Datasheet ETL9444 Datasheet (SGS Thomson Microelectronics)

Page 1
4-BIT NMOS MICROCONTROLLERS
.LOWCOST
.POWERFUL INSTRUCTIONSET
.2k x8 ROM, 128 x 4 RAM
.23 I/OLINES (ETL9444)
TART
.THREE-LEVELSUBROUTINESTACK
.16µs INSTRUCTIONTIME
.SINGLESUPPLYOPERATION(4.5-6.3V)
.LOWCURRENT DRAIN(13mA max.)
.INTERNALTIME-BASECOUNTER FORREAL-
TIMEPROCESSING
.INTERNAL BINARY COUNTER REGISTER
WITHMICROWIRESERIALI/O CAPABILITY
.GENERALPURPOSE AND TRI-STATE
PUTS
OUT-
.LSTTL/CMOSCOMPATIBLEIN AND OUT
.DIRECTDRIVEOFLEDDIGITAND SEGMENT
LINES
.SOFTWARE/HARDWARE COMPATIBLE
WITHOTHER MEMBERSOF ET9400 FAMILY
.EXTENDED TEMPERATURE RANGE DE-
VICES ETL9344/L9345 (– 40°Cto+85°C)
.WIDERSUPPLYRANGE (4.5 – 9.5V)
OPTIONALLY AVAILABLE
.SOIC 24/28 AND PLCC 28 PACKAGES AVAI-
LABLE
DESCRIPTION
The ETL9444/L9445 and ETL9344/L9345 Single­Chip N-Channel Microcontrollers are fully compati­ble with the COPSfamily, fabricated using N-channel,silicongateXMOStechnology. Theyare complete microcomputers containing all system ti­ming, internal logic,ROM, RAMand I/O necessary to implement dedicated control functionsin avariety of applications. Featuresinclude single supply ope­ration,avarietyof outputconfiguration options, with an instruction set, internal architecture and I/O scheme designed to facilitate keyboard input, dis­play output and BCD data manipulation. The ETL9445isidenticalto theETL9444, exceptwith19 I/O lines instead of 23 : They are an appropriate choicefor use innumerous humaninterface control environments. Standard test procedures and relia­ble high-density fabrication techniques provide the medium to large volume customerswith a customi-
ETL9444/ETL9445 ETL9344/ETL9345
ETL9444/ETL9344
N
(PlasticPackage)
ETL93 45/ETL9345
N
(PlasticPackage)
PIN CONNECTION
May1989
1/27
Page 2
ETL9444/9445–ETL9344/9345
zed controller oriented processor at a low end-pro­duct cost.
Figure 1 : BlockDiagram (28-pin version).
The ETL9344/L9345 are exact functional equiva­lents, but extended temperature range versions of theETL9444/L9445 respectively.
2/27
Page 3
ETL9444/9445–ETL9344/9345
ETL944 4/L9445
ABSOLUTE M AXI MUM RATI NG S
Symbol Paramet e r Valu e Unit
Voltage at any Pin Relative to GND – 0.5 to + 10 V Ambient Operating Temperature 0 to + 70 °C Ambient Storage Temperature – 65 to + 150 °C Lead Temperature (soldering, 10 seconds) 300 °C Power Dissipation 0.75W at 25°C
0.4W at 70°C Total Source Current 120 mA Total Sink Current 120 mA
Absolute maximum ratings indicate limits beyond whichdamage to the device mayoccur. DC and AC electrical specifications are not en­sured when operating the device at absolute maximum ratings.
DC ELECTRICAL CHARACTERISTICS 0°C TA≤ +70°C, 4.5V VCC≤ 9.5V (unless otherwise specified)
Parameter Test Conditions Min. Max. Unit
Standard Operating Voltage (V Optional Operating Voltage (V Power Supply Ripple Operating Supply Current
Input Voltage Levels
CKI Input Levels
Crystal Input (÷ 32, ÷ 16, ÷ 8)
Logic High (V Logic Low (V
)
IH
)
IL
Schmitt Trigger Input (÷ 4)
Logic High (VIH) Logic Low (V
)
IL
RESET Input Levels
Logic High
Logic Low SO Input Level (test mode) All Other Inputs
Logic High
Logic High
Logic Low
Logic High
Logic Low
Input Capacitance Hi-Z Input Leakage
Output Voltage Levels
LSTTL Operation
Logic High (V
OH
)
Logic Low (VOL)
CMOS Operation
Logic High
Logic Low
Note : 1. VCCvoltagechange must be less than 0.5V in a 1ms period to maintain proper operation.
CC
CC
)
Note 1
)
Peak to Peak All Inputs and Outputs Open
Schmitt Trigger Input
V
= Max.
CC
With TTL trip level options selected, V
CC
With high trip level options selected.
VCC=5V±5% IOH=–25µA IOL= 0.36mA
I
=–10µA
OH
IOL=+10µA
=5V±5%.
4.5
4.5
2.0
– 0.3
0.7 V
CC
– 0.3
0.7 V
CC
– 0.3
2.0
3.0
2.0
– 0.3
3.6
– 0.3
–1
2.7
VCC–1
6.3
9.5
0.5 13
0.4
0.6
0.6
2.5
0.8
1.2
7
+1
0.4
0.2
V V V
mA
V V
V V
V V V
V V V V
V pF µA
V
V
V
V
3/27
Page 4
ETL9444/9445–ETL9344/9345
ETL944 4/L9445 DC ELECTRICAL CHARACTERISTICS (continued)
Parameter Test Conditions Min. Max. Unit
Output Current Levels
Output Sink Current
SO and SK Outputs (I
L
Outputs and Standard
0-L7
G
0-G3,D0-D3
Outputs (IOL)
OL
)
G0-G3and D0-D3Outputs with High Current Options (I
G
and D0-D3Outputs with
0-G3
OL
)
Very High Current Options (IOL) CKI (single-pin RC oscillator)
CKO
Output Source Current
Standard Configuration, All Outputs (I
OH
)
Push-pull Configuration SO and SK Outputs (I
LED Configuration, L0-L
OH
)
7
Outputs, Low Current Driver Option (IOH) LED Configuration, L
0-L7
Outputs, High Current Driver Option (IOH) TRI-STATEConfiguration, L
Outputs, Low
0-L7
Current Driver Option (I
OH
) TRI-STATEConfiguration, L0-L7Outputs, High Current Driver Option (I
OH
)
Input Load Source Current CKO Output
RAM Power Supply Option Power Requirement V
TRI-STATEOutput Leakage Current – 2.5 + 2.5
Total Sink Current Allowed
All Outputs Combined D, G Ports L
7-L4
L3-L
0
All Other Pins
Total Source Current Allowed
All I/O Combined L
7-L4
L3-L
0
Each L Pin All Other Pins
V
= 9.5V, VOL= 0.4V
CC
VCC= 6.3V, VOL= 0.4V V
= 4.5V, VOL= 0.4V
CC
VCC= 9.5V, VOL= 0.4V V
= 6.3V, VOL= 0.4V
CC
VCC= 4.5V, VOL= 0.4V VCC= 9.5V, VOL= 1.0V V
= 6.3V, VOL= 1.0V
CC
VCC= 4.5V, VOL= 1.0V V
= 9.5V, VOL= 1.0V
CC
