 3 ns
tsu Setup Time, Input or Fdbk before Clk 2.5 3 4.5 ns
th Hold Time, Input or Fdbk after Clk 0—0—0—ns
A Maximum Clock Frequency with 167 — 142.8 — 111 MHz
External Feedback, 1/(tsu + tco)
3
fmax
A Maximum Clock Frequency with 200 166 133 MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 250 200 166 MHz
No Feedback
twh Clock Pulse Duration, High 2 2.5 3 ns
twl Clock Pulse Duration, Low 2 2.5 3 ns
ten B Input or I/O to Output Enabled 1 5 1 6 1 7.5 ns
tdis C Input or I/O to Output Disabled 1 5 1 5.5 1 7.5 ns
tar A Input or I/O to Asynch. Reset of Reg. 1 4.5 1 5.5 1 9 ns
tarw Asynch. Reset Pulse Duration 4.5 4.5 7 ns
tarr Asynch. Reset to ClkRecovery Time 3 4 5 ns
tspr Synch. Preset to ClkRecovery Time 3 4 5 ns
1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these
parameters.
Capacitance (TA = 25°C, f = 1.0 MHz)
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
C
I
C
I/O
*Characterized but not 100% tested.
Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V
I/O Capacitance 8 pF VCC = 5.0V, V
= 2.0V
I/O
8
Page 11
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
Specifications GAL22V10D
AC Switching Characteristics
Over Recommended Operating Conditions
COM / IND IND COM / INDCOM / IND
PARAM.
TEST
COND.
DESCRIPTION
1
-10
MIN. MAX.
-15
MIN. MAX.
-20
MIN. MAX.
-25 UNITS
MIN. MAX.
tpd A Input or I/O to Comb. Output 1 10 3 15 3 20 3 25 ns tco A Clock to Output Delay 1 7 2 8 2 10 2 15 ns
2
tcf
Clock to Feedback Delay 2.5 2.5 8 13 ns
tsu Setup Time, Input or Fdbk before Clk 6 10 12 15 ns
th Hold Time, Input or Fdbk after Clk 0— 0—0— 0—ns
A Maximum Clock Frequency with 83.3 55.5 41.6 33.3 MHz
External Feedback, 1/(tsu + tco)
3
fmax
A Maximum Clock Frequency with 110 80 45.4 35.7 MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 125 83.3 50 38.5 MHz
No Feedback
twh Clock Pulse Duration, High 4 6 10 13 ns
twl Clock Pulse Duration, Low 4 6 10 13 ns
ten B Input or I/O to Output Enabled 1 10 3 15 3 20 3 25 ns
tdis C Input or I/O to Output Disabled 1 9 3 15 3 20 3 25 ns
tar A Input or I/O to Asynch. Reset of Reg. 1 13 3 20 3 25 3 25 ns
tarw Asynch. Reset Pulse Duration 8 15 20 25 ns
tarr Asynch. Reset to Clk Recovery Time 8 10 20 25 ns
tspr Synch. Preset to Clk Recovery Time 8 10 14 15 ns
1) Refer to Switching Test Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.
Capacitance (TA = 25°C, f = 1.0 MHz)
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
C
I
C
I/O
*Characterized but not 100% tested.
Input Capacitance 8 pF VCC = 5.0V, VI = 2.0V
I/O Capacitance 8 pF VCC = 5.0V, V
= 2.0V
I/O
9
Page 12
Switching Waveforms
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
INPUT or I/O FEEDBACK
COMBINATORIAL OUTPUT
INPUT or I/O FEEDBACK
OUTPUT
Input or I/O to Output Enable/Disable
VALID INPUT
Combinatorial Output
t
dis
INPUT or I/O FEEDBACK
t
pd
CLK
REGISTERED OUTPUT
Registered Output
t
en
CLK
REGISTERED FEEDBACK
VALID INPUT
t
su
(external fdbk)
1/ fmax (internal fdbk)
t
cf t
1/ fmax
su
t
h
t
co
fmax with Feedback
t
f
max
wl
INPUT or I/O FEEDBACK DRIVING AR
t
h
t
spr
CLK
t
co
REGISTERED OUTPUT
Asynchronous ResetSynchronous Preset
t
arw
t
ar
t
t
wh
CLK
1/
(w/o fdbk)
Clock Width
INPUT or I/O FEEDBACK DRIVING SP
CLK
REGISTERED OUTPUT
t
su
arr
10
Page 13
fmax Descriptions
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
CLK
LOGIC ARRAY
t
su
REGISTER
t
co
fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is cal-
culated from measured tsu and tco.
