Datasheet GAL22V10D-25LPN Specification

Page 1
Specifications GAL22V10
1
12
13
24
I/CLK
I I I I I
I I
I I I
GND
Vcc I/O/Q
I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I/O/Q I
6
18
GAL22V10
High Performance E2CMOS PLD
Generic Array Logic™
Features
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY — 4 ns Maximum Propagation Delay — Fmax = 250 MHz — 3.5 ns Maximum from Clock Input to Data Output — UltraMOS® Advanced CMOS Technology
• ACTIVE PULL-UPS ON ALL PINS
• COMPATIBLE WITH STANDARD 22V10 DEVICES — Fully Function/Fuse-Map/Parametric Compatible
with Bipolar and UVCMOS 22V10 Devices
• 50% to 75% REDUCTION IN POWER VERSUS BIPOLAR — 90mA T ypical Icc on Low Power Device — 45mA Typical Icc on Quarter Power Device
2
CELL TECHNOLOGY
•E — Reconfigurable Logic — Reprogrammable Cells — 100% Tested/100% Y ields — High Speed Electrical Erasure (<100ms)
— 20 Year Data Retention
• TEN OUTPUT LOGIC MACROCELLS — Maximum Flexibility for Complex Logic Designs
• PRELOAD AND POWER-ON RESET OF REGISTERS — 100% Functional Testability
• APPLICATIONS INCLUDE: — DMA Control — State Machine Control — High Speed Graphics Processing — Standard Logic Speed Upgrade
• ELECTRONIC SIGNA TURE FOR IDENTIFICATION
ESCRIPTION
Description
Functional Block Diagram
I/CLK
I
I
I
I
I
I
(132X44)
I
AND-ARRAY
PROGRAMMABLE
I
I
I
I

Pin Configuration

PRESET
RESET
8
10
12
14
16
16
14
12
10
8
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
OLMC
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
I/O/Q
The GAL22V10, at 4ns maximum propagation delay time, combines a high performance CMOS process with Electrically Erasable (E floating gate technology to provide the highest performance avail­able of any 22V10 device on the market. CMOS circuitry allows the GAL22V10 to consume much less power when compared to bipolar 22V10 devices. E
2
technology offers high speed (<100ms) erase times, providing the ability to reprogram or reconfigure the device quickly and efficiently .
The generic architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL22V10 is fully function/fuse map/parametric com­patible with standard bipolar and CMOS 22V10 devices.
Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. As a result, Lat­tice Semiconductor delivers 100% field programmability and func­tionality of all GAL products. In addition, 100 erase/write cycles and data retention in excess of 20 years are specified.
Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. August 2000 Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
22v10_06
2
)
I I I
NC
I I I
11
PLCC
NC
NC
I/O/Q
I/O/Q
Vcc
25
I/O/Q I/O/Q
23
I/O/Q NC
21
I/O/Q I/O/Q
19
I/O/Q
18
161412
I
I/O/Q
I/O/Q
I/CLK
I
I
228
426
5
7
GAL22V10
9
Top V iew
I
I
GND
1
DIP
GAL
22V10
Page 2
Specifications GAL22V10
GAL22V10 Ordering Information
Commercial Grade Specifications
)sn(dpT)sn(usT)sn(ocT)Am(ccI#gniredrOegakcaP
45.25.3041JL4-D01V22LAG CCLPdaeL-82 534 041JL5-D01V22LAG CCLPdaeL-82
051JL5-C01V22LAG CCLPdaeL-82
5.75.45.4041PL7-D01V22LAG PIDcitsalPniP-42
55.4041PL7-C01V22LAG PIDcitsalPniP-42
5.45.4041JL7-C01V22LAGroJL7-D01V22LAG CCLPdaeL-82
5.65041PL7-B01V22LAG PIDcitsalPniP-42 041JL7-B01V22LAG CCLPdaeL-82
017755PQ01-D01V22LAG PIDcitsalPniP-42
55JQ01-D01V22LAG CCLPdaeL-82
031PL01-B01V22LAGroPL01-C01V22LAG,PL01-D01V22LAG PIDcitsalPniP-42 031JL01-B01V22LAGroJL01-C01V22LAG,JL01-D01V22LAG CCLPdaeL-82
5101855PQ51-B01V22LAGroPQ51-D01V22LAG PIDcitsalPniP-42
55JQ51-B01V22LAGroJQ51-D01V22LAG CCLPdaeL-82
031PL51-B01V22LAGroPL51-D01V22LAG PIDcitsalPniP-42 031JL51-B01V22LAGroJL51-D01V22LAG CCLPdaeL-82
52515155PQ52-B01V22LAGroPQ52-D01V22LAG PIDcitsalPniP-42
55JQ52-B01V22LAGroJQ52-D01V22LAG CCLPdaeL-82 09PL52-B01V22LAGroPL52-D01V22LAG piDcitsalPniP-42 09JL52-B01V22LAGroJL52-D01V22LAG CCLPniP-82
Industrial Grade Specifications
)sn(dpT)sn(usT)sn(ocT)Am(ccI#gniredrOegakcaP
5.755.4061
5.45.4061
0177 061
061
51018 051roIPL51-D01V22LAGIPL51-B01V22LAGPIDcitsalPniP-42
051roIJL51-D01V22LAGIJL51-B01V22LAGCCLPdaeL-82
024101051roIPL02-D01V22LAGIPL02-B01V22LAGPIDcitsalPniP-42
051roIJL02-D01V22LAGIJL02-B01V22LAGCCLPdaeL-82
525151051roIPL52-D01V22LAGIPL52-B01V22LAGPIDcitsalPniP-42
051roIJL52-D01V22LAGIJL52-B01V22LAGCCLPdaeL-82
01V22LAGDIPL7-roIPL7-C01V22LAG 01V22LAGDIJL7-roIJL7-C01V22LAG 01V22LAGDIPL01-roIPL01-C01V22LAG 01V22LAGDIJL01-roIJL01-C01V22LAG
PIDcitsalPniP-42
CCLPdaeL-82
PIDcitsalPniP-42
CCLPdaeL-82
Part Number Description
GAL22V10D GAL22V10C GAL22V10B
Q = Quarter Power
Device Name
Speed (ns)
PowerL = Low Power
XXXXXXXX XX X X X
_
2
Grade
Package
Blank = Commercial I = Industrial
P = Plastic DIP J = PLCC
Page 3
Output Logic Macrocell (OLMC)
Specifications GAL22V10
The GAL22V10 has a variable number of product terms per OLMC. Of the ten available OLMCs, two OLMCs have access to eight product terms (pins 14 and 23, DIP pinout), two have ten product terms (pins 15 and 22), two have twelve product terms (pins 16 and
21), two have fourteen product terms (pins 17 and 20), and two OLMCs have sixteen product terms (pins 18 and 19). In addition to the product terms available for logic, each OLMC has an addi­tional product-term dedicated to output enable control.