VCC= 6.3V, VOL= 1.0V VCC= 4.5V, VOL= 1.0V V
= 4.5V, VIH= 3.5V
CC
VCC= 4.5V, VOL= 0.4V V
= 9.5V, VOH= 2.0V
CC
VCC= 6.3V, VOH= 2.0V V
= 4.5V, VOH= 2.0V
CC
VCC= 9.5V, VOH= 4.75V V
= 6.3V, VOH= 2.4V
CC
VCC= 4.5V, VOH= 1.0V V
= 9.5V, VOH= 2.0V
CC
VCC= 6.0V, VOH= 2.0V V
= 9.5V, VOH= 2.0V
CC
VCC= 6.0V, VOH= 2.0V V
= 9.5V, VOH= 5.5V
CC
VCC= 6.3V, VOH= 3.2V V
= 4.5V, VOH= 1.5V
CC
VCC= 9.5V, VOH= 5.5V VCC= 6.3V, VOH= 3.2V V
= 4.5V, VOH= 1.5V
CC
VCC= 5.0V, VIL=0V
= 3.3V 6.0
R
1.8
1.2
0.9
0.8
0.5
0.4 15 11
7.5 30 22 15
2
0.2
–140
–75
–30 – 1.4 – 1.4 – 1.2
– 1.5 – 1.5
– 3.0 – 3.0
– 0.75
– 0.8 – 0.9 – 1.5 – 1.6 – 1.8
–10
–800 –480 –250
–140
–18 –13
–35 –25
120 120
4 4
1.5
120
60 60 30
1.5
mA mA mA mA mA mA mA mA mA mA mA mA mA mA
µA µA µA
mA mA mA
mA mA
mA mA mA mA mA mA mA mA
µA
mA
µA
mA mA mA mA mA
mA mA mA mA mA
4/27
Page 5
ETL9444/9445–ETL9344/9345
ETL934 4/L9345
ABSOLUTE M AXI MUM RATI NG S
Symbol Paramet e r Valu e Unit
Voltage at any Pin Relative to GND – 0.5 to + 10 V Ambient Operating Temperature – 40 to + 85 °C Ambient Storage Temperature – 65 to + 150 °C Lead Temperature (soldering, 10 seconds) 300 °C Power Dissipation 0.75W at 25°C
0.25W at 85°C Total Source Current 120 mA Total Sink Current 120 mA
Absolute maximum ratings indicate limits beyond whichdamage to the device mayoccur. DC and AC electrical specifications are not en­sured when operating the device at absolute maximum ratings.
DC ELECTRICAL CHARACTERISTICS –40°CTA≤+85°C, 4.5V VCC≤ 7.5V (unless otherwise specified)
Parameter Test Conditions Min. Max. Unit
Standard Operating Voltage (V Optional Operating Voltage (V Power Supply Ripple Operating Supply Current
Input Voltage Levels
CKI Input Levels
Crystal Input
Logic High (V Logic Low (V
)
IH
)
IL
Schmitt Trigger Input
Logic High (VIH) Logic Low (V
)
IL
RESET Input Levels
Logic High
Logic Low SO Input Level (test mode) All Other Inputs
Logic High
Logic High
Logic Low
Logic High
Logic Low
Input Capacitance Hi-Z Input Leakage
Output Voltage Levels
LSTTL Operation
Logic High (V
OH
)
Logic Low (VOL)
CMOS Operation
Logic High
Logic Low
Note : 1. VCCvoltagechange must be less than 0.5V in a 1ms period to maintain proper operation.
CC
CC
)
Note 1
)
Peak to Peak All Inputs and Outputs Open
Schmitt Trigger Input
V
= Max.
CC
With TTL trip level options selected, V
CC
With high trip level options selected
VCC=5V±5% IOH=–20µA IOL= 0.36mA
I
=–10µA
OH
IOL=+10µA
=5V±5%
4.5
4.5
2.2
– 0.3
0.7 V
CC
– 0.3
0.7 V
CC
– 0.3
2.2
3.0
2.2
– 0.3
3.6
– 0.3
–2
2.7
VCC–1
5.5
7.5
0.5 15
0.3
0.4
0.4
2.5
0.6
1.2
7
+2
0.4
0.2
V V V
mA
V V
V V
V V V
V V V V
V pF µA
V
V
V
V
5/27
Page 6
ETL9444/9445–ETL9344/9345
ETL934 4/L9345 DC ELECTRICAL CHARACTERISTICS (continued)
Parameter Test Conditions Min. Max. Unit
Output Current Levels
Output Sink Current
SO and SK Outputs (I
L
Outputs and Standard
0-L7
G
0-G3,D0-D3
G
and D0-D3Outputs with
0-G3
Outputs (IOL)
OL
)
High Current Options (IOL) G
and D0-D3Outputs with
0-G3
Very High Current Options (IOL) CKI (single-pin RC oscillator)
CKO
Output Source Current
Standard Configuration, All Outputs (I
OH
)
Push-pull Configuration SO and SK Outputs (I
LED Configuration, L
OH
0-L7
)
Outputs, Low Current Driver Option (IOH) LED Configuration, L
0-L7
Outputs, High Current Driver Option (IOH) TRI-STATEConfiguration, L
Outputs, Low
0-L7
Current Driver Option (I
OH
) TRI-STATEConfiguration, L0-L7Outputs, High Current Driver Option (I
OH
)
Input Load Source Current CKO Output
RAM Power Supply Option Power Requirement V
TRI-STATEOutput Leakage Current –5 +5
Total Sink Current Allowed
All Outputs Combined D. G Ports L
7-L4
L3-L
0
All Other Pins
Total Source Current Allowed
All I/O Combined L
7-L4
L3-L
0
Each L Pin All Other Pins
V
= 7.5V, VOL= 0.4V
CC
V
= 5.5V, VOL= 0.4V
CC
VCC= 4.5V, VOL= 0.4V VCC= 7.5V, VOL= 0.4V V
= 5.5V, VOL= 0.4V
CC
VCC= 4.5V, VOL= 0.4V V
= 7.5V, VOL= 1.0V
CC
VCC= 5.5V, VOL= 1.0V VCC= 4.5V, VOL= 1.0V V
= 7.5V, VOL= 1.0V
CC
VCC= 5.5V, VOL= 1.0V V
= 4.5V, VOL= 1.0V
CC
VCC= 4.5V, VIH= 3.5V VCC= 4.5V, VOL= 0.4V
V
= 7.5V, VOH= 2.0V
CC
V
= 5.5V, VOH= 2.0V
CC
VCC= 4.5V, VOH= 2.0V VCC= 7.5V, VOH= 3.75V V
= 5.5V, VOH= 2.0V
CC
VCC= 4.5V, VOH= 1.0V V
= 7.5V, VOH= 2.0V
CC
VCC= 6.0V, VOH= 2.0V VCC= 5.5V, VOH= 2.0V V
= 7.5V, VOH= 2.0V
CC
VCC= 6.0V, VOH= 2.0V VCC= 5.5V, VOH= 2.0V V
= 7.5V, VOH= 4.0V
CC
VCC= 5.5V, VOH= 2.7V V
= 4.5V, VOH= 1.5V
CC
VCC= 7.5V, VOH= 4.0V VCC= 5.5V, VOH= 2.7V V
= 4.5V, VOH= 1.5V
CC
VCC= 5.0V, VIL=0V
= 3.3V 8.0
R
1.4
1.0
0.8
0.6
0.5
0.4 12
9
7 24 18 14
2
0.2
–100
–55 –28
– 0.85
– 1.1 – 1.2 – 1.4 – 1.4 – 0.7 – 2.7 – 2.7 – 1.4 – 0.7 – 0.6 – 0.9 – 1.4 – 1.2 – 1.8
–10
–900 –600 –350
–200
–27 –17 –15 –54 –34 –30
120 120
4 4
1.5
120
60 60 30
1.5
mA mA mA mA mA mA mA mA mA mA mA mA mA mA
µA µA µA
mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
µA
mA
µA
mA mA mA mA mA
mA mA mA mA mA
6/27
Page 7
ETL9444/9445–ETL9344/9345
AC ELECTRICAL CHARACTERISTICS ETL9444/L9445 : 0°C TA≤ +70°C, 4.5V VCC≤9.5V (unless otherwise specified) ETL9344/L9345 : –40°CTA≤+85°C, 4.5V VCC≤7.5V (unless otherwise specified)
Parameter Test Conditions Min. Max. Unit
Instruction Cycle Time – t
c
CKI
Input Frequency – f
I
Duty Cycle Rise Time Fall Time
CKI Using RC (÷ 4)
