• Single and dual supply operation,
from 5V to 10V
• Power-down
• Available in 16-pin QSOP package
• Single (EL5196C) available
• 200MHz, 3mA product available
(EL5197C, EL5397C)
Applications
• Video Amplifiers
• Cable Drivers
• RGB Amplifiers
• Test Equipment
• Instrumentation
• Current to Voltage Converters
Ordering Information
Part NoPackage
EL5396CS16-Pin SO-MDP0027
EL5396CS-T716-Pin SO7”MDP0027
EL5396CS-T1316-Pin SO13”MDP0027
EL5396CU16-Pin QSOP-MDP0040
EL5396CU-T1316-Pin QSOP13”MDP0040
Tape &
ReelOutline #
General Description
The EL5396C is a triple channel, fixed gain amplifier with a bandwidth of 400MHz, making these amplifiers ideal for today’s high
speed video and monitor applications. The EL5396C features internal
gain setting resistors and can be configured in a gain of +1, -1 or +2.
The same bandwidth is seen in both gain-of-1 and gain-of-2
applications.
The EL5396C can be run from a single or dual supply voltage of 5V to
10V and consumes just 9mA of supply current per channel. Each
channel of the EL5396C has a disable. Upon being disabled, the outputs are tri-stated and the power supply current reduces to less than
150µA per amplifier. Allowing the CE pin to float, or applying a low
logic level will enable the amplifier.
For applications where board space is critical, the EL5396C is offered
in the 16-pin QSOP package, as well as a 16-pin SO. The EL5396C is
specified for operation over the full industrial temperature range of ---
-40°C to +85°C.
Pin Configurations
16-Pin SO & QSOP
INA+
CEA
VS-
CEB
INB+
1
2
-
+
3
+
4
-
5
16
INA-
15
OUTA
14
VS+
13
OUTB
12
INB-
6
NC
+
7
CEC
INC+
Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a “controlled document”. Current revisions, if any, to these
specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.
Values beyond absolute maximum ratings can cause the device to be prematurely damaged. Absolute maximum ratings are stress ratings only
and functional device operation is not implied.
Supply Voltage between VS+ and VS-11V
EL5396C - Preliminary
Maximum Continuous Output Current50mA
Operating Junction Temperature125°C
= 25°C)
A
Power DissipationSee Curves
Pin VoltagesVS- - 0.5V to VS+ +0.5V
Storage Temperature-65°C to +150°C
Operating Temperature-40°C to +85°C
Lead Temperature260°C
Important Note:
All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the
specified temperature and are pulsed tests, therefore: TJ = TC = TA.
Electrical Characteristics
VS+ = +5V, VS- = -5V, R
ParameterDescriptionConditionsMinTypMaxUnit
AC Performance
BW-3dB BandwidthAV = +1400MHz
BW10.1dB Bandwidth35MHz
SRSlew RateVO = -2.5V to +2.5V, AV = +2TBD-2600V/µs
ts0.1% Settling TimeV
C
S
e
n
i
-IN- input current noise25pA/√Hz
n
i
+IN+ input current noise55pA/√Hz
n
dGDifferential Gain Error
dPDifferential Phase Error
DC Performance
V
OS
TCV
OS
A
E
RF, R
G
Input Characteristics
CMIRCommon Mode Input Range±3V±3.3VV
+I
IN
-I
IN
R
IN
C
IN
Output Characteristics
V
O
I
OUT
Enable (selected packages only)
t
EN
t
DIS
I
IHCE
I
ILCE
V
IHCE
V
ILCE
= 150Ω, T
L
= 25°C unless otherwise specified.
A
AV = +2400MHz
= -2.5V to +2.5V, AV = -19ns
OUT
Channel Separationf = 5MHz68dB
Input Voltage Noise3.8nV/√Hz
[1]
[1]
AV = +20.035%
AV = +20.04°
Offset Voltage-15115mV
Input Offset Voltage Temperature CoefficientMeasured from T
MIN
to T
MAX
5µV/°C
Gain ErrorVO = -3V to +3V-21.32%
Internal RF and R
G
320400480Ω
+ Input Current-12040120µA
- Input Current-40440µA
Input Resistance27kΩ
Input Capacitance0.5pF
Output Voltage SwingR
Output CurrentR
= 150Ω to GND±3.4V±3.7VV
L
R
= 1KΩ to GND±3.8V±4.0VV
L
= 10Ω to GND95120mA
L
Enable Time40ns
Disable TimeTBDns
CE pin Input High CurrentCE = VS+0.86µA
CE pin Input Low CurrentCE = VS-0-0.1µA
CE pin Input High Voltage for Power DownVS+ -0.5V
CE pin Input Low Voltage for Power UpVS+ -3V
2
Page 3
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Electrical Characteristics
VS+ = +5V, VS- = -5V, R
ParameterDescriptionConditionsMinTypMaxUnit
Supply
Is
ON
Is
OFF
PSRRPower Supply Rejection RatioDC, VS = ±4.75V to ±5.25V5575dB
-IPSR- Input Current Power Supply RejectionDC, VS = ±4.75V to ±5.25V-22µA/V
1. Standard NTSC test, AC signal amplitude = 286mV
= 150Ω, T
L
Supply Current - Enabled (per amplifier)No Load, V
Supply Current - Disabled (per amplifier)No Load, VIN = 0V, CE = +4.5V95130µA
= 25°C unless otherwise specified.