The output polarity of each OLMC can be individually programmed to be true or inverting, in either combinatorial or registered mode. This allows each output to be individually configured as either active high or active low.
AR
D
The GAL22V10 has a product term for Asynchronous Reset (AR) and a product term for Synchronous Preset (SP). These two prod­uct terms are common to all registered OLMCs. The Asynchronous Reset sets all registers to zero any time this dedicated product term is asserted. The Synchronous Preset sets all registers to a logic one on the rising edge of the next clock pulse after this product term is asserted.
NOTE: The AR and SP product terms will force the Q output of the flip-flop into the same state regardless of the polarity of the output. Therefore, a reset operation, which sets the register output to a zero, may result in either a high or low at the output pin, depending on the pin polarity chosen.
Q
QCLK
4 TO 1
MUX
SP
2 TO 1
MUX
GAL22V10 OUTPUT LOGIC MACROCELL (OLMC)
Output Logic Macrocell Configurations
Each of the Macrocells of the GAL22V10 has two primary functional modes: registered, and combinatorial I/O. The modes and the output polarity are set by two bits (SO and S1), which are normally controlled by the logic compiler. Each of these two primary modes, and the bit settings required to enable them, are described below and on the following page.
REGISTERED
In registered mode the output pin associated with an individual OLMC is driven by the Q output of that OLMC’s D-type flip-flop. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Output tri-state control is available as an in­dividual product-term for each OLMC, and can therefore be defined by a logic equation. The D flip-flop’s /Q output is fed back into the AND array, with both the true and complement of the feedback available as inputs to the AND array.
NOTE: In registered mode, the feedback is from the /Q output of the register, and not from the pin; therefore, a pin defined as reg­istered is an output only , and cannot be used for dynamic I/O, as can the combinatorial pins.
COMBINA TORIAL I/O
In combinatorial mode the pin associated with an individual OLMC is driven by the output of the sum term gate. Logic polarity of the output signal at the pin may be selected by specifying that the output buffer drive either true (active high) or inverted (active low). Out­put tri-state control is available as an individual product-term for each output, and may be individually set by the compiler as either “on” (dedicated output), “off” (dedicated input), or “product-term driven” (dynamic I/O). Feedback into the AND array is from the pin side of the output enable buffer. Both polarities (true and inverted) of the pin are fed back into the AND array.
3
Page 4
Registered Mode
Specifications GAL22V10
CLK
S0 = 0 S1 = 0
Combinatorial Mode
AR
D
SP
Q
Q
S0 = 1 S1 = 0
CLK
AR
D
ACTIVE HIGHACTIVE LOW
Q
Q
SP
S0 = 0 S1 = 1
ACTIVE HIGHACTIVE LOW
S0 = 1 S1 = 1
4
Page 5
GAL22V10 Logic Diagram / JEDEC Fuse Map
DIP (PLCC) Package Pinouts
1 (2)
2 (3)
3 (4)
4 (5)
5 (6)
6 (7)
7 (9)
8 (10)
9 (11)
10 (12) 11 (13) 13 (16)
0 4 8 1216202428323640
0000 0044
. . .
0396
0440
. . . .
0880
0924
. . . . .
1452
1496
. . . . . .
2112
2156
. . . . . . .
2860
2904
. . . . . . .
3608
3652
. . . . . .
4268
4312
. . . . .
4840
4884
. . . .
5324
5368
. . .
5720
5764
Specifications GAL22V10
ASYNCHRONOUS RESET (TO ALL REGISTERS)
8
10
12
14
16
16
14
12
10
OLMC
S0
5808
S1
5809
OLMC
S0
5810
S1
5811
OLMC
S0
5812
S1
5813
OLMC
S0
5814
S1
5815
OLMC
S0
5816
S1
5817
OLMC
S0
5818
S1
5819
OLMC
S0
5820
S1
5821
OLMC
S0
5822
S1
5823
OLMC
S0
5824
S1
5825
8
OLMC
S0
5826
S1
5827
SYNCHRONOUS PRESET (TO ALL REGISTERS)
23 (27)
22 (26)
21 (25)
20 (24)
19 (23)
18 (21)
17 (20)
16 (19)
15 (18)
14 (17)
Byte 7 Byte 6 Byte 5 Byte 4 Byte 2 Byte 1 Byte 0Byte 3
Electronic Signature 5828, 5829 ... ... 5890, 5891
M
L
S
S
B
B
5
Page 6
Specifications GAL22V10D
Specifications GAL22V10
Absolute Maximum Ratings
Supply voltage VCC....................................... -0.5 to +7V
Input voltage applied ...........................-2.5 to VCC +1.0V
Off-state output voltage applied...........-2.5 to V
Storage Temperature..................................-65 to 150°C
Ambient T emperature with
Power Applied.........................................-55 to 125°C
1.Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
1
Recommended Operating Conditions
Commercial Devices:
) .............................0 to +75°C
A
+1.0V
CC
Ambient T emperature (T Supply voltage (VCC)
with Respect to Ground ..................... +4.75 to +5.25V
Industrial Devices:
Ambient T emperature (T
) ............................-40 to 85°C
A
Supply voltage (VCC)
with Respect to Ground ..................... +4.50 to +5.50V

DC Electrical Characteristics

Over Recommended Operating Conditions (Unless Otherwise Specified)
SYMBOL P ARAMETER CONDITION MIN. TYP.3MAX. UNITS
VIL Input Low Voltage Vss – 0.5 0.8 V
VIH Input High V oltage 2.0 Vcc+1 V
1
IIL
Input or I/O Low Leakage Current 0V VIN VIL (MAX.) ——–100 µA
IIH Input or I/O High Leakage Current 3.5V VIN VCC ——10 µA
VOL Output Low V oltage IOL = MAX. Vin = VIL or VIH ——0.4 V
VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 —— V
IOL Low Level Output Current ——16 mA IOH High Level Output Current ——–3.2 mA
2
IOS
Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C 30 —–130 mA
COMMERCIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-4/-5/-7 90 140 mA
Supply Current f
toggle = 15MHz Outputs Open L-10 90 130 mA
L-15/-25 75 90 mA Q-10/-15/-25 45 55 mA
INDUSTRIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-7/-10 90 160 mA
Supply Current f
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester
ground degradation. Characterized but not 100% tested.