Instruction Cycle Time
CKO as SYNC Input
t
SYNC
INPUTS : IN
-IN0,G3-G0,L7-L
3
t
SETUP
t
HOL D
0
SI
t
SETUP
t
HOL D
OUTPUT PROPAGATION DELAY SO, SK Outputs
t
pd1,tpd0
All Other Outputs
t
pd1,tpd0
÷ 32 Mode ÷ 16 Mode ÷ 8Mode ÷4Mode
f
= 2MHz
I
R = 56k± 5% C=100pF±10%
Test Condition : CL= 50pF, RL= 20k,V
OUT
= 1.5V
16
0.8
0.4
0.2
0.1 30
16
400
40
2.0
1.0
0.5
0.25 60
120
80
28
8.0
1.3
2.0
1.0
4.0
5.6
µs
MHz MHz MHz MHz
% ns ns
µs ns
µs µs
µs µs
µs µs
7/27
Page 8
ETL9444/9445–ETL9344/9345
Figure 2 : Connection Diagrams.
Pin Description
L
7-L0
G
3-G0
D
3-D0
IN
-IN
3
SI Serial Input (or counter input) SO Serial Output (or general purpose output) SK Logic-controlled Clock (or general purpose output)
CKI System Oscillator Input
CKO System Oscillator Output (or general purpose input, RAM power supply, or SYNC input)
RESET System Reset Input
V
CC
GND Ground
8 Bidirectional I/O Ports with TRI-STATE 4 Bidirectional I/O Ports 4 General Purpose Outputs 4 General Purpose Inputs (COP444L only)
0
Power Supply
Figure 3 : Input/output Timing Diagrams (crystal divide-by-16 mode).
8/27
Page 9
Figure 3a: Synchronization Timing.
ETL9444/9445–ETL9344/9345
FUN CTI ON AL DESCRIPTI ON
A blockdiagram ofthe ETL9444is given in figure 1. Data pathsare illustratedinsimplified formto depict how the various logic elements communicate with eachotherin implementing the instructionsetof the device. Positive logic is used. Whena bit is set,it is a logic”1”(greater than 2volts).Whena bit isreset, it is a logic ”0” (less than 0.8volts).
Allfunctional referencesto theETL9444/L9445 also apply tothe ETL9344/L9345.
PROGRAM MEMORY Program Memory consists ofa 2048 byteROM. As
can be seen by an examination of the ETL9444/L9445 instructionset,thesewordsmaybe programinstructions, programdataorROMaddres­singdata.Becauseof thespecialcharacteristics as­sociated with the JP, JSRP, JID, and LQID instructions,ROMmust oftenbe thoughtofas being organized into 32 pages of 64 wordseach.
ROM addressing isaccomplishedby a11-bit PCre­gister. Its binaryvalueselects oneof the 2048 8-bit words contained in ROM. A newaddress is loaded into the PC register during each instruction cycle. Unlesstheinstruction isa transfer of controlinstruc­tion, thePC registeris loaded withthenext sequen­tial 11-bit binary count value. Three levels of subroutine nesting are implemented by the 11-bit subroutine save registers, SA, SB, and SC ; provi­ding a last-in, first-out (LIFO)hardware subroutine stack.
ROM instruction words are fetched, decoded and executed by the Instruction Decode, Control and Skip Logiccircuitry.
DATA MEMORY Data memoryconsistsof a 512-bit RAM,organized
as 8 data registers of 16 4-bit digits. RAM addres­sing is implemented by a 7-bit B register whose up­per 3 bits (Br) select1 of 8 data registers andlower 4 bits (Bd) select 1 of 16 4-bit digitsin theselected dataregister.Whilethe4-bit contentsofthe selected
RAM digit (M) is usually loaded into or from, or ex­changed with, the A register (accumulator), it may also be loaded into or fromthe Qlatches or loaded fromthe L ports. RAM addressing may alsobe per­formeddirectlybythe LDDandXADinstructionsba­sed upon the 7-bit contents of the operand field of these instructions. The Bd registeralso serves asa source register for 4-bit data sent directly to the D outputs.
INTERNALLOGIC The 4-bit Aregister(accumulator) isthe source and
destination register for most I/O, arithmetic, logic and datamemoryaccess operations. Itcan alsobe usedto loadtheBr andBdportions oftheB register, to load and input 4 bitsof the 8-bitQ latch data, to input 4bitsof the8-bit L I/Oportdataandto perform data exchanges with the SIO register.
A4-bitadderperforms thearithmetic andlogicfunc­tions,storing its results in A. It also outputs a carry bitto the 1-bitC register, mostoftenemployed toin­dicate arithmetic overflow. The C register, in conjunction with the XAS instruction and the ENre­gister, also serves to control the SK output. C can be outputted directly to SK or can enableSK to be a sync clockeach instructioncycle time. (See XAS instruction andEN register description, below).
Four general-purpose inputs, IN3-IN0, are provided. The D register provides 4 general-purpose outputs
and is used as the destination register for the 4-bit contents of Bd. The D outputs can be directly connectedtothe digitsofa multiplexed LED display.
The G register contents are outputs to 4 general­purpose bidirectional I/O ports. G I/O ports can be directly connected tothe digits ofa multiplexedLED display.
The Q register is an internal, latched, 8-bit register, usedto hold data loaded to or fromM and A,aswell as 8-bit data from ROM. Its contentsare output to theL I/OportswhentheLdriversareenabledunder program control(See LEIinstruction).
9/27
Page 10
ETL9444/9445–ETL9344/9345
The 8 L drivers,when enabled, outputthe contents of latched Q data to the L I/O ports. Also, the contents of L may be read directly into A and M. L I/O ports canbe directlyconnected tothe segments of a multiplexed LED display (usingthe LED Direct Drive output configuration option) withQdata being outputted totheSa-Sganddecimalpointsegments of the display.