CLK
LOGIC ARRAY
t
su + th
REGISTER
fmax with No Feedback
Note: fmax with no feedback may be less
than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.
CLK
LOGIC ARRAY
REGISTER
t
cf
t
pd
fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by sub-
tracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combi­natorial output is equal to tcf + tpd.
11
Page 14
Switching Test Conditions
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
Input Pulse Levels GND to 3.0V Input Rise and D-4/-5/-7 1.5ns 10% – 90% Fall Times D-10/-15/-20/-25 2.0ns 10% – 90% Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load See Figure
3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (except D-4) (see figure below)
Test Condition R
A 300Ω 390Ω 50pF B Active High 390Ω 50pF
Active Low 300Ω 390Ω 50pF
C Active High 390Ω 5pF
Active Low 300Ω 390Ω 5pF
1 R2 CL
+5V
GAL22V10D-4 Output Load Conditions (see figure below)
= 50Ω, CL*
0
1 CL
+1.45V
R
T est Condition R
A50Ω 50pF B Z to Active High at 1.9V 50Ω 50pF
Z to Active Low at 1.0V 50Ω 50pF
C Active High to Z at 1.9V 50Ω 50pF
Active Low to Z at 1.0V 50Ω 50pF
TEST POINT
FROM OUTPUT (O/Q) UNDER TEST
Z
1
R
1
FROM OUTPUT (O/Q)  UNDER TEST
R
2
INCLUDES TEST FIXTURE AND PROBE CAPACITANCE
*C
L
C *
L
TEST POINT
12
Page 15
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
Electronic Signature
An electronic signature (ES) is provided in every GAL22V10 device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the se­curity cell.
The electronic signature is an additional feature not present in other manufacturers' 22V10 devices. To use the extra feature of the user-programmable electronic signature it is necessary to choose a Lattice Semiconductor 22V10 device type when com­piling a set of logic equations. In addition, many device program­mers have two separate selections for the device, typically a GAL22V10 and a GAL22V10-UES (UES = User Electronic Sig­nature) or GAL22V10-ES. This allows users to maintain compat­ibility with existing 22V10 designs, while still having the option to use the GAL device's extra feature.
The JEDEC map for the GAL22V10 contains the 64 extra fuses for the electronic signature, for a total of 5892 fuses. However, the GAL22V10 device can still be programmed with a standard 22V10 JEDEC map (5828 fuses) with any qualified device pro­grammer.
Security Cell
A security cell is provided in every GAL22V10 device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always avail­able to the user, regardless of the state of this control cell.
Output Register Preload
When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state condi­tions.
The GAL22V10 device includes circuitry that allows each regis­tered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically.
Input Buffers
GAL22V10 devices are designed with TTL level compatible in­put buffers. These buffers have a characteristically high imped­ance, and present a much lighter load to the driving logic than bi­polar TTL devices.
The input and I/O pins also have built-in active pull-ups. As a re­sult, floating inputs will float to a TTL high (logic 1). However, Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce Icc for the device. (See equivalent input and I/O schemat­ics on the following page.)
T ypical Input Current
Latch-Up Protection
GAL22V10 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally, outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any pos­sibility of SCR induced latching.
Device Programming
GAL devices are programmed using a Lattice Semiconductor­approved Logic Programmer, available from a number of manu­facturers (see the the GAL Development Tools section). Com­plete programming of the device takes only a few seconds. Eras­ing of the device is transparent to the user, and is done automati­cally as part of the programming cycle.
0
-20
-40
Input Current (uA)
-60 0
1.0 2.0 3.0 4.0 5.0
Input Voltage (Volts)
13
Page 16
Power-Up Reset
ALL DEVICES
DISCONTINUED
Specifications GAL22V10
Vcc
CLK
INTERNAL REGISTER
Q - OUTPUT
ACTIVE LOW
OUTPUT REGISTER
ACTIVE HIGH
OUTPUT REGISTER
Circuitry within the GAL22V10 provides a reset signal to all reg­isters during power-up. All internal registers will have their Q out­puts set low after a specified time (tpr, 1μs MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asyn-
Vcc (min.)
t
su
t
wl
pr
t
Internal Register Reset to Logic "0"
Device Pin Reset to Logic "1"
Device Pin Reset to Logic "0"
chronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL22V10. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in nor­mal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.