3) T ypical values are at Vcc = 5V and TA = 25 °C
toggle = 15MHz Outputs Open L-15/-20/-25 75 130 mA
6
Page 7
AC Switching Characteristics
Specifications GAL22V10D
Specifications GAL22V10
Over Recommended Operating Conditions
PARAM
TEST
COND.
COM
1
DESCRIPTION
-4
MIN. MAX.
-5
MIN. MAX.
COM/INDCOM
-7
MIN. MAX.
tpd A Input or I/O to Combinatorial Output 1 4 1 5 1 7.5 ns tco A Clock to Output Delay 1 3.5 1 4 1 4.5 ns
2
tcf
Clock to Feedback Delay 2.5 3 3ns
tsu Setup Time, Input or Fdbk before Clk 2.5 3 4.5 ns
th Hold Time, Input or Fdbk after Clk 0 0 0 ns
A Maximum Clock Frequency with 167 — 142.8 — 111 MHz
External Feedback, 1/(tsu + tco)
3
fmax
A Maximum Clock Frequency with 200 166 133 MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 250 200 166 MHz
No Feedback
twh Clock Pulse Duration, High 2 2.5 3 ns
twl Clock Pulse Duration, Low 2 2.5 3 ns
ten B Input or I/O to Output Enabled 1 5 1 6 1 7.5 ns
tdis C Input or I/O to Output Disabled 1 5 1 5.5 1 7.5 ns
UNITS
tar A Input or I/O to Asynch. Reset of Reg. 1 4.5 1 5.5 1 9 ns
tarw Asynch. Reset Pulse Duration 4.5 4.5 7 ns
tarr Asynch. Reset to ClkRecovery Time 3 4 5 ns
tspr Synch. Preset to ClkRecovery Time 3 4 5 ns
1) Refer to Switching T est Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these
parameters.
Capacitance (TA = 25°C, f = 1.0 MHz)
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
C
I
C
I/O
*Characterized but not 100% tested.
Input Capacitance 8 pF VCC = 5.0V , VI = 2.0V
I/O Capacitance 8 pF VCC = 5.0V , V
= 2.0V
I/O
7
Page 8
Specifications GAL22V10
Specifications GAL22V10D
AC Switching Characteristics
Over Recommended Operating Conditions
COM / IND IND COM / INDCOM / IND
PARAM.
TEST
COND.
DESCRIPTION
1
-10
MIN. MAX.
-15
MIN. MAX.
-20
MIN. MAX.
-25
MIN. MAX.
tpd A Input or I/O to Comb. Output 1 10 3 15 3 20 3 25 ns tco A Clock to Output Delay 1 7 2 8 2 10 2 15 ns
2
tcf
Clock to Feedback Delay 2.5 2.5 8 13 ns
tsu Setup Time, Input or Fdbk before Clk 6 10 12 15 ns
th Hold Time, Input or Fdbk after Clk 0 0 0 0 ns
A Maximum Clock Frequency with 83.3 55.5 41.6 33.3 MHz
External Feedback, 1/(tsu + tco)
3
fmax
A Maximum Clock Frequency with 1 10 80 45.4 35.7 MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 125 83.3 50 38.5 MHz
No Feedback
UNITS
twh Clock Pulse Duration, High 4 6 10 13 ns
twl Clock Pulse Duration, Low 4 6 10 13 ns
ten B Input or I/O to Output Enabled 1 10 3 15 3 20 3 25 ns
tdis C Input or I/O to Output Disabled 1 9 3 15 3 20 3 25 ns
tar A Input or I/O to Asynch. Reset of Reg. 1 13 3 20 3 25 3 25 ns
tarw Asynch. Reset Pulse Duration 8 15 20 25 ns
tarr Asynch. Reset to Clk Recovery Time 8 10 20 25 ns
tspr Synch. Preset to Clk Recovery Time 8 10 14 15 ns
1) Refer to Switching T est Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.
Capacitance (TA = 25°C, f = 1.0 MHz)
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
C
I
C
I/O
*Characterized but not 100% tested.
Input Capacitance 8 pF VCC = 5.0V , VI = 2.0V
I/O Capacitance 8 pF VCC = 5.0V , V
= 2.0V
I/O
8
Page 9
Specifications GAL22V10
Specifications GAL22V10C
Absolute Maximum Ratings
Supply voltage VCC....................................... -0.5 to +7V
Input voltage applied ...........................-2.5 to VCC +1.0V
Off-state output voltage applied ..........-2.5 to VCC +1.0V
Storage Temperature .................................-65 to 150°C
Ambient T emperature with
Power Applied.........................................-55 to 125°C
1.Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
1
Recommended Operating Conditions
Commercial Devices:
Ambient T emperature (T
) .............................0 to +75°C
A
Supply voltage (VCC)
with Respect to Ground ..................... +4.75 to +5.25V
Industrial Devices:
Ambient T emperature (T Supply voltage (V
CC
) ............................-40 to 85°C
A
)
with Respect to Ground ..................... +4.50 to +5.50V

DC Electrical Characteristics

Over Recommended Operating Conditions (Unless Otherwise Specified)
3
SYMBOL PARAMETER CONDITION MIN. TYP.
MAX. UNITS
VIL Input Low Voltage Vss – 0.5 0.8 V
VIH Input High Voltage 2.0 Vcc+1 V
1
IIL
Input or I/O Low Leakage Current 0V VIN VIL (MAX.) ——–100 µA
IIH Input or I/O High Leakage Current 3.5V VIN VCC ——10 µA
VOL Output Low V oltage IOL = MAX. Vin = VIL or VIH ——0.5 V
VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 —— V
IOL Low Level Output Current ——16 mA IOH High Level Output Current ——–3.2 mA
2
IOS
Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C 30 —–130 mA
COMMERCIAL
ICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V L-5 90 150 mA
ftoggle = 15MHz Outputs Open L-7 90 140 mA
L-10 90 130 mA
INDUSTRIAL
ICC Operating Power Supply Current VIL = 0.5V VIH = 3.0V L-7/-10 90 160 mA
toggle = 15MHz Outputs Open
f
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester
ground degradation. Characterized but not 100% tested.
3) T ypical values are at Vcc = 5V and TA = 25 °C
9
Page 10
AC Switching Characteristics
Specifications GAL22V10
Specifications GAL22V10C
Over Recommended Operating Conditions
PARAM
TEST
COND.