A
, f = 3.58MHz
P-P
= 0V, CE = -5V8910.5mA
IN
EL5396C - Preliminary
3
Page 4
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Typical Performance Curves
EL5396C - Preliminary
Non-Inverting Frequency Response (Gain)
6
AV=1
2
-2
-6
Normalized Magnitude (dB)
-10
RF=750Ω
RL=150Ω
-14
1M10M100M1G
Inverting Frequency Response (Gain)
6
2
-2
-6
Normalized Magnitude (dB)
-10
RF=500Ω
RL=150Ω
-14
1M10M100M1G
AV=5
AV=10
Frequency (Hz)
AV=-1
AV=-3
Frequency (Hz)
AV=2
AV=-2
Non-Inverting Frequency Response (Phase)
90
0
-90
Phase (°)
-180
-270
RF=750Ω
RL=150Ω
-360
1M10M100M1G
Inverting Frequency Response (Phase)
90
0
-90
Phase (°)
-180
-270
RF=500Ω
RL=150Ω
-360
1M10M100M1G
AV=5
AV=10
Frequency (Hz)
AV=-2
AV=-3
Frequency (Hz)
AV=1
AV=2
AV=-1
Frequency Response for Various CIN-
10
6
2
-2
Normalized Magnitude (dB)
AV=2
-6
RF=500Ω
RL=150Ω
-10
1M10M100M1G
2pF added
0pF added
Frequency (Hz)
1pF added
Frequency Response for Various R
6
2
-2
-6
Normalized Magnitude (dB)
-10
AV=2
RF=500Ω
-14
1M10M100M1G
Frequency (Hz)
RL=100Ω
RL=500Ω
L
RL=150Ω
4
Page 5
Typical Performance Curves
EL5396C - Preliminary
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Frequency Response for Various C
14
AV=2
RL=150Ω
10
RF=RG=500Ω
6
2
Normalized Magnitude (dB)
-2
-6
1M10M100M1G
Group Delay vs Frequency
3.5
3
2.5
2
1.5
Delay (ns)
1
0.5
0
1M10M100M1G
33pF
8pF
0pF
Frequency (Hz)
AV=2
RF=500Ω
AV=1
RF=750Ω
Frequency (Hz)
L
22pF
15pF
Frequency Response for Various R
6
2
-2
-6
Normalized Magnitude (dB)
AV=2
-10
RG=R
F
RL=150Ω
-14
1M10M100M1G
Frequency (Hz)
Frequency Response for Various Common-mode Input
Voltages
6
2
-2
-6
Normalized Magnitude (dB)
AV=2
-10
RF=500Ω
RL=150Ω
-14
1M10M100M1G
Frequency (Hz)
F
340Ω475Ω
750Ω
1.2kΩ
VCM=3VVCM=0V
VCM=-3V
620Ω
Transimpedance (ROL) vs Frequency
10M
1M
100k
10k
Magnitude (Ω)
1k
100
1k
10k100k1M10M1001G
Phase
Gain
Frequency (Hz)
0
-90
-180
-270
-360
PSRR and CMRR vs Frequency
20
0
-20
Phase (°)
-40
PSRR/CMRR (dB)
-60
-80
10k100k1M10M1G100M
PSRR-
Frequency (Hz)
PSRR+
CMRR
5
Page 6
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Typical Performance Curves
EL5396C - Preliminary
-3dB Bandwidth vs Supply Voltage for Non-inverting Gains
400
RF=750Ω
350
RL=150Ω
300
250
200
150
-3dB Bandwidth (MHz)
100
50
0
56910
Peaking vs Supply Voltage for Non-inverting Gains
4
3.5
3
2.5
2
Peaking (dB)
1.5
1
0.5
0
5691078
78
Total Supply Voltage (V)
AV=1
AV=2
AV=10
Total Supply Voltage (V)
AV=1
AV=2
AV=5
AV=10
RF=750Ω
RL=150Ω
-3dB Bandwidth vs Supply Voltage for Inverting Gains
250
200
150
100
-3dB Bandwidth (MHz)
50
RF=500Ω
RL=150Ω
0
5691078
Peaking vs Supply Voltage for Inverting Gains
2.5
2
1.5
1
Peaking (dB)
0.5
0
5691078
AV=-1
AV=-2
AV=-5
Total Supply Voltage (V)
Total Supply Voltage (V)
AV=-1
AV=-2
RF=500Ω
RL=150Ω
Non-inverting Frequency Response (Gain)
6
2
-2
-6
Normalized Magnitude (dB)
-10
RF=750Ω
RL=150Ω
-14
1M10M100M1G
AV=5
AV=10
Frequency (Hz)
AV=1
AV=2
Non-inverting Frequency Response (Phase)
90
0
-90
Phase (°)
-180
-270
RF=750Ω
RL=150Ω
-360
1M10M100M1G
AV=1AV=2
AV=5
AV=10
Frequency (Hz)
6
Page 7
Typical Performance Curves