Input/Output Equivalent Schematics
PIN
Feedback
Vcc
(Vref Typical = 3.2V)
ESD Protection Circuit
PIN
ESD Protection Circuit
Active Pull-up Circuit
Vcc
Vref
Vcc
Tri-State Control
Data Output
Typical Input T ypical Output
Active Pull-up Circuit
Vcc
Feedback (To Input Buffer)
Vref
PIN
(Vref Typical = 3.2V)
PIN
14
Page 17
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams
Normalized TpdNormalized Tpd
1.05
0.95
Normalized Tpd vs Vcc
1.1
1
0.9
RISE FALL
Normalized Tco vs Vcc
1.1
RISE
1.05
1
0.95
Normalized TcoNormalized Tco
5.55.2554.754.5
0.9
FALL
1.05
0.95
Normalized TNormalized T su
5.55.2554.754.5 5.55.2554.754.5
Normalized Tsu vs Vcc
1.1
1
0.9
Supply Voltage (V)Supply Voltage (V)Supply Voltage (V)
Normalized Tpd vs Temp Normalized Tco vs Temp Normalized Tsu vs Temp
1.3
1.2
1.1
0.9
0.8
RISE FALL
1
1251007550250-25-55
1.2
RISE
1.1
1
0.9
FALL
1251007550250-25-55
1.3
1.2
1.1
1
0.9
0.8
RISE FALL
Temperature (deg. C) Temperature (deg. C) Temperature (deg. C)
RISE FAL L
1251007550250-25-55
Delta Tpd vs # of Outputs
0
-0.1
-0.2
Delta Tpd (ns)
-0.3 1234567 8910
Switching
RISE FALL
Number of Outputs Switching
Delta Tpd vs Output Loading
12
8
4
Delta Tpd (ns)
0
-4
RISE FALL
Output Loading (pF)
300250200150100500
Delta Tco vs # of Outputs
0
-0.1
-0.2
Delta Tco (ns)Delta Tco (ns)
-0.3
-0.4 12345678910
Switching
RISE FALL
Number of Outputs Switching
Delta Tco vs Output Loading
12
8
4
0
-4
RISE FALL
Output Loading (pF)
300250200150100500
15
Page 18
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.6
0.4
Vol (V)
0.2
0
0 5 10 15 20 25 30 35 40
Iol (mA)
Normalized Icc vs Vcc
1.2
1.1
1
0.9
Normalized Icc
0.8
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Voh vs Ioh
4
3
2
Voh (V)
1
0
0 5 10 15 20 25 30 35 40 45 50 55 60
Ioh(mA)
Normalized Icc vs Temp
1.3
1.2
1.1
1
0.9
Normalized Icc
0.8
0.7
-55 -25 0 2 5 50 88 100 125
Temperature (deg. C)
Voh vs Ioh
3.95
3.85
3.75
3.65
3.55
Voh (V)
3.45
3.35
3.25
3.15
0.00 1.00 2.00 3.00 4.00 5.00
Ioh(mA)
Normalized Icc vs Freq
1.2
1.15
1.1
1.05
Normalized Icc
1
0.95 1 15255075100
Frequency (MHz)
Delta Icc vs Vin (1 input)
6
5
4
3
2
Delta Icc (mA)
1
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vin (V)
Iik (mA)
0
20
40
60
80
100
Input Clamp (Vik)
-3
-2.5 -2 -1.5 -1 -0.5 1
Vik (V)
16
Page 19
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1
1.05
1
0.95
Normalized Tpd
0.9
4.5 4.75 5 5.25 5.5
RISE FALL
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
1.2
1.1
1
Normalized Tpd
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Normalized Tco vs Vcc
1.1
RISE
1.05
1
FALL
Normalized Tco
0.95
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Normalized Tco vs Temp
1.2
1.1
1
Normalized Tco
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.5 4.75 5 5.25 5.5
RISE FALL
Supply Voltage (V)
Normalized Tsu vs Temp
1.3
1.2
1.1
1
Normalized Tsu
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Delta Tpd vs # of Outputs
0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
Delta Tpd (ns)
-0.8
-0.9
-1
-1.1 12345678910
Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12
8
4
Delta Tpd (ns)
0
RISE FALL
RISE FALL
Delta Tco vs # of Outputs
0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
Delta Tco (ns)
-0.8
-0.9
-1
-1.1 12345678910
Switching
Number of Outputs Switching
Delta Tco vs Output Loading