The SIOregisterfunctionsas a 4-bit serial-in/serial­out shift register or as a binary counter depending on thecontentsof the ENregister. (See ENregister description, below). Its contents can be exchanged with A, allowing itto inputor output acontinuous se­rial data stream, SIO may also be used to provide additional parallel I/O by connecting SO to external serial-in/parallel-out shift registers.
The XASinstruction copiesC into the SKLlatch. In the counter mode, SK is the output of SKL ; in the shiftregistermode, SKoutputsSKLANDedwiththe clock.
The EN register is an internal 4-bit register loaded under program control by the LEI instruction. The state of each bitof thisregister selectsor deselects the particularfeature associated witheach bitof the EN register (EN3-EN0).
1. The least significant bit of the enable register, EN0,selectstheSIOregisteraseithera4-bitshift register or a 4-bit binary counter. With EN0set, SIO is an asynchronous binary counter,decre­menting its value by one upon each low-going
pulse (”1” to ”0”)ocurring on the SI input. Each pulse must be at least two instruction cycles wide. SKoutputs thevalue of SKL.The SO out­put isequal to thevalue of EN3. WithEN0reset, SIO is a serial shift register shifting left each in­structioncycletime.The data present atSI goes intotheleastsignificantbit of SIO.SOcan been­abled to output the most significant bit of SIO each cycle time. (See 4 below). The SK output becomesa logic-controlled clock.
2. With EN1set the IN1input is enabled as an in­terrupt input. Immediately following an interrupt, EN1is resetto disable furtherinterrupts.
3. With EN2set,the L driversare enabledto output the datainQto theLI/O ports.ResettingEN2di­sables the L drivers, placing theL I/O ports in a high-impedance input state.
4. EN3, inconjunction withEN0, affects theSO out­put. With EN0set (binary counter option selec­ted) SO will output the value loaded into EN3. WithEN0reset(serial shiftregister option selec­ted),settingEN3enablesSO astheoutputof the SIO shift register, outputting serial shifted data eachinstructiontime. ResettingEN3withthe se­rial shift register option selecteddisables SO as the shift register output ; data continues to be shiftedthrough SIOand can be exchanged with A viaan XAS instruction butSOremains reset to ”0”. Thetable below provides asummary of the modesassociated with EN3andEN0.
Enable Register Modes - Bits EN3and EN
EN
EN
3
0 1 0 1
0
0 0 1 1
SIO S I SO SK
Shift Register Shift Register Binary Counter Binary Counter
Input to Shift Register Input to Shift Register Input to Binary Counter Input to Binary Counter
0
INTERRUPT The following features are associated with the IN1
interrupt procedure and protocolandmustbeconsi­dered bythe programmer when utilizing interrupts.
a. The interrupt, once acknowledged as explained
below, pushes the next sequential program counter address (PC+1)ontothestack,pushing in turnthe contents ofthe other subroutine-save registers to the next lower level (PC + 1 SA SB SC). Any previous contents of SC are lost.The program counteris
10/27
0
Serial Out
0 1
If SKL = 1, SK = Clock If SKL = 0, SK = 0 If SKL = 1, SK = Clock If SKL = 0, SK = 0 If SKL = 1, SK = 1 If SKL = 0, SK = 0 If SKL = 1, SK = 1 If SKL = 0, SK = 0
set tohex address 0FF (the lastword of page3) and EN1isreset.
b. An interrupt willbe acknowledged onlyafter the
followingconditions are met :
1. EN1hasbeen set.
2. A low-going pulse (”1” to ”0”) at least two in-
structioncycles wideoccurs onthe IN1input.
3. A currently executing instruction has been
completed.
Page 11
ETL9444/9445–ETL9344/9345
4. All successive transfer of control instructions and successive LBIs have been completed (e.g.,if themainprogram isexecutingaJP in­struction which transfers program control to anotherJPinstruction,theinterrupt willnotbe acknowledged untilthesecondJPinstruction hasbeen executed.
c. Upon acknowledgement of aninterrupt, the skip
logicstatusissavedandlater restored uponpop­pingof thestack.For example, ifan interrupt oc­curs during the execution of ASC (Add with Carry, Skipon Carry) instructionwhichresultsin carry,the skiplogicstatus issavedand program control is transferred to the interrupt servicing routineat hex address 0FF.Atthe endof the in­terrupt routine, a RET instruction is executed to ”pop”thestack and return programcontrolto the instruction following the original ASC. At this time,the skip logic is enabled and skips this in­struction because of the previous ASC carry. Subroutines andLQIDinstructionsshould not be nested withinthe interrupt service routine, since theirpoppingthe stackwillenable anypreviously saved main program skips, interfering with the orderlyexecution ofthe interrupt routine.
d. The firstinstructionof the interrupt routine athex
address 0FF must be a NOP.
e. A LEI instructioncan be put immediately before
the RETto re-enable interrupts.
INITIALIZATION TheResetLogicwillinitialize(clear)thedeviceupon
power-up if the power supply rise time is less than 1ms and greater than 1µs. If the power supply rise timeisgreaterthan 1ms,the useruseprovidean ex­ternal RC network and diodeto the RESET pin as shownbelow.If theRC networkis notused,theRE­SET pin must be pulled up to VCCeither by the in­ternalload orbyan externalresistor (40kΩ)toVCC. TheRESETpinis configured asaSchmitttriggerin­put. Initialization will occur whenever a logic ”0” is appliedto theRESETinput, providedit stays lowfor at least three instructioncycle times.
Pow e r -up Cl ear Cir cu it.
Upon initialization, the PC register is cleared to 0 (ROM address 0) andthe A,B, C, D, EN, andG re­gistersare cleared. The SK outputis enabled as a SYNCoutput,providing apulse each instructioncy­cle time.DataMemory (RAM)is notcleared uponi­nitialization. The first instruction at address 0 must be a CLRA.
OSCILLATOR Thereare threebasic clockoscillator configurations
available as shown by figure4. a. Crystal Controlled Oscillator. CKI and CKO
areconnected to anexternal crystal.Theinstruc­tioncycle time equals thecrystal frequency divi­dedby 32(optional by 16or 8).
b. External Oscillator. CKIis an external clockin-
put signal. The external frequency is divided by 32(optionalby 16or 8) togivethe instructioncy­cletime. CKO isnow available tobe usedas the RAM power supply (VR), as a general purpose input, or as a SYNCinput.
c. RCControlled Oscillator. CKIis configured as
a single pin RC controlled Schmitt trigger oscil­lator.The instruction cycleequals theoscillation frequency divided by 4. CKO is availableas the RAMpower supply (VR) oras ageneralpurpose input.
11/27
Page 12
ETL9444/9445–ETL9344/9345
Figure 4 : ETL9444/L9445 Oscillator.
