Datasheet FDP120AN15A0, FDD120AN15A0 Datasheet (Fairchild)

Page 1
FDP120AN15A0 / FDD120AN15A0
N-Channel PowerTrench® MOSFET 150V, 14A, 120m
FDP120AN15A0 / FDD120AN15A0
September 2002
Features
•r
•Qg(tot) = 11.2nC (Typ.), V
• Low Miller Charge
• Low Qrr Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
= 101mΩ (Typ.), V
DS(ON)
= 10V, ID = 4A
GS
= 10V
GS
Applications
• DC/D C C onverter s an d Of f-line UPS
• Distributed Power Ar chitectures and VRMs
• Primary Switch for 24V and 48V Systems
• High Voltage Synchronous Re ctifier
• Direct Injection / Diesel Injection Systems
• Elec tr on ic Valve Train Syst e m s
Formerly developmental type 82845
DRAIN
(FLANGE)
TO-220AB
FDP SERIES
SOURCE
DRAIN
GATE
MOSFET Maximum Ratings
GATE
SOURCE
TO-252AA
FDD SERIES
TC = 25°C unless otherwise noted
DRAIN
(FLANGE)
D
G
S
Symbol Parameter Ratings Units
V
DSS
V
GS
Drain to Source Voltage 150 V Gate to Source Voltage ±20 V Drain Curr e nt Continuous (T
I
D
Continuous (T Continuous (T
= 25oC, VGS = 10V)
C
= 100oC, VGS = 10V) 9.7 A
C
= 25oC, VGS = 10V) with R
amb
= 52oC/W 2.8 A
θJA
14 A
Pulsed Figure 4 A
E
AS
P
D
, T
T
J
STG
Single Pulse Avalanche Energy (Note 1) 122 mJ Power dissipation 65 W Derate above 25oC0.43W/ Operating and Storage Temperature -55 to 175
o
C
o
C
Thermal Characteristi cs
R
θJC
R
θJA
R
θJA
R
θJA
Thermal Resistance Junction to Case T O -252, TO-220 2.31 Thermal Resistance Junction to Ambien t TO-252 100 Thermal Resistance Junction to Ambient TO-220 (Note 2) 62 Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad ar ea 52
Reliability data can be fou nd a t: http://ww w.f airc hilds e m i.co m /pr oduc ts/dis c rete/reliab ility/ind ex.html.
o
C/W
o
C/W
o
C/W
o
C/W
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 2
Package Marking and Ordering Information
Device Marking Device Package Reel Size Tape Width Quantity
FDD12 0AN 1 5A0 FDD12 0AN15A0 TO-252AA 330mm 16mm 2500 un its FDP120AN15A0 FDP120AN15A0 TO- 220AB Tube N/A 50 unit s
FDP120AN15A0 / FDD120AN15A0
Electrical Characteristics
TC = 25°C unless otherwise not ed
Symbol Parameter Test Conditions Min Typ Max Units
Off Characteristics
B I
DSS
I
GSS
VDSS
Drain to Sou r c e Br ea k down Voltag e ID = 250µA, VGS = 0V 150 - - V
V
= 120V - - 1
Zero Gate Voltage Drain Current
DS
= 0V TC = 150oC- -250
V
GS
Gate to Source Leakage Current VGS = ±20V - - ±100 nA
On Characteristics
V
GS(TH)
r
DS(ON)
Gate to Source Threshold Voltage VGS = VDS, ID = 250µA2-4V
ID = 4A, VGS = 10V - 0.101 0.120 I
= 2A, VGS = 6V - 0.113 0.170
Drain to S ou r c e On Re si st ance
D
= 4A, VGS = 10V,
I
D
T
= 175oC
J
- 0.235 0.282
Dynamic Characteristics
C C C Q Q Q Q Q
ISS OSS RSS
g(TOT) g(TH) gs gs2 gd
Input Capacitance Output Capacitance - 85 - pF Reverse Transfer Capacitance - 17 - pF
V
= 25V, VGS = 0V,
DS
f = 1MHz
Total Gate Charge at 10V VGS = 0V to 10V Threshold Gate Charge VGS = 0V to 2V - 1.4 1.8 nC Gate to Source Gate Charg e - 3.5 - nC Gate Charge Threshold to Plateau - 2.1 - nC
VDD = 75V ID = 4A I
= 1.0m A
g
Gate to Drain “Miller” Charge - 2.6 - nC
-770- pF
11.2 14.5 nC
µA
Switching Characteristics
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time Turn-On Delay Time - 6 - ns Rise Time - 16 - ns Turn-Off Delay Ti me - 30 - ns Fall Time - 19 - ns Turn-Off T ime - - 74 ns
(VGS = 10V)
Drain-Source Diode Characteristics
V
SD
t
rr
Q
RR
Notes: 1: Starting TJ = 25°C, L = 27mH, IAS = 3A. 2: Pulse width = 100s.