DESCRIPTION
1
-5
MIN. MAX.
COM/INDCOM
-7 (PLCC)
MIN. MAX.
-7 (PDIP)
MIN. MAX.
COMCOM/IND
-10
MIN. MAX.
IND
-10
MIN. MAX.
tpd A Input or I/O to Combinatorial Output 1 5 1 7.5 1 7.5 3 10 1 10 ns tco A Clock to Output Delay 1 4 1 4.5 1 4.5 2 7 1 7 ns
2
tcf
Clock to Feedback Delay 3 3 3 2.5 2.5 ns
tsu Setup Time, Input or Fdbk before Clk 3 4.5 5 7 7 ns
th Hold Time, Input or Fdbk after Clk 0 0 0 0 0 ns
A Maximum Clock Frequency with 142.8 111 105 71.4 71.4 MHz
External Feedback, 1/(tsu + tco)
3
fmax
A Maximum Clock Frequency with 166 133 125 105 105 MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 200 166 — 142.8 105 105 MHz
No Feedback
twh Clock Pulse Duration, High 2.5 3 3.5 4 4 ns
twl Clock Pulse Duration, Low 2.5 3 3.5 4 4 ns
ten B Input or I/O to Output Enabled 1 6 1 7.5 1 7.5 3 10 1 10 ns
tdis C Input or I/O to Output Disabled 1 6 1 7.5 1 7.5 3 9 1 9 ns
UNITS
tar A Input or I/O to Asynch. Reset of Reg. 1 5.5 1 9 1 9 3 13 1 13 ns
tarw Asynch. Reset Pulse Duration 5.5 7 7 8 8 ns
tarr Asynch. Reset to ClkRecovery Time 4 5 5 8 8 ns
tspr Synch. Preset to ClkRecovery Time 4 5 5 10 10 ns
1) Refer to Switching T est Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section. Characterized initially and after any design or process changes that may affect these
parameters.
Capacitance (TA = 25°C, f = 1.0 MHz)
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
C
I
C
I/O
*Characterized but not 100% tested.
Input Capacitance 8 pF VCC = 5.0V , VI = 2.0V
I/O Capacitance 8 pF VCC = 5.0V , V
= 2.0V
I/O
10
Page 11
Specifications GAL22V10
Specifications GAL22V10B
Absolute Maximum Ratings
Supply voltage VCC....................................... -0.5 to +7V
Input voltage applied ...........................-2.5 to VCC +1.0V
Off-state output voltage applied ..........-2.5 to V
Storage Temperature .................................-65 to 150°C
Ambient T emperature with
Power Applied.........................................-55 to 125°C
1.Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).
1
Recommended Operating Conditions
Commercial Devices:
+1.0V
CC
Ambient T emperature (T Supply voltage (VCC)
with Respect to Ground ..................... +4.75 to +5.25V
) .............................0 to +75°C
A
Industrial Devices:
Ambient T emperature (T Supply voltage (V
CC
) ............................-40 to 85°C
A
)
with Respect to Ground ..................... +4.50 to +5.50V

DC Electrical Characteristics

Over Recommended Operating Conditions (Unless Otherwise Specified)
SYMBOL PARAMETER CONDITION MIN. TYP.3MAX. UNITS
VIL Input Low Voltage Vss – 0.5 0.8 V
VIH Input High Voltage 2.0 Vcc+1 V
1
IIL
Input or I/O Low Leakage Current 0V VIN VIL (MAX.) ——–100 µA
IIH Input or I/O High Leakage Current 3.5V VIN VCC ——10 µA
VOL Output Low V oltage IOL = MAX. Vin = VIL or VIH ——0.5 V
VOH Output High Voltage IOH = MAX. Vin = VIL or VIH 2.4 —— V
IOL Low Level Output Current ——16 mA IOH High Level Output Current ——–3.2 mA
2
IOS
Output Short Circuit Current VCC = 5V VOUT = 0.5V TA = 25°C 30 —–130 mA
COMMERCIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-7 90 140 mA
Supply Current f
toggle = 15MHz Outputs Open L-10/-15 90 130 mA
L-25 75 90 mA Q-15/-25 45 55 mA
INDUSTRIAL
ICC Operating Power VIL = 0.5V VIH = 3.0V L-15/-20/-25 90 150 mA
Supply Current f
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester
ground degradation. Characterized but not 100% tested.
3) T ypical values are at Vcc = 5V and TA = 25 °C
toggle = 15MHz Outputs Open
11
Page 12
Specifications GAL22V10
Specifications GAL22V10B
AC Switching Characteristics
AC SWITCHING CHARACTERISTICS
Over Recommended Operating Conditions
COM / IND
-25
MIN. MAX.
PARAM.
TEST
COND.
DESCRIPTION
1
COM COM COM / IND IND
-7
MIN. MAX.
-10
MIN. MAX.
-15
MIN. MAX.
-20
MIN. MAX.
tpd A Input or I/O to Comb. Output 3 7.5 3 10 3 15 3 20 3 25 ns tco A Clock to Output Delay 2 5 2 7 2 8 2 10 2 15 ns
2
tcf
Clock to Feedback Delay 2.5 2.5 2.5 8 13 ns
UNITS
tsu tsu
Setup Time, Input or Fdbk before Clk↑ 6.5 7 10 14 15 ns
1
Setup Time, SP before Clock 10 10 10 14 15 ns
2
th Hold Time, Input or Fdbk after Clk 0 0 0 0 0 ns
A Maximum Clock Frequency with 87 71.4 55.5 41.6 33.3 MHz
External Feedback, 1/(tsu + tco)
3
fmax
A Maximum Clock Frequency with 1 11 105 80 45.4 35.7 MHz
Internal Feedback, 1/(tsu + tcf)
A Maximum Clock Frequency with 1 11 105 83.3 50 38.5 MHz
No Feedback
twh Clock Pulse Duration, High 4 4 6 10 13 ns
twl Clock Pulse Duration, Low 4 4 6 10 13 ns
ten B Input or I/O to Output Enabled 3 8 3 10 3 15 3 20 3 25 ns
tdis C Input or I/O to Output Disabled 3 8 3 9 3 15 3 20 3 25 ns
tar A Input or I/O to Asynch. Reset of Reg. 3 13 3 13 3 20 3 25 3 25 ns
tarw Asynch. Reset Pulse Duration 8 8 15 20 25 ns
tarr Asynch. Reset to Clk Recovery Time 8 8 10 20 25 ns
tspr Synch. Preset to Clk Recovery Time 10 10 10 14 15 ns
1) Refer to Switching T est Conditions section.