CRYSTAL OSCILLATOR
Crystal Component Values
Value R1 (Ω) R2 (Ω) C1 (pF) C2 (pF)
455kHz
2.097MHz
4.7k 1k
1M 1M
220
30
220
6-36
CKO PIN OPTIONS Inacrystalcontrolledoscillator system,CKOisused
as an output to the crystal network. As an option CKO can bea SYNCinput as described above. As anotheroptionCKO canbe ageneralpurpose input, read intobit 2 of A(accumulator) upon executionof an INILinstruction. As anotheroption, CKOcan be a RAM power supply pin (VR), allowing its connec­tion to a standby/backup power supply to maintain the integrityof RAMdatawithminimum power drain when themain supplyisinoperative or shutdown to conserve power. Using either option is appropriate in applicationswheretheETL9444/L9445 systemti­ming configuration doesnot requireuse ofthe CKO pin.
I/O OPTIONS ETL9444/L9445 outputs havethe followingoptional
configurations, illustrated in figure5. a. Standard - an enhancement mode device to
groundinconjunction withadepletion-mode de­viceto VCC, compatible with LSTTL andCMOS inputrequirements. Available on SO,SK,andall D and G outputs.
RC C ONTROLLED OSCILLATO R
R (k) C (pF)
51 82
Note : 200kR 25k
360pFC 50pF
100
56
Instruction Cycle
Time (µs)
19 ± 15% 19 ± 13%
b. Open-Drain - an enhancement-mode device to
ground only, allowing external pull-up as requi­red by the user’s application. Available on SO, SK, andall Dand G outputs.
c. Push-Pull - An enhancement-mode device to
groundin conjunction witha depletion-mode de­viceparalleled byanenhancement-mode device to VCC. This configuration has been provided to allowfor fast riseand falltimes whendriving ca­pacitiveloads. Available on SO and SK outputs only.
d. Standard L - same as a., but may be disabled.
Available on L outputsonly.
e. OpenDrainL -sameas b.,butmay bedisabled.
Available on L outputsonly.
f. LEDDirect Drive - anenhancement-mode de-
vice to ground and to VCC, meeting the typical current sourcing requirements of the segments of an LEDdisplay. Thesourcing device is clam­ped to limit currentflow. These devices maybe turnedoffunderprogram control (See Functional Description, EN Register),placing theoutputsin a high-impedance stateto provide required LED
12/27
Page 13
ETL9444/9445–ETL9344/9345
segment blankingfora multiplexeddisplay. Avai­lableon L outputsonly.
g. TRI-STATEPush-Pull - an enhancement-
mode device to ground and VCC. Theseoutputs are TRI-STATEoutputs, allowing for connection of these outputsto a data bus shared by other bus drivers. Available on L outputs only.
ETL9444, L9445 inputshave thefollowingoptio­nal configurations :
h. An on-chip depletionload device to VCC. i. A Hi-Zinput which must bedriven toa”1” or ”0”
by external components.
The above input and output configurations share common enhancement-mode and depletion-mode devices. Specifically, all configurations use one or more of six devices (numbered 1-6, respectively). Minimum and maximum current (I
OUT
and V
OUT
curvesaregiveninfigure6foreachofthesedevices to allow the designer to effectively use these I/O configurationsin designing a system.
The SO,SK outputscan be configured asshownin a., b., orc. The D and Goutputs can be configured as shownin a. or b. Note that when inputting data to the G ports, the G outputs should be set to ”1”. The L outputs canbe configured asind., e.,f.org.
An important point to remember if using configura­tion d.orf. with the L driversis thateven when the L driversare disabled, the depletion load devicewill
source a small amountof current(see figure 6, de­vice 2) ; however,when the L-lines are used as in­puts,the disableddepletiondevice cannotbe relied onto sourcesufficientcurrenttopullan inputto logic ”1”.
RAMKEEP-ALIVE OPTION Selecting CKO as the RAM power supply (VR) al-
lowsthe usertoshut offthechippowersupply(VCC) and maintain data in the RAM.
Toinsure thatRAM dataintegrity is maintained, the following conditions must be met :
1. RESETmust golow before VCCgoeslow during poweroff; VCCmustgohighbefore RESETgoes high onpower-up.
2. VRmust be within the operating range of the chip,and equalto VCC± 1V during normal ope­ration.
3. VRmustbe 3.3V with VCCoff.
ETL9445 If the ETL9444 ls bonded as a 24-pin device, it be-
comesthe ETL9445, illustratedinfigure2,ETL9444 Connection Diagrams.Note that theETL9445 does notcontain thefour general purpose IN inputs (IN3­IN0). Use ofthis option precludes,of course, use of theIN options andthe interrupt feature, whichuses IN1. Allother options are availablefor theETL9445.
13/27
Page 14
ETL9444/9445–ETL9344/9345
Figure 5 : OutputConfigurations.
14/27
Page 15
Figure 6 : ETL9444/L9445 Input/output Characteristics.
ETL9444/9445–ETL9344/9345
15/27
Page 16
ETL9444/9445–ETL9344/9345
Figure 6a: ETL9444/L9445 Input/output Characteristics.
16/27
Page 17
Figure 6b : ETL9344/L9345 Input/output Characteristics.
ETL9444/9445–ETL9344/9345
17/27
Page 18
ETL9444/9445–ETL9344/9345
ETL944 4/L9445, ETL9344/L9345 INSTR U C ­TION SET
Table1 isasymbol tableproviding internalarchitec­ture,instructionoperandand operationalsymbolsu-
Table 2provides the mnemonic, operand, machine code,data flow,skipconditions, anddescription as­sociated with each instruction in the ETL9444/L9445 instructionset.
sed in the instructionsettable. Table 1 : ETL9444/9445 ETL9344/9345 Instruction SetTable Symbols.
INTERNAL ARCHITECTURE SYMBOLS
Symbol Definition
A
4-bit Accumulator
B
7-bit RAM Address Register
Br
Upper 3 Bits of B (register address)
Bd
EN
PC
SA SB
SC
SIO
SK
Lower 4 Bits of B (digit address)
C
1-bit Carry Register
D
4-bit Data Output Port 4-bit Enable Register
G
4-bit Register to Latch Data for G I/O Port
IL
Two 1-bit latches associatedwith the IN or IN0inputs.
IN
4-bit Input Port
L
8-bit TRI-STATE I/O Port
M
4-bit contents of RAM memory pointed to by B register. 11-bit ROM Address Register (program counter)
Q
8-bit Register to Latch Data for L I/O Port 11-bit Subroutine Save Register A 11-bit Subroutine Save Register B 11-bit Subroutine Save Register C 4-bit Shift Register and Counter Logic-controlledClock Output
3
INSTRUCTION OPERAND SYMBOLS
Symbol Definition
d
4-bit Operand Field, 0-15 Binary (RAM digit select)
r
3-bit Operand Field, 0-7 Binary (RAM register select)
a
11-bit Operand Field, 0-2047 Binary (ROM address)
y
4-bit Operand Field, 0-15 Binary
(immediate data) RAM(s) ROM(t)
Contents of RAM location addressed by s.
Contents of ROM location addressed by t.
OPERATIONAL SYMBOLS
Symbol Definition
+
Plus
-
Minus
Replaces
Is exchangedwith.
=
Is equal to.
A
The one’s complementof A.