Source to Drain Diode Voltage Reverse Recovery Time ISD = 4A, dISD/dt = 100A/µs--61ns
Reverse Recovered Charge ISD = 4A, dISD/dt = 100A/µs - - 109 nC
- - 33 ns
VDD = 75V, ID = 4A VGS = 10V, RGS = 24
I
= 4A - - 1.25 V
SD
= 2A - - 1.0 V
I
SD
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 3
FDP120AN15A0 / FDD120AN15A0
Typical Characteristics
TC = 25°C unless otherwise not ed
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0255075100 175
125
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
10
15
12
9
6
, DRAIN CURRENT (A)
D
I
3
150
0
25 50 75 100 125 150 175
Figure 2. Maximum Continuous Drain Curr ent vs
-3
t, RECTANGULAR PULSE DURATION (s)
-2
10
TC, CASE TEMPERATURE (oC)
Case Temperature
P
DM
NOTES: DUTY FACTOR: D = t1/t PEAK TJ = PDM x Z
-1
10
θJC
10
x R
0
t
1
t
2
2
+ T
θJC
C
1
10
Figure 3. Normalized Maximum Transient Thermal Impedance
200
TRANSCONDUCTANCE
100
MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
, PEAK CURRENT (A)
DM
I
10
-5
10
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
175 - T
I = I
25
10
C
150
0
1
10
Figure 4. Peak Current Capability
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 4
Typical Characteristics
FDP120AN15A0 / FDD120AN15A0
TC = 25°C unless otherwise not ed
100
10
OPERATION IN THIS
1
, DRAIN CURRENT (A)
D
I
0.1
AREA MAY BE
LIMITED BY r
SINGLE PULSE TJ = MAX R ATED
TC = 25oC
1 10 100
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
10ms
10µs
100µs
1ms
DC
Figure 5. Forward Bias Safe Operating Area
30
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
25
V
= 15V
DD
20
15
50
If R = 0
200
tAV = (L)(IAS)/(1.3*RATED BV If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BV
10
, AVALANCHE CURRENT (A)
AS
I
1
STARTING TJ = 150oC
0.01 0.1 1 tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
30
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
25
TC = 25oC
20
15
VGS = 10V
VGS = 7V
VGS = 6V
10
, DRAIN CURRENT (A)
D
I
5
0
TJ = 25oC
TJ = 175oC
34567
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = -55oC
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
140
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
130
120
110
100
DRAIN TO SOURCE ON RESISTANCE(mΩ)
90
03691215
VGS = 6V
VGS = 10V
ID, DRAIN CURRENT (A)
Figure 9. Drain to So urce On Resistanc e v s Drai n
Current
10
, DRAIN CURRENT (A)
D
I
5
0
012345
2.5
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
TJ, JUNCTION TEMPERATURE (oC)
VGS = 5V
VGS = 10V, ID = 4A
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 5
FDP120AN15A0 / FDD120AN15A0
Typical Characteristics
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
TC = 25°C unless otherwise not ed
VGS = VDS, ID = 250µA
Figure 11. Normalized G ate Threshol d Voltage vs
Junction Temperatur e
1000
C
= CGS + C
ISS
C
C
+ C
OSS
DS
GD
100
C
= C
RSS
GD
C, CAPACITANCE (pF)
10
V
= 0V, f = 1MHz
GS
5
0.1 1 10 150 VDS, DRAIN TO SOURCE VOLTAG E (V)
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTA GE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
10
VDD = 75V
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
04812
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 14A ID = 4A
Figure 13. Capacitance vs Drain to Sour ce
Voltage
Figure 14. Gat e Charge Waveforms for Constant
Gate Currents
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 6
Test Circuits and Waveforms
V
DS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
R
AS
G
+
V
DD
-
I
AS
DUT
t
0V
P
I
AS
0.01
0
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
V
DS
V
DD
V
Q
I
g(REF)
L
V
GS
DUT
+
V
DD
-
V
0
I
g(REF)
GS
= 2V
Q
gs2
Q
g(TH)
Q
gs
0
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
BV
DSS
t
P
t
AV
Q
g(TOT)
DS
gd
V
GS
FDP120AN15A0 / FDD120AN15A0
V
DS
V
DD
V
= 10V
GS
V
DS
R
L
V
GS
R
GS
V
GS
DUT
+
V
DD
-
V
DS
0
V
GS
10%
0
t
d(ON)
90%
t
ON
t
t
r
10%
PULSE WIDTH
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
d(OFF)
90%
t
OFF
t
f
90%
10%
50%50%
Page 7
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, T must be reviewed to ensure that TJM is never exceeded.