2) Calculated from fmax with internal feedback. Refer to fmax Description section.
3) Refer to fmax Description section.
Capacitance (TA = 25°C, f = 1.0 MHz)
SYMBOL PARAMETER MAXIMUM* UNITS TEST CONDITIONS
C
I
C
I/O
*Characterized but not 100% tested.
Input Capacitance 8 pF VCC = 5.0V , VI = 2.0V
I/O Capacitance 8 pF VCC = 5.0V , V
12
= 2.0V
I/O
Page 13
INPUT or I/O FEEDBACK
REGISTERED OUTPUT
CLK
VALID INPUT
t
su
t
co
t
h
(external fdbk)
1/ fmax
Switching Waveforms
Specifications GAL22V10
INPUT or I/O FEEDBACK
COMBINATORIAL OUTPUT
INPUT or I/O FEEDBACK
OUTPUT
Input or I/O to Output Enable/Disable
VALID INPUT
Combinatorial Output
t
dis
t
pd
Registered Output
t
en
CLK
1/ fmax (internal fdbk)
t
cf t
REGISTERED FEEDBACK
su
CLK
INPUT or I/O FEEDBACK DRIVING SP
CLK
REGISTERED OUTPUT
Clock Width
t
wh
1/
f
(w/o fdbk)
t
su
max
fmax with Feedback
t
wl
INPUT or I/O FEEDBACK DRIVING AR
t
h
t
spr
CLK
t
co
REGISTERED OUTPUT
Asynchronous ResetSynchronous Preset
t
arw
t
ar
t
arr
13
Page 14
fmax Descriptions
Specifications GAL22V10
CLK
LOGIC ARRAY
t
su
REGISTER
t
co
fmax with External Feedback 1/(tsu+tco)
Note: fmax with external feedback is cal-
culated from measured tsu and tco.
CLK
LOGIC ARRAY
t
su + th
REGISTER
fmax with No Feedback
Note: fmax with no feedback may be less
than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.
CLK
LOGIC ARRAY
REGISTER
t
cf
t
pd
fmax with Internal Feedback 1/(tsu+tcf)
Note: tcf is a calculated value, derived by sub-
tracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combi­natorial output is equal to tcf + tpd.
14
Page 15
Switching Test Conditions
Specifications GAL22V10
Input Pulse Levels GND to 3.0V Input Rise and D-4/-5/-7, C-5 1.5ns 10% – 90% Fall Times D-10/-15/-20/-25 2.0ns 10% – 90%
B & C-7/-10
B-15/-20/-25 3ns 10% – 90% Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V Output Load See Figure
3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (except D-4) (see figure below)
T est Condition R
1 R2 CL
A 300 390 50pF B Active High 390Ω 50pF
Active Low 300 390Ω 50pF
C Active High 390Ω 5pF
Active Low 300 390Ω 5pF
+5V
GAL22V10D-4 Output Load Conditions (see figure below)
T est Condition R
1 CL
A50 50pF B Z to Active High at 1.9V 50 50pF
Z to Active Low at 1.0V 50 50pF
C Active High to Z at 1.9V 50 50pF
Active Low to Z at 1.0V 50 50pF
+1.45V
FROM OUTPUT (O/Q) UNDER TEST
TEST POINT
Z
= 50, CL*
0
R
1
R
1
FROM OUTPUT (O/Q) UNDER TEST
R
2
*C
INCLUDES TEST FIXTURE AND PROBE CAPACITANCE
L
C *
L
TEST POINT
15
Page 16
Specifications GAL22V10
Electronic Signature
An electronic signature (ES) is provided in every GAL22V10 device. It contains 64 bits of reprogrammable memory that can contain user-defined data. Some uses include user ID codes, revision numbers, or inventory control. The signature data is always available to the user independent of the state of the se­curity cell.
The electronic signature is an additional feature not present in other manufacturers' 22V10 devices. To use the extra feature of the user-programmable electronic signature it is necessary to choose a Lattice Semiconductor 22V10 device type when com­piling a set of logic equations. In addition, many device program­mers have two separate selections for the device, typically a GAL22V10 and a GAL22V10-UES (UES = User Electronic Sig­nature) or GAL22V10-ES. This allows users to maintain compat­ibility with existing 22V10 designs, while still having the option to use the GAL device's extra feature.
The JEDEC map for the GAL22V10 contains the 64 extra fuses for the electronic signature, for a total of 5892 fuses. However, the GAL22V10 device can still be programmed with a standard 22V10 JEDEC map (5828 fuses) with any qualified device pro­grammer.
Security Cell
A security cell is provided in every GAL22V10 device to prevent unauthorized copying of the array patterns. Once programmed, this cell prevents further read access to the functional bits in the device. This cell can only be erased by re-programming the device, so the original configuration can never be examined once this cell is programmed. The Electronic Signature is always avail­able to the user, regardless of the state of this control cell.
Output Register Preload
When testing state machine designs, all possible states and state transitions must be verified in the design, not just those required in the normal machine operations. This is because certain events may occur during system operation that throw the logic into an illegal state (power-up, line voltage glitches, brown-outs, etc.). To test a design for proper treatment of these conditions, a way must be provided to break the feedback paths, and force any desired (i.e., illegal) state into the registers. Then the machine can be sequenced and the outputs tested for correct next state condi­tions.
The GAL22V10 device includes circuitry that allows each regis­tered output to be synchronously set either high or low. Thus, any present state condition can be forced for test sequencing. If necessary, approved GAL programmers capable of executing test vectors perform output register preload automatically .
Input Buffers
GAL22V10 devices are designed with TTL level compatible in­put buffers. These buffers have a characteristically high imped­ance, and present a much lighter load to the driving logic than bi­polar TTL devices.
The input and I/O pins also have built-in active pull-ups. As a re­sult, floating inputs will float to a TTL high (logic 1). However, Lattice Semiconductor recommends that all unused inputs and tri-stated I/O pins be connected to an adjacent active input, Vcc, or ground. Doing so will tend to improve noise immunity and reduce Icc for the device. (See equivalent input and I/O schemat­ics on the following page.)
T ypical Input Current
Latch-Up Protection
GAL22V10 devices are designed with an on-board charge pump to negatively bias the substrate. The negative bias is of sufficient magnitude to prevent input undershoots from causing the circuitry to latch. Additionally , outputs are designed with n-channel pullups instead of the traditional p-channel pullups to eliminate any pos­sibility of SCR induced latching.