12
8
4
Delta Tco (ns)
0
RISE FALL
RISE FALL
-4 0 50 100 150 200 250 300
Output Loading (pF)
-4 0 50 100 150 200 250 300
Output Loading (pF)
17
Page 20
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.5
0.4
0.3
0.2
Vol (V)
0.1
0
0 5 10 15 20 25 30
Iol (mA)
Normalized Icc vs Vcc
1.15
1.1
1.05
1
0.95
Normalized Icc
0.9
0.85
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Voh vs Ioh
4
3
2
Voh (V)
1
0
0 5 10 15 20 25 30 35 40
Ioh (mA)
Normalized Icc vs Temp
1.3
1.2
1.1
1
0.9
Normalized Icc
0.8
0.7
-55 0 25 100
Temperature (deg. C)
Voh vs Ioh
3.8
3.7
3.6
3.5
3.4
3.3
3.2
Voh (V)
3.1
3
2.9
2.8
0.00 1.00 2.00 3.00 4.00 5.00
Ioh (mA)
Normalized Icc vs Freq
1.2
1.15
1.1
1.05
Normalized Icc
1
0.95 1 15255075100
Frequency (MHz)
Delta Isb vs Vin (1 input)
10
9
8
7
6
5
4
3
Delta Icc (mA)
2
1
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vin (V)
Iik (mA)
Input Clamp (Vik)
0
10
20
30
40
50
60
70
80
90
100
-2.5 -2 -1.5 -1 -0.5 0
Vik (V)
18
Page 21
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1
1.05
1
0.95
Normalized Tpd
0.9
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
RISE FALL
-55 -25 0 25 50 75 100 125
Normalized Tpd
1.2
1.1
1
0.9
0.8
Temperature (deg. C)
RISE FAL L
Normalized Tco vs Vcc
1.15
1.1
1.05
1
Normalized Tco
0.95
0.9
4.5 4.75 5 5.25 5.5
RISE FAL L
Supply Voltage (V)
Normalized Tco vs Temp
1.3
1.2
1.1
1
Normalized Tco
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.5 4.75 5 5.25 5.5
RISE FAL L
Supply Voltage (V)
Normalized Tsu vs Temp
1.45
1.35
1.25
1.15
1.05
0.95
Normalized Tsu
0.85
0.75
-55 -25 0 25 50 75 100 1 25
RISE FALL
Temperature (deg. C)
Delta Tpd vs # of Outputs
0
-0.4
-0.8
Delta Tpd (ns)
-1.2 1234 5678 910
Switching
RISE FAL L
Delta Tco (ns)
Number of Outputs Switching
Delta Tpd vs Output Loading
20
16
12
8
4
0
Delta Tpd (ns)
-4
-8
RISE FALL
0 50 100 150 200 250 300
Output Loading (pF)
Delta Tco vs # of Outputs
0
-0.4
-0.8
-1.2 1234567 8910
Switching
RISE FAL L
Number of Outputs Switching
Delta Tco vs Output Loading
20
16
12
8
4
Delta Tco (ns)
0
-4 0 50 100 150 200 250 3 00
RISE FALL
Output Loading (pF)
19
Page 22
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.6
0.4
Vol (V)
0.2
0
0 5 10 15 20 25 30 35 40
Iol (mA)
Normalized Icc vs Vcc
1.2
1.1
1
0.9
Normalized Icc
0.8
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Voh vs Ioh
4.5
4
3.5
3
2.5
2
Voh (V)
1.5
1
0.5
0
0204060
Ioh (mA)
Normalized Icc vs Temp
1.35
1.25
1.15
1.05
0.95
Normalized Icc
0.85
0.75
-55 -25 0 25 50 88 100 125
Temperature (deg. C)
Voh vs Ioh
4.5
4
3.5
Voh (V)
3
2.5
0.00 1.00 2.00 3.00 4.00 5.00
Ioh (mA)
Normalized Icc vs Freq
1.4
1.3
1.2
1.1
Normalized Icc
1
0.9 1 15255075100
Frequency (MHz)
Delta Icc vs Vin (1 input)
7
6
5
4
3
2
Delta Icc (mA)
1
0
0 0 .5 1 1.5 2 2.5 3 3 .5 4 4.5 5
Vin (V)
Iik (mA)
0
10
20
30
40
50
60
70
80
90
Input Clamp (Vik)
-2.5 -2 -1.5 -1 -0.5 0
Vik (V)
20
Page 23
Specifications GAL22V10
ALL DEVICES
DISCONTINUED
Revision History
Date Version Change Summary
- 22v10_08 Previous Lattice release. August 2004 22v10_09 Added lead-free package options. July 2006 22v10_10 Corrected SOIC pin configuration diagram. Pin 13. August 2006 22v10_11 Updated for lead-free package options. December 2006 22v10_12 Corrected Icc in the Ordering Part Number section on pages 2-3.
Notes
21
Loading...