(oC), and th ermal res istance R
A
θJA
(oC/W)
Equation 1 mathematically represents the relationship and serve s as the basis for establishing the rating of the part.
P
DM
TJMTA–()
----------------- ------------=
R
θJA
(EQ. 1)
125
100
C/W)
o
(
75
θJA
R
50
R
= 33.32+ 23.84/(0.268+Area) EQ.2
θJA
R
= 33.32+ 154/(1.73+Area) EQ.3
θJA
FDP120AN15A0 / FDD120AN15A0
In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power d issipati on rating s. Precise d etermin ation of P comple x and infl uenced by many factors:
DM
is
1. Mou nting pad area onto which the device is attach ed and whet her the re is copp er on one s ide or both side s of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For no n steady state applic ations, th e pulse widt h, the duty cycle and the transient ther mal resp onse of the part, the boa rd and the environment they are in.
Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the R copper (component side) area. This is for a horizontally
for the device as a function of the top
θJA
positi on ed FR-4 board w i th 1 oz c opper af ter 100 0 se c on ds of stea dy st ate pow er w ith n o air flow . Th is gr aph prov ides the necessary i nformation for calculat ion of th e steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice t hermal model or manually u tilizing the normalized maximum transient thermal impedance curve.
25
0.01 0.1 1 10 (0.645) (6.45) (64.5)(0.0645)
AREA, TOP COPPER AREA in2 (cm2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
Therma l resistances corresp onding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inch es squ are and equ ation 3 is for area in cent imeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.
23.84
R
R
θJA
θJA
=
=
33.32
33.32
-------------------------------------+
0.268 Area+()
Area in Inches Squared
154
----------------------------------+
1.73 Area+()
Area in Centimeters Squared
(EQ. 2)
(EQ. 3)
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 8
PSPICE Electrical Model
.SUBCKT FDD120AN15A0 2 1 3 ; rev July 2002 Ca 12 8 2.5e-10 Cb 15 14 2.5e-10 Cin 6 8 7.5e-10
Dbod y 7 5 DbodyM OD Dbreak 5 11 Db reakMOD Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 162 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1
It 8 17 1 Lgat e 1 9 3e-9
Ldrain 2 5 1.0e -9 Lsou rce 3 7 2e-9 RLgate 1 9 30 RLdr ai n 2 5 10 RLsource 3 7 20
Mmed 16 6 8 8 M m edMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 6.55e-2 Rgate 9 20 3.6 RSLC1 5 51 RSL CM OD 1.0e-6 RSLC2 5 50 1.0e 3 Rsource 8 7 RsourceMOD 2.8e-2 Rvthres 22 8 RvthresMO D 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BM OD S2a 6 15 14 13 S2AM OD S2b 13 15 14 13 S2BM OD
GATE
1
LGATE
RLGATE
9
RGATE
CA
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
-
13
10
6 8
+
+
RSLC2
6
S2A
14 13
S2B
6 8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
­50
RDRAIN
16
8
MMED
8
DBREAK
11
+
17
EBREAK
IT
18
-
MWEAK
RSOURCE
RBREAK
17 18
RVTHRES
7
+
RVTEMP 19
-
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
FDP120AN15A0 / FDD120AN15A0
Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51))) *(PWR(V(5,51)/(1e-6 *25),3))} .MODEL DbodyMOD D (IS=4E-12 N=1.07 RS=6.5e-3 TRS1=3.0e-3 TRS2=1.5e-6