Device Programming
GAL devices are programmed using a Lattice Semiconductor­approved Logic Programmer, available from a number of manu­facturers (see the the GAL Development Tools section). Com­plete programming of the device takes only a few seconds. Eras­ing of the device is transparent to the user, and is done automati­cally as part of the programming cycle.
16
0
-20
-40
Input Current (uA)
-60 0
1.0 2.0 3.0 4.0 5.0
Input Voltage (Volts)
Page 17
Power-Up Reset
Specifications GAL22V10
Vcc
CLK
INTERNAL REGISTER
Q - OUTPUT
ACTIVE LOW
OUTPUT REGISTER
ACTIVE HIGH
OUTPUT REGISTER
Vcc (min.)
Circuitry within the GAL22V10 provides a reset signal to all reg­isters during power-up. All internal registers will have their Q out­puts set low after a specified time (tpr, 1µs MAX). As a result, the state on the registered output pins (if they are enabled) will be either high or low on power-up, depending on the programmed polarity of the output pins. This feature can greatly simplify state machine design by providing a known state on power-up. The timing diagram for power-up is shown below. Because of the asyn-
t
su
t
wl
pr
t
Internal Register Reset to Logic "0"
Device Pin Reset to Logic "1"
Device Pin Reset to Logic "0"
chronous nature of system power-up, some conditions must be met to guarantee a valid power-up reset of the GAL22V10. First, the Vcc rise must be monotonic. Second, the clock input must be at static TTL level as shown in the diagram during power up. The registers will reset within a maximum of tpr time. As in nor­mal system operation, avoid clocking the device until all input and feedback path setup times have been met. The clock must also meet the minimum pulse width requirements.
Input/Output Equivalent Schematics
PIN
Vcc
(Vref Typical = 3.2V)
ESD Protection Circuit
PIN
ESD Protection Circuit
Active Pull-up Circuit
Vcc
Vref
Vcc
T ypical Input T ypical Output
Data Output
Feedback
Tri-State Control
Active Pull-up Circuit
Vcc
Feedback (To Input Buffer)
PIN
(Vref Typical = 3.2V)
Vref
PIN
17
Page 18
Specifications GAL22V10
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1
1.05
1
0.95
Normalized TpdNormalized Tpd
0.9
RISE FALL
Normalized TcoNormalized Tco
5.55.2554.754.5
Normalized Tco vs Vcc
1.1
1.05
1
0.95
0.9
RISE FALL
1.05
0.95
Normalized TNormalized T su
5.55.2554.754.5 5.55.2554.754.5
Normalized Tsu vs Vcc
1.1
1
0.9
RISE FALL
Supply Voltage (V)Supply Voltage (V)Supply Voltage (V)
Normalized Tpd vs Temp Normalized Tco vs Temp Normalized Tsu vs Temp
1.3
1.2
1.1
0.9
0.8
RISE FALL
1
1251007550250-25-55
1.2
RISE
1.1
1
0.9
FALL
1251007550250-25-55
1.3
1.2
1.1
1
0.9
0.8
RISE FALL
1251007550250-25-55
Temperature (deg. C) Temperature (deg. C) Temperature (deg. C)
Delta Tpd vs # of Outputs
0
-0.1
-0.2
Delta Tpd (ns)
-0.3 12345678910
Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12
RISE FALL
Delta Tpd (ns)
8
4
0
-4
Output Loading (pF)
RISE FALL
Delta Tco vs # of Outputs
0
-0.1
-0.2
Delta Tco (ns)Delta Tco (ns)
-0.3
-0.4 12345678910
Switching
RISE FALL
Number of Outputs Switching
Delta Tco vs Output Loading
12
8
4
0
300250200150100500
-4
RISE FALL
300250200150100500
Output Loading (pF)
18
Page 19
Specifications GAL22V10
GAL22V10D-4/-5/-7/-10L (PLCC): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.6
0.4
Vol (V)
0.2
0
0 5 10 15 20 25 30 35 40
Iol (mA)
Normalized Icc vs Vcc
1.2
1.1
1
0.9
Normalized Icc
0.8
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Voh vs Ioh
4
3
2
Voh (V)
1
0
0 5 10 15 20 25 30 35 40 45 50 55 60
Ioh(mA)
Normalized Icc vs Temp
1.3
1.2
1.1
1
0.9
Normalized Icc
0.8
0.7
-55-25 0 255088100125
Temperature (deg. C)
Voh vs Ioh
3.95
3.85
3.75
3.65
3.55
Voh (V)
3.45
3.35
3.25
3.15
0.00 1.00 2.00 3.00 4.00 5.00
Ioh(mA)
Normalized Icc vs Freq
1.2
1.15
1.1
1.05
Normalized Icc
1
0.95 1 15255075100
Frequency (MHz)
Delta Icc vs Vin (1 input)
6
5
4
3
2
Delta Icc (mA)
1
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vin (V)
Iik (mA)
Input Clamp (Vik)
0
20
40
60
80
100
-3
-2.5 -2 -1.5 -1 -0.5 1
Vik (V)
19
Page 20
Specifications GAL22V10
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1
1.05
1
0.95
Normalized Tpd
0.9
4.5 4.75 5 5.25 5.5
RISE FALL
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
1.2
1.1
1
Normalized Tpd
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Normalized Tco vs Vcc
1.1
RISE
1.05
1
FALL
Normalized Tco
0.95
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Normalized Tco vs Temp
1.2
1.1
1
Normalized Tco
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.5 4.75 5 5.25 5.5
RISE FALL
Supply Voltage (V)
Normalized Tsu vs Temp
1.3
1.2
1.1
1
Normalized Tsu
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Delta Tpd vs # of Outputs
0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
Delta Tpd (ns)
-0.8
-0.9
-1
-1.1 12345678910
Switching
Number of Outputs Switching
Delta Tpd vs Output Loading
12
8
4
Delta Tpd (ns)
0
-4
RISE FALL
0 50 100 150 200 250 300
Output Loading (pF)