Exclusive-OR
:
Range of Values
18/27
Page 19
Table 2 : ETL9444/L9445 Instruction Set. ARITHMETIC INSTRUCTIONS
ETL9444/9445–ETL9344/9345
Machine
Mnem Operand
Hex
Code
Language
Code
(binary)
ASC 30 |0011|0000|
ADD 31 |0011|0001|
ADT 4A |0100|1010|
AISC y 5- | 0 1 0 1 | y |
CASC 10 |0001|0000|
CLRA 00 | 0 0 0 0 | 0 0 0 0 |
COMP 40 | 0 1 0 0 | 0 0 0 0 |
NOP 44 |0100|0100|
RC 32 |0011|0010| SC 22 |0010|0010|
XOR 02 |0000|0010|
_______________
_______________ _______________ _______________
_______________
_______________ _______________ _______________ _______________ _______________ _______________
TRANSFER OF CONTROL INSTRUCTIONS
Machine
Mnem Operand
Hex
Code
JID FF | 1 1 1 1 | 1 1 1 1 |
Language
Code
(binary)
_________________
Data Fl ow
A + C + RAM(B) A Carry C
Skip
Conditions
Descriptio n
Carry Add with Car ry Skip on
Carry A + RAM(B) A None Add RAM to A A+10
A None Add Ten to A
10
A+yA Carry Add Immediate Skip on
Carry (y 0) A + RAM(B) + C A
Carry C
Carry Complement a nd Add with
Carry, Skip on Carr y 0 A None Clear A A A None Ones Complement of A to A None None No Operation ”0” C None Reset C ”1” C None Set C A RAM(B) A None Exclusive-OR Ram with A
Data Flow
ROM (PC PC
7:0
10:8
A, M)
Skip
Conditions
Descriptio n
None Jump Indirect (n ot e 3)
JMP a 6– |0110|0| a
JP a | 1 | a
_________________ | a
_________________ _________________
|
7:0
|
6:0
10:8
(pages 2, 3 only)
or
|11| a
_________________
5:0
|
(all other pages)
JSRP a | 1 0 | a
JSR a 6– | 0 1 1 0 | 1 | a
RET 48 | 0 1 0 0 | 1 0 0 0 |
RETSK 49 | 0 1 0 0 | 1 0 0 1 |
_________________
_________________ | a
_________________ _________________ _________________
5:0
10:8
|
7:0
|
A PC None Jump
|
A PC
A PC
6:0
5:0
PC+ 1 SASB SC 00010 PC aPC
PC+ 1
|
10:6
5:0
SASBSC
None Jump within Page (note 4)
None Jump to Subroutine Page
(note 5)
None Jump to Subroutine
a PC
SC SB SA PC None R eturn from Subroutine SC SB SA PC Always
Skip on
Return f rom Subroutine then Skip
Return
19/27
Page 20
ETL9444/9445–ETL9344/9345
MEMORYREFERENCE INSTRUCTIONS
Machi n e
Mnem Operand
Hex
Code
CAMQ 333C|0011|0011|
CQMA 332C|0011|0011|
LD r –5 | 00|r|0101|
LDD r.d 23 | 0 0 1 0 | 0 0 1 1 |
LQID BF | 1 0 1 1 | 1 1 1 1 |
RMB 0
1 2 3
SMB 0
1 2 3
4C 45 42 43
4D 47 46 4B
STII y 7– | 0 1 1 1 | y |
X r –6 |00|r |0110 |
XAD r.d 23 |0010|0011|
XDS r –7 |00|r |0111 |
XIS r –4 | 0 0 | r | 0 1 0 0 |
Language
Code
(binary)
_______________
|0011|1100|
_______________ _______________
|0010|1100|
_______________ _______________
(r = 0:3)
_______________
|0 | r | d |
_______________
_______________
|0100|1100|
_______________
|0100|0101|
_______________
|0100|0010|
_______________
|0100|0011|
_______________
|0100|1101|
_______________
|0100|1101|
_______________
|0100|0110|
_______________
|0100|1011|
_______________ _______________
_______________
(r = 0:3)
_______________
|1|r |d|
_______________ _______________
(r = 0:3)
_______________
(r = 0:3)
Data Fl ow
A Q
7:4
RAM (B) Q Q
RAM(B)
7:4
Q
A
3:0
RAM(B) A Br r Br
3:0
Skip
Conditions
Descriptio n
None Copy A, RAM to Q
None Copy Q to RAM A
None Load RAM into A,
Exclusive-OR Br with r RAM(r.d) A None Load A with RAM pointed
to directly by r.d. ROM (PC
A.M) Q
10:8
None Load Q Indirect (note 3)
SB SC 0 RAM (B)
0 RAM (B) 0 RAM (B) 0 RAM (B)
1 RAM (B) 1 RAM (B) 1 RAM (B) 1 RAM (B)
y RAM (B) Bd + 1 Bd
RAM (B) A Br r Br
0 1 2 3
0 1 2 3
None Reset RAM Bit
None Set RAM Bit
None Store Memory Immediate
and Increment Bd
None Exchange RAM with A,
Exclusive-OR Br with r RAM (r.d) A None Exchange A with RAM
pointed to directly by r.d. RAM (B) A
Bd – 1 Bd Br r Br
RAM (B) A Bd + 1 Bd Br r Br
Bd Decrements Past 0
Bd Increments Past 1 5
Exchange RAM with A and
Decrement Bd,
Exclusive-OR Br with r
Exchange RAM with A and
Increment Bd,
Exclusive-OR Br with r
20/27
Page 21
REGISTER REFERENCE INSTRUCTIONS
Machi n e
Mnem Operand
Hex
Code
Language
Code
(binary) CAB 50 |0101|0000| CBA 4E |0100|1110|
LBI r.d
_______________ _______________
| 0 0 | r | (d-1) |
_______________
(r = 0:3)
(d = 0.9:15)
or
33
|0011|0011|
_______________
|1| r | d |
_______________
(any r, any d)
LEI y 336–|0011|0001|
XABR 12 |0001|0010|
_______________
|0110| y |
_______________ _______________
TEST INSTRUCTIONS
ETL9444/9445–ETL9344/9345
Data Fl ow
A Bd None Copy A to Bd Bd A None Copy Bd to A r.d B Skip until
y EN None Load EN Immediate
A Br (0 A
) None Exchange A with Br
3
Skip
Conditions
not a LBI
Descriptio n
Load B Immediate with r.d (note 6)
(note 7)
Machi n e
Mnem Operand
Hex
Code
Language
Code
(binary) SKC 20 |0010|0000| SKE 21 |0010|0001|
SKGZ 3321|0011|0011|
SKGBZ 33 |0011|0011|
0 1 2 3
SKMBZ 0
1 2 3
SKT 41 |0100|0001|
_______________ _______________ _______________
|0010|0001|
_______________ _______________
|0000|0001|
01
_______________
11
|0001|0001|
_______________
03
|0000|0011|
_______________
13
|0001|0011|
_______________
01
|0000|0001|
_______________
11
|0001|0001|
_______________
03
|0000|0011|
_______________
13
|0001|0011|
_______________ _______________
Data Fl ow
Skip
Conditions
Descriptio n
C = ”1” Skip if C is true. A =RAM(B) Skip if A Equals RAM G
= 0 Skip if G is zero (all 4 bits).
3:0
1st Byte Skip if G Bit is zero.
G
=0
0
G
=0
2nd Byte
1
G2=0 G
=0
3
RAM(B)
=0
Skip if RAM bit is zero.