+ CJO=5.5e-10 M=0.65 TT=5e -8 X T I=4.2) .MODEL DbreakMOD D (RS=0.5 TRS1=1e-3 TRS2=-1e- 6) .MODEL Dpl capMOD D (CJO=1.56e-10 IS=1.0e-30 N=10 M=0.62)
.MODEL MmedM OD NMOS (VTO=3.6 KP=1.8 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3. 6) .MODEL MstroMOD NMOS (VTO =4.4 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL Mwe akMOD NMOS (VTO =3.14 KP=0. 02 IS=1e-30 N= 10 T OX=1 L=1u W=1u RG=36 RS=0.1)
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-1e-6) .MODEL Rd rai nMOD RES (TC1=8.5e-3 TC 2=2.5e-5) .MODEL RSLCMOD RES (TC1=3.4e-3 TC2=1.5e-6) .MODEL RsourceMOD RES (TC1=4.1e-3 TC 2=1e-6) .MODEL RvthresMOD RES (TC1=-3.6e -3 T C2=-1.4e-5 ) .MODEL RvtempMOD RES (T C1=-4.1e-3 TC2=1.5e-6)
.MODEL S1AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 6. 0 VOFF =-4 .0 ) .MODEL S1BMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 4. 0 VOFF =-6 .0 ) .MODEL S2AMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 2. 5 VOFF =-0 .5 ) .MODEL S2BMOD VSWITC H (RON =1e - 5 ROFF= 0. 1 VON=- 0. 5 VOFF =-2 .5 )
.ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electroni cs Specialist Conference Records, 1991, written by Wil liam J. Hepp and C. F rank Wheatley.
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 9
SABER Electrical Model
REV July 2002 template FDD 120AN15A0 n2, n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=4e-12,nl=1.07,rs=6.5e-3,trs1=3.0e-3,trs2=1.5e-6,cjo=5.5e-10,m=0.65,tt=5e-8,xti=4.2) dp..model dbreakmod = (rs=0.5,trs1=1e-3,trs2=-1e-6) dp..model dplcapmod = (cjo=1.56e-10,isl=10.0e-30,nl=10,m=0.62) m..model mmedmod = (type=_n,vto=3.6,kp=1.8,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.4,kp=30,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3.14,kp=0.02,is=1e-30, tox=1,rs=0.1) sw_vcsp.. mo del s1amod = (ron=1e-5,roff=0. 1, von=-6.0,voff=-4.0) sw_vcsp.. mo del s1bmod = (ron=1e-5,roff=0. 1, von=-4.0,voff=-6.0) sw_vcsp.. mo del s2amod = (ron=1e-5,roff=0. 1, von=-2.5,voff=-0.5) sw_vcsp.. mo del s2bmod = (ron=1e-5,roff=0. 1, von=-0.5,voff=-2.5) c.ca n12 n8 = 2.5e-10 c.cb n15 n14 = 2.5e-10 c.cin n6 n8 = 7.5e -10
dp.dbody n7 n5 = model=dbodym od dp.dbreak n5 n11 = model=dbr eakmod dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 162 spe.eds n14 n8 n5 n8 = 1
GATE
spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1
LGATE
1
RLGATE
9
RGATE
ESG
EVTEMP +
20
18 22
spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1 l.lgate n1 n9 = 3e -9
l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2e-9
S1A
12
S1B
CA
res.rlgate n1 n9 = 30 res.rldrai n n2 n5 = 10 res.rlsource n3 n7 = 20
m.mmed n16 n6 n8 n8 = m odel=mmedm od, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l= 1u, w=1u m.mweak n16 n21 n8 n8 = model=mwea kmod, l=1u, w=1u
DPLCAP
10
RSLC2
­6
8
EVTHRES
+
+
19
8
6
-
S2A
13
14
8
13
S2B
13
+
+
6
EGS EDS
8
-
-
5
RSLC1
51
ISCL
8
MMED
8
DBREAK
11
MWEAK
EBREAK
+
RSOURCE
RBREAK
17 18
IT
RVTHRES
17 18
­7
-
+
22
50 RDRAIN
16
21
-
MSTRO
CIN
15
CB
14
+
5 8
-
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
RVTEMP 19
VBAT
DRAIN
2
SOURCE
3