RISE FALL
Delta Tco vs # of Outputs
0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
Delta Tco (ns)
-0.8
-0.9
-1
-1.1 12345678910
Switching
Number of Outputs Switching
Delta Tco vs Output Loading
12
8
4
Delta Tco (ns)
0
-4 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
RISE FALL
20
Page 21
Specifications GAL22V10
GAL22V10D-7/10L (PDIP): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.5
0.4
0.3
0.2
Vol (V)
0.1
0
0 5 10 15 20 25 30
Iol (mA)
Normalized Icc vs Vcc
1.15
1.1
1.05
1
0.95
Normalized Icc
0.9
0.85
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Voh vs Ioh
4
3
2
Voh (V)
1
0
0 5 10 15 20 25 30 35 40
Ioh (mA)
Normalized Icc vs Temp
1.3
1.2
1.1
1
0.9
Normalized Icc
0.8
0.7
-55 0 25 100
Temperature (deg. C)
Voh vs Ioh
3.8
3.7
3.6
3.5
3.4
3.3
3.2
Voh (V)
3.1 3
2.9
2.8
0.00 1.00 2.00 3.00 4.00 5.00
Ioh (mA)
Normalized Icc vs Freq
1.2
1.15
1.1
1.05
Normalized Icc
1
0.95 1 15255075100
Frequency (MHz)
Delta Isb vs Vin (1 input)
10
9 8 7 6 5 4 3
Delta Icc (mA)
2 1 0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vin (V)
Input Clamp (Vik)
0 10 20 30 40 50 60
Iik (mA)
70 80 90
100
-2.5 -2 -1.5 -1 -0.5 0
Vik (V)
21
Page 22
Specifications GAL22V10
GAL22V10D-10Q and Slower (L & Q): Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.1
1.05
1
0.95
Normalized Tpd
0.9
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
1.2
1.1
1
0.9
Normalized Tpd
0.8
RISE FALL
-55 -25 0 25 50 75 100 125
Temperature (deg. C)
RISE FALL
Normalized Tco vs Vcc
1.15
1.1
1.05
1
Normalized Tco
0.95
0.9
4.5 4.75 5 5.25 5.5
RISE FALL
Supply Voltage (V)
Normalized Tco vs Temp
1.3
1.2
1.1
1
Normalized Tco
0.9
0.8
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Normalized Tsu vs Temp
1.45
1.35
1.25
1.15
1.05
0.95
Normalized Tsu
0.85
0.75
-55 -25 0 25 50 75 100 125
RISE FALL
Temperature (deg. C)
RISE FALL
Delta Tpd vs # of Outputs
0
-0.4
-0.8
Switching
Delta Tpd (ns)
-1.2 12345678910
Number of Outputs Switching
Delta Tpd vs Output Loading
20
Delta Tpd (ns)
16 12
8 4 0
-4
-8
RISE FALL
0 50 100 150 200 250 300
Output Loading (pF)
RISE FALL
Delta Tco vs # of Outputs
0
-0.4
-0.8
Switching
Delta Tco (ns)
-1.2 12345678910
Number of Outputs Switching
Delta Tco vs Output Loading
20
16
12
8
4
Delta Tco (ns)
0
-4 0 50 100 150 200 250 3 00
RISE FALL
Output Loading (pF)
RISE FALL
22
Page 23
Specifications GAL22V10
GAL22V10DQ-10 and Slower (L & Q): Typical AC and DC Characteristic Diagrams
Vol vs Iol
0.6
0.4
Vol (V)
0.2
0
0 5 10 15 20 25 30 35 4 0
Iol (mA)
Normalized Icc vs Vcc
1.2
1.1
1
0.9
Normalized Icc
0.8
4.5 4.75 5 5.25 5.5
Supply Voltage (V)
Voh vs Ioh
4.5 4
3.5 3
2.5 2
Voh (V)
1.5 1
0.5 0
0204060
Ioh (mA)
Normalized Icc vs Temp
1.35
1.25
1.15
1.05
0.95
Normalized Icc
0.85
0.75
-55 -25 0 25 50 88 100 125
Temperature (deg. C)
Voh vs Ioh
4.5
4
3.5
Voh (V)
3
2.5
0.00 1.00 2.00 3.00 4.00 5.00
Ioh (mA)
Normalized Icc vs Freq
1.4
1.3
1.2
1.1
Normalized Icc
1
0.9 1 15255075100
Frequency (MHz)
Delta Icc vs Vin (1 input)
7
6
5
4
3
2
Delta Icc (mA)
1
0
00.511.522.533.544.55
Vin (V)
Input Clamp (Vik)
0 10 20 30 40 50
Iik (mA)
60 70 80 90
-2.5 -2 -1.5 -1 -0.5 0
Vik (V)
23
Page 24
Specifications GAL22V10
GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.2
1.1
1
0.9
Normalized Tpd
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
1.2
1.1
1
0.9
Normalized Tpd
0.8
0.7
-55 -25 0 25 50 7 5 100 125
PT H->L PT L->H
Temperature (deg. C)
PT H->L PT L->H
Normalized Tco vs Vcc
1.2
1.1
1
0.9
Normalized Tco
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tco vs Temp
1.3
1.2
1.1
1
0.9
Normalized Tco
0.8
0.7
-55 -25 0 25 50 7 5 100 125
RISE FALL
Temperature (deg. C)
RISE FALL
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.50 4.75 5.00 5.25 5.50
PT H->L PT L->H
Supply Voltage (V)
Normalized Tsu vs Temp
1.4
1.3
1.2
1.1 1
0.9
Normalized Tsu
0.8
0.7
-55 -25 0 25 50 75 100 125
PT H->L PT L->H
Temperature (deg. C)
Delta Tpd vs # of Outputs
Switching
0
-0.25
-0.5
-0.75
-1
Delta Tpd (ns)
-1.25
-1.5 12345678910
Number of Outputs Switching
Delta Tpd vs Output Loading
12 10
8 6 4 2
Delta Tpd (ns)
0
-2 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
RISE FALL
Delta Tco vs # of Outputs
Switching
0
-0.25
-0.5
-0.75
Delta Tco (ns)
-1 12345678910
Number of Outputs Switching
Delta Tco vs Output Loading
12 10
8 6 4 2
Delta Tco (ns)
0
-2 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
RISE FALL
24
Page 25
Specifications GAL22V10
GAL22V10C-5/-7/-10: Typical AC and DC Characteristic Diagrams
Vol vs Iol
3
2.5
2
1.5
Vol (V)
1
0.5
0
0.00 20.00 40.00 60.00 80.00 100.00
Iol (mA)
Normalized Icc vs Vcc
1.20
1.10
1.00
0.90
Normalized Icc
0.80
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Voh vs Ioh
5
4
3
2
Voh (V)
1
0
0.00 10.00 20.00 30.00 40.00 50.00 60.00
Ioh(mA)
Normalized Icc vs Temp
1.2
1.1
1
0.9
Normalized Icc
0.8
-55 -25 0 25 50 75 100 125
Temperature (deg. C)
Voh vs Ioh
4
3.75
3.5
Voh (V)
3.25
3
0.00 1.00 2.00 3.00 4.00
Ioh(mA)
Normalized Icc vs Freq.