0
RAM(B)1=0 RAM(B)2=0 RAM(B)
A
=0
3
Skip on Timer (note 3) time-base counter carry has occured since last test.
21/27
Page 22
ETL9444/9445–ETL9344/9345
INPUT/OUTPUTINSTRUCTIONS
Machi n e
Mnem Operand
ING 332A|0011|0011|
ININ 3328|0011|0011|
INIL 3329|0011|0011|
INL 332E|0011|0011|
OBD 333E|0011|0011|
OGI y 335–|0011|0011|
OMG 333A|0011|0011|
XAS 4F |0100|1111|
Notes : 1.All subscripts for alphabetical symbols indicatebitnumbers unless explicitlydefined (e.g., Br and Bd areexplicitly defined).Bitsare
numbered 0 to N where 0signifies the least significantbit (low-order,right-mostbit). For example, A3indicates the mostsignificant (left-most) bitof the4-bit A register.
2.The ININinstruction is notavailableon the24-pin ETL9445or ETL9345 since thesedevicesdo not contain the IN inputs.
3.For additional information onthe operationof the XAS, JID, LQUID,INIL andSKT instructions, see below.
4.The JPinstruction allowsa jump,while in subroutine pages 2 or3, to anyROM locationwithinthe two-pageboundary of pages 2 or
3. The JP instruction, otherwise,permitsa jumpto aROM locationwithinthe current64-word page.JP may not jumpto the lastword of a page.
5.A JSRPtransfers program controlto subroutine page 2 (0010 is loaded intothe upper 4 bits of P). A JSRP may notbe usedwhenin pages 2or3, JSRP may notjump to the last word inpage2.
6.LBI isa single-byteinstruction if d= 0, 9,10, 11, 12, 13, 14 or 15.Themachine codefor the lower4 bitsequals thebinaryvalueof the ”d” data minus1, e.g., to load thelower fourbits of B (Bd) with the value 9(10012), the lower 4 bitsofthe LBI instructionequal 8 (10002). Toload 0, the lower 4bitsofthe LBIinstruction should equal15 (11112).
7.Machinecodefor operandfieldyfor LEI instructionshould equal the binaryvalueto belatched into EN, where a ”1” or”0” ineachbit of EN corresponds withtheselectionordeselection ofa particular functionassociated with eachbit. (See Functional Description, EN Register).
Hex
Code
Language
Code
(binary)
_______________
|0010|1010|
_______________ _______________
|0010|1000|
_______________ _______________
|0010|1001|
_______________ _______________
|0010|1110|
_______________ _______________
|0011|1110|
_______________ _______________
|0101| y |
_______________ _______________
|0011|1010|
_______________ _______________
Data Fl ow
G A None Input G Ports to A
IN A None Input IN Inputs to A
IL
, CKO, ”0”, IL0→ A None Input IL Latches to A
3
L
RAM(B)
7:4
L
A
3:0
Bd D None Output Bd to D Outputs
y G None Output to G Ports
RAM(B) G None Output RAM to G Ports
A SIO, C SKL None Exchange A with SIO
Skip
Conditions
None Input L Ports to RAM, A
Descriptio n
(note 2)
(note 3)
Immediate
(note 3)
The followinginformationisprovided toassisttheu­serin understandingtheoperation ofseveral unique instructions andto provide notesuseful toprogram­mers in writing ETL9444/L9445 programs.
XAS INSTRUCTION XAS (Exchange A with SIO) exchanges the 4-bit
contents of the accumulator with the 4-bit contents of the SIO register. The contents of SIO will contain serial-in/serial-out shiftregisterorbinarycounterda­ta, depending on the value of the EN register. An XAS instruction willalso affect the SK output. (See Functional Description, ENRegister, above). If SIO is selected as a shift register, an XAS instruction must be performed once every 4 instructioncycles to effecta continuous datastream.
22/27
JIDINSTRUCTION JID(JumpIndirect)is anindirectaddressing instruc-
tion,transferring program control to a newROM lo­cationpointed to indirectly byA and M. It loads the lower 8bitsofthe ROM address register PCwiththe contents of ROM addressed by the 11-bit word, PC
A,M. PC10,PC9and PC8arenotaffectedby
10:8
thisinstruction. Note that JID requires 2 instruction cycles to exe-
cute. INIL INSTRUCTION
INIL(InputIL Latchesto A)inputs 2 latches, IL3and IL0(see figure 7) and CKO into A. The IL3and IL latches are set if a low-going pulse (”1” to ”0”) has
0
Page 23
ETL9444/9445–ETL9344/9345
occurredontheIN3and IN0inputssincethelastINIL instruction, provided the input pulsestays lowfor at least two instruction times.Execution of an INIL in­puts IL3and IL0intoA3 andA0 respectively,and re­sets these latches to allow them to respond to subsequent low-going pulses on the IN3and IN lines.IfCKOis maskprogrammed asageneral pur­pose input, an INIL will inputthe state of CKO into A2. If CKOhas not been so programmed, a ”1” will be placedin A2. A ”0” is always placed in A1 upon the executionofanINIL.Thegeneral purposeinputs IN3-IN0areinput to Aupon executionof an ININ in­struction.(seetable2, ININinstruction). INILis use­ful in recognizingpulses of short duration or pulses which occur toooften to be read conveniently byan ININ instruction.
Note : IL latchesare not cleared on reset : IL3and IL0not input on ETL9444/L9445.
LQID INSTRUCTION LQID(LoadQIndirect)loadsthe 8-bitQregister with
the contents of ROM pointed to by the 11-bit word PC10,PC9,PC8, A, M. LQID can beused for table lookup or codeconversion such as BCD to seven­segment. The LQID instruction ”pushes” the stack (PC + 1 SASB SC) andreplaces the least significant 8 bits of PC as follows: A – PC (B) PC
, leaving PC10,PC9and PC8unchan-
3:0
7:4
, RAM
ged. The ROMdata pointed to by thenewaddress is fetched and loaded into the Q latches. Next, the stackis”popped” (SCSBSAPC),restoring the saved valueof PC to continue sequential pro­gramexecution. SinceLQID pushesSB SC, the previous contents of SCare lost.Also, whenLQID pops the stack, the previously pushed contents of SB areleftin SC.The net resultis thatthe contents of SB areplaced in SC (SB SC). Note thatLQID takes twoinstruction cycletimes to execute.
Figure 7 : INIL Hardware Implementation.
SKT INSTRUCTION The SKT(Skip OnTimer) instructiontests the state
ofan internal 10-bit time-basecounter.This counter divides the instruction cycle clock, frequency by 1024and provides a latchedindication ofcounter o-
0
verflow.The SKT instruction teststhis latch, execu­ting the next program instruction if the latch is not set.If thelatchhas beenset since theprevious test, thenextprogram instructionisskipped andthelatch is reset. The features associated with this instruc­tion, therefore, allow the ETL9344/L9345 to gene­rate its own time-base for real-time processing ratherthan relying on an externalinput signal.
Forexample, usinga2.097MHz crystal asthetime­base to the clock generator, the instruction cycle clock frequency will be 65kHz (crystal frequency ÷
32) and the binary counter output pulse frequency willbe 64Hz.For time-of-dayorsimilar real-timepro­cessing,the SKTinstructioncancalla routine which increments a ”seconds”counter every64 ticks.