FDP120AN15A0 / FDD120AN15A0
res.rbreak n17 n18 = 1, tc1=1.1e- 3,tc2=-1e-6 res.rdrain n50 n16 = 6.55e-2, tc 1=8.5e-3,tc 2=2.5e-5 res.rgat e n9 n20 = 3.6 res.rslc1 n5 n51 = 1.0e-6, tc1=3.4e-3,tc2 =1.5e-6 res.rslc2 n5 n50 = 1.0e3 res.rsour ce n8 n7 = 2.8e-2, tc1= 4. 1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-3.6e-3,tc2=-1. 4e-5 res.rvtemp n18 n19 = 1, tc1=-4.1e-3,tc2=1.5e-6 sw_vcsp.s1 a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1 b n13 n12 n13 n8 = mode l= s1bmod sw_vcsp.s2 a n6 n15 n14 n13 = mode l= s2amod sw_vcsp.s2 b n13 n15 n14 n13 = model = s2bmod
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5 ,n51))))*(( abs(v(n5,n51)*1e6/25) )** 3)) }
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 10
FDP120AN15A0 / FDD120AN15A0
SPICE Thermal Model
REV 23 July 2002 FDD120AN15A0T CTHERM1 TH 6 1.2e-3
CTHERM2 6 5 2e-3 CTHERM3 5 4 2. 5e-3 CTHERM4 4 3 3. 15e-3 CTHERM5 3 2 3. 3e-3 CTHERM6 2 TL 1.35e-2
RTHERM1 TH 6 6.8e-2 RTHERM2 6 5 1. 18e-1 RTHERM3 5 4 2. 28e-1 RTHERM4 4 3 3. 28e-1 RTHERM5 3 2 5. 28e-1 RTHERM6 2 TL 5.78e-1
SABER Thermal Model
SABER therm a l model FDD120A N15A0T template thermal_model th tl thermal_ c th , tl { ctherm.c th erm 1 th 6 =1.2e-3 ctherm.ctherm2 6 5 =2e-3 ctherm.ctherm3 5 4 =2.5e-3 ctherm.ctherm4 4 3 =3.15e-3 ctherm.ctherm5 3 2 =3.3e-3 ctherm.ctherm6 2 tl =1.35e- 2
rtherm.rtherm1 th 6 =6.8e-2 rtherm.rtherm 2 6 5 =1 . 18e-1 rtherm.rtherm 3 5 4 =2 . 28e-1 rtherm.rtherm 4 4 3 =3 . 28e-1 rtherm.rtherm 5 3 2 =5 . 28e-1 rthe r m.rthe rm6 2 tl =5. 7 8e-1 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
FDP120AN15A0 / FDD120AN15A0 Rev. C0©2002 Fairchild Semiconductor Corporation
Page 11
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ ActiveArray™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™
2
E
CMOS™ EnSigna™ Across the board. Around the world.™ The Power F ranchise™ Programma ble Active Droop™
FACT™ FACT Quiet Series™
®
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™
2
I
C™
ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC
®
OPTOPLANAR™
PACMAN™ POP™ Power247™ PowerTrench
®
QFET™ QS™ QT Optoelectronics™ Quiet Se ries™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™
SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET
®
VCX™
®
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) ar e int ende d fo r s urgic al i mpla nt into the bo dy, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A c r it ic al c om ponent i s any com po ne n t o f a l ife supp or t device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Adva nce Information Formative or In
Design
Preliminary First Production This datasheet contain s preliminary data, and
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Obsolete Not In Producti on This datash eet contains speci fications on a product
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
supple m entary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Semiconductor reserves the right to make changes at any time without notice in order to improve design.
that has been disco ntinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I1
Loading...