1.30
1.20
1.10
1.00
Normalized Icc
0.90 0 25 50 75 100
Frequency (MHz)
Delta Icc vs Vin (1 input)
10
8
6
4
Delta Icc (mA)
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Vin (V)
Input Clamp (Vik)
0 10 20 30 40
Iik (mA)
50 60 70
-2.50 -2.00 -1.50 -1.00 -0.50 0.00
Vik (V)
25
Page 26
Specifications GAL22V10
GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.2
1.1
1
0.9
Normalized Tpd
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
-55
-25
PT H->L PT L->H
0
25
50
75
1.2
1.1
1
0.9
Normalized Tpd
0.8
0.7
Temperature (deg. C)
PT H->L PT L->H
100
125
Normalized Tco vs Vcc
1.2
1.1
1
0.9
Normalized Tco
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tco vs Temp
1.3
-25
RISE FALL
0
25
50
75
1.2
1.1
1
0.9
Normalized Tco
0.8
0.7
-55
Temperature (deg. C)
RISE FALL
100
125
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.50 4.75 5.00 5.25 5.50
PT H->L PT L->H
Supply Voltage (V)
Normalized Tsu vs Temp
1.4
1.3
1.2
1.1 1
0.9
Normalized Tsu
0.8
0.7
-55
-25
PT H->L PT L->H
0
25
50
75
Temperature (deg. C)
100
125
Delta Tpd vs # of Outputs
Switching
0
-0.5
-1
-1.5
Delta Tpd (ns)
-2 12345678910
Number of Outputs Switching
Delta Tpd vs Output Loading
12 10
8 6 4 2
Delta Tpd (ns)
0
-2 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
RISE FALL
Delta Tco vs # of Outputs
Switching
0
-0.5
-1
-1.5
Delta Tco (ns)
-2 12345678910
Number of Outputs Switching
Delta Tco vs Output Loading
12 10
8 6 4 2
Delta Tco (ns)
0
-2 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
RISE FALL
26
Page 27
Specifications GAL22V10
GAL22V10B-7/-10/-15/-25L: Typical AC and DC Characteristic Diagrams
Vol vs Iol
3
2.5
2
1.5
Vol (V)
1
0.5
0
0.00 20.00 40.00 60.00 80.00 100.00
Iol (mA)
Normalized Icc vs Vcc
1.20
1.10
1.00
0.90
Normalized Icc
0.80
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Voh vs Ioh
5
4
3
2
Voh (V)
1
0
0.00 10.00 20.00 30.00 40.00 50.00 60.00
Ioh(mA)
Normalized Icc vs Temp
1.2
1.1
1
0.9
Normalized Icc
0.8
-55 -25 0 25 50 75 100 125
Temperature (deg. C)
Voh vs Ioh
4.5
4.25
4
Voh (V)
3.75
3.5
0.00 1.00 2.00 3.00 4.00
Ioh(mA)
Normalized Icc vs Freq.
1.20
1.10
1.00
0.90
Normalized Icc
0.80 0 25 50 75 100
Frequency (MHz)
Delta Icc vs Vin (1 input)
10
8
6
4
Delta Icc (mA)
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
Vin (V)
Input Clamp (Vik)
0 10 20 30 40 50 60
Iik (mA)
70 80 90
100
-2.00 -1.50 -1.00 -0.50 0.00
Vik (V)
27
Page 28
Specifications GAL22V10
GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams
Normalized Tpd vs Vcc
1.2
1.1
1
0.9
Normalized Tpd
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tpd vs Temp
1.3
1.2
1.1
1
0.9
Normalized Tpd
0.8
0.7
-55
-25
0
25
50
75
Temperature (deg. C)
100
125
Normalized Tco vs Vcc
1.2
1.1
1
0.9
Normalized Tco
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tco vs Temp
1.3
1.2
1.1
1
0.9
Normalized Tco
0.8
0.7
-55
-25
0
25
50
75
Temperature (deg. C)
100
125
Normalized Tsu vs Vcc
1.2
1.1
1
0.9
Normalized Tsu
0.8
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Normalized Tsu vs Temp
1.4
1.3
1.2
1.1 1
0.9
Normalized Tsu
0.8
0.7
-55
-25
0
25
50
75
Temperature (deg. C)
100
125
Delta Tpd vs # of Outputs
Switching
0
-0.25
-0.5
-0.75
Delta Tpd (ns)
-1 12345678910
Number of Outputs Switching
Delta Tpd vs Output Loading
12 10
8 6 4 2
Delta Tpd (ns)
0
-2 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
Delta Tco vs # of Outputs
Switching
0
-0.5
-1
-1.5
Delta Tco (ns)
-2 12345678910
Number of Outputs Switching
Delta Tco vs Output Loading
14 12 10
8 6 4 2
Delta Tco (ns)
0
-2 0 50 100 150 200 250 300
RISE FALL
Output Loading (pF)
28
Page 29
Specifications GAL22V10
GAL22V10B-15/-25Q: Typical AC and DC Characteristic Diagrams
Vol vs Iol
1
0.8
0.6
0.4
Vol (V)
0.2
0
0.00 20.00 40.00
Iol (mA)
Normalized Icc vs Vcc
1.20
1.10
1.00
0.90
Normalized Icc
0.80
4.50 4.75 5.00 5.25 5.50
Supply Voltage (V)
Voh vs Ioh
5
4
3
2
Voh (V)
1
0
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00
Ioh(mA)
Normalized Icc vs Temp
1.3
1.2
1.1
1
0.9
Normalized Icc
0.8
0.7
-55 -25 0 25 75 100 125
Temperature (deg. C)
Voh vs Ioh
4
3.75
3.5
Voh (V)
3.25
3
0.00 1.00 2.00 3.00 4.00
Ioh(mA)
Normalized Icc vs Freq.
2.00
1.80
1.60
1.40
1.20
Normalized Icc
1.00
0.80 0 25 50 75 100
Frequency (MHz)
Delta Icc vs Vin (1 input)
10
8
6
4
Delta Icc (mA)
2
0
0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70
Vin (V)
Input Clamp (Vik)
0 10 20 30 40 50
Iik (mA)
60 70 80 90
-2.00 -1.50 -1.00 -0.50 0.00
Vik (V)
29
Loading...