INSTRUCTIONSET NOTES a. The first word of a ETL9444/L9445 program
(ROM address0) must be a CLRA (Clear A) in­struction.
b. Althoughskipped instructionsare not executed,
one instruction cycletime is devotedto skipping eachbyte oftheskippedinstruction.Thusallpro­gram pathsexcept JIDand LQID take thesame number of cycle times whether instructions are skippedor executed. JID and LQID instructions take 2 cycles if executedand 1 cycle if skipped.
c. TheROMisorganized into32pagesof64words
each. The Program Counter is an 11-bit binary counter,and willcountthroughpageboundaries. If a JP, JSRP, JID or LQID instruction islocated in the last word of a page, the instruction ope­rates asif it were in the nextpage. For example : aJP located inthe lastwork of apage willjump toalocationin thenextpage.Also,aLQID orJID located in the last word of page 3, 7,11, 15,19, 23 or27will accessdatainthe next groupof four pages.
23/27
Page 24
ETL9444/9445–ETL9344/9345
OPTI ON LI ST
The ETL9444/L9445 mask programmable options are assigned numbers which correspond with the ETL9444pins.
The following is a list of ETL9444 options. When specifyingETL9445 chip, Options 9, 10, 19, and 20 mustallbesettozero.Theoptions areprogrammed at the sametime asthe ROM pattern toprovide the user with the hardware flexibility to interface to va­rious I/O components using little or no external cir­cuitry.
Option1 = 0 : GroundPin - nooptions available Option2 : CKO Output
= 0 : clock generator output tocrystal/resonator
(0 not allowable value if option 3 = 3) = 1 : pin isRAM power supply (VR) input = 2 : generalpurpose input. load device toV
CC
= 3 : generalpurpose input, Hi-Z
Option3 : CKIInput
= 0 : oscillatorinputdivided by 32 (2MHzmax.) = 1 : oscillatorinputdivided by 16 (1MHzmax.) = 2 : oscillatorinputdivided by 8 (500kHz max.) = 3 : single-pinRC controlled oscillator divided
by 4 = 4 : oscillatorinputdivided by 4 (Schmitt)
Option4 : RESET Input
= 0 : load device toV
CC
= 1 : Hi-Z input
Option5 : L
7
Driver
= 0 : Standard output = 1 : Open-drain output = 2 : High current LED direct segment drive
output = 3 : High current TRI-STATEpush-pull
output = 4 : Low-current LED direct segment drive
output = 5 : Low-current TRI-STATEpush-pull
output
Option6 : L6Driver
same asOption 5
Option7 : L5Driver
same asOption 5
Option8 : L4Driver
same asOption 5
Option9 : IN1Input
= 0 : load device toV
CC
= 1 : Hi-Z input
Option10 :IN2Input
same asOption 9
Option11 : VCCpin
= 0 : 4.5V to 6.3Voperation = 1 : 4.5V to 9.5Voperation
Option12 : L3Driver
sameas Option5
Option14 : L2Driver
sameas Option5
Option14 : L1Driver
sameas Option5
Option15 : L0Driver
sameas Option5
Option16 : SIInput
sameas Option9
Option17 : SODriver
= 0 : standard output = 1 : open-drain output = 2 : push-pull output
Option18 : SKDriver
sameas Option17
Option19 : IN0Input
sameas Option9
Option20 : IN3Input
sameas Option9
Option21 : G0I/OPort
= 0 : very-highcurrent standardoutput = 1 : very-highcurrent open-drain output = 2 : high current standardoutput = 3 : high current open-drain output = 4 : standard LSTTL output (fanout = 1) = 5 : open-drain LSTTLoutput (fanout = 1)
Option22 : G1I/OPort
sameas Option21
Option23 : G2I/OPort
sameas Option21
Option24 : G3I/OPort
sameas Option21
Option25 : D3Output
sameas Option21
Option26 : D2Output
sameas Option21
Option27 : D1Output
sameas Option21
Option28 : D0Output
sameas Option21
Option29 : L InputLevels
= 0 : standard TTL input levels
(”0”= 0.8V, ”1” = 2.0V)
24/27
Page 25
ETL9444/9445–ETL9344/9345
= 1 : higher voltage input levels
(”0”= 1.2V,”1” = 3.6V)
Option30 :IN InputLevels
same asOption 29
Option31 :G InputLevels
same asOption 29
Option32 :SI Input Levels
same asOption 29
Option33 :RESET Input
= 0 : Schmitttrigger input
TEST MODE (Non-Standard Ope ratio n)
The SO output has been configured to providefor standard test procedures for the custom-program­med ETL9444. WithSO forced to logic ”1”,two test modes are provided, depending upon the value of SI :
a. RAMand Internal LogicTest Mode (SI = 1) b. ROMTest Mode (SI = 0) These special test modesshould not be employed
by the user ; they are intended for manufacturing test only.
APPLICATION EXAMPLE :
ETL9444General Controller Figure 8 shows and interconnect diagram for a
ETL9444used asa general controller. Operation of the systemis as follows :
1. The L7-L0outputsare configuredas LED Direct Drive outputs, allowing direct connection to the segments of thedisplay.
= 1 : standard TTL input levels = 2 : higher voltage input levels
Option34 : CKO InputLevels (CKO = input Option 2 = 2.3)
sameas Option29
Option35 COP Bonding
= 0 : ETL9444 (28-pin device) = 1 : ETL9445 (24-pin device) = 2 : both 28 and 24 pin versions
2. The D3-D0outputs drive the digits of the multi­plexed display directly and scanthe columns of the 4 x 4 keyboardmatrix.
3. The IN3-IN0inputs are used to input the 4 rows of the keyboard matrix. Reading the IN lines in conjunction with the current value of the D out­puts allows detection, debouncing, and deco­ding ofany one ofthe 16 keyswitches.
4. CKI is configured as a single-pin oscillator input allowing system timing to be controlled by asin­gle-pinRC network. CKO is therefore available for useasa general-purpose input.
6. The 4 bidirectional G I/Oports (G3-G-0) are avai­lable for use as required by the user’s applica­tion.
7. Normal reset operation is selected.
Figure 8 : ETL9444 Keyboard/display Interface.
25/27
Page 26
ETL9444/9445–ETL9344/9345
PHYSIC AL DIME NSIO NS
28–PINS– PLASTIC PACKAGE
24–PINS– PLASTIC PACKAGE
26/27
Page 27
ETL9444/9445–ETL9344/9345
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is grantedby implication or otherwiseunder any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publicationsupersedes and replaces all informationpreviously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of SGS-THOMSON Microelectronics.
1994 SGS-THOMSON Microelectronics - All rights reserved.
Purchase of I2C Components by SGS-THOMSON Microelectronicsconveys a license under the Philips I2C Patent. Rights to use these
components in an I2C system isgranted provided that the system conforms to the I2C StandardSpecification as defined by Philips.
SGS-THOMSON Microelectronics Group of Companies
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain
Sweden - Switzerland- Taiwan - Thailand- UnitedKingdom -U.S.A.
27/27
Loading...