EL5396C - Preliminary
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Inverting Frequency Response (Gain)
6
2
-2
AV=-5
-6
Normalized Magnitude (dB)
-10
RF=500Ω
RL=150Ω
-14
1M10M100M1G
Frequency (Hz)
-3dB Bandwidth vs Temperature for Non-inverting Gains
500
400
300
200
-3dB Bandwidth (MHz)
100
0
-4010110160
AV=2
AV=5
AV=10
AV=1
60
Ambient Temperature (°C)
AV=-1
AV=-2
RF=750Ω
RL=150Ω
Inverting Frequency Response (Phase)
90
0
-90
Phase (°)
-180
-270
RF=500Ω
RL=150Ω
-360
1M10M100M1G
-3dB Bandwidth vs Temperature for Inverting Gains
250
200
150
100
-3dB Bandwidth (MHz)
50
0
-4010110160
AV=-1
AV=-2
AV=-5
AV=-1AV=-2
AV=-5
Frequency (Hz)
60
Ambient Temperature (°C)
RF=500Ω
RL=150Ω
Peaking vs Temperature
2.5
RL=150Ω
2
1.5
1
Peaking (dB)
0.5
0
-0.5
-4010110160
AV=1
AV=-1
60
Ambient Temperature (°C)
Voltage and Current Noise vs Frequency
1000
100
10
Voltage Noise (nV/√Hz)
, Current Noise (pA/√Hz)
1
100
in+
in-
e
n
100010k100k10M1M
Frequency ()
7
Page 8
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Typical Performance Curves
EL5396C - Preliminary
Closed Loop Output Impedance vs Frequency
100
10
1
0.1
Output Impedance (Ω)
0.01
0.001
Frequency (Hz)
2nd and 3rd Harmonic Distortion vs Frequency
-20
AV=+2
-30
V
=2V
OUT
P-P
RL=100Ω
-40
-50
-60
-70
Harmonic Distortion (dBc)
-80
-90
1
2nd Order
Distortion
Frequency (MHz)
3rd Order
Distortion
10100
Supply Current vs Supply Voltage
10
8
6
4
Supply Current (mA)
2
0
0
Two-tone 3rd Order
Input Referred Intermodulation Intercept (IIP3)
25
AV=+2
20
RL=150Ω
15
10
5
0
Input Power Intercept (dBm)
-10
AV=+2
-5
RL=100Ω
10
Supply Voltage (V)
Frequency (MHz)
122108641001k100M1G1M100k10M10k
100
Differential Gain/Phase vs DC Input
Voltage at 3.58MHz
0.03
AV=2
0.02
RF=RG=500Ω
RL=150Ω
0.01
0
-0.01
-0.02
dG (%) or dP (°)
-0.03
-0.04
-0.05
-1-0.500.51
DC Input Voltage
dP
dG
Differential Gain/Phase vs DC Input
Voltage at 3.58MHz
0.04
AV=1
0.03
RF=750Ω
RL=500Ω
0.02
0.01
0
-0.01
dG (%) or dP (°)
-0.02
-0.03
-0.04
-1-0.500.51
DC Input Voltage
dP
dG
8
Page 9
Typical Performance Curves
EL5396C - Preliminary
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
)
PP
Output Voltage Swing (V
200mV/div
Output Voltage Swing vs Frequency
THD<1%
10
RL=500Ω
8
RL=150Ω
6
4
2
AV=2AV=2
0
1
Small Signal Step ResponseLarge Signal Step Response
10100
Frequency (MHz)
VS=±5V
RL=150Ω
AV=2
RF=RG=500Ω
Output Voltage Swing vs Frequency
THD<0.1%
10
)
8
PP
Output Voltage Swing (V
1V/div
RL=500Ω
6
RL=150Ω
4
2
0
1
10100
Frequency (MHz)
VS=±5V
RL=150Ω
AV=2
RF=RG=500Ω
10ns/div
Settling Time vs Settling Accuracy
25
20
15
10
Settling Time (ns)
5
0
0.010.11
Settling Accuracy (%)
AV=2
RF=RG=500Ω
RL=150Ω
V
STEP
=5V
P-P
output
10ns/div
Transimpedance (RoI) vs Temperature
625
600
575
RoI (kΩ)
550
525
-401060110160
Die Temperature (°C)
9
Page 10
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Typical Performance Curves
EL5396C - Preliminary
PSRR and CMRR vs Temperature
90
80
70
60
50
40
PSRR/CMRR (dB)
30
20
10
-401060110160
Die Temperature (°C)
Offset Voltage vs Temperature
2
1
0
(mV)
OS
V
-1
-2
-401060110160
Die Temperature (°C)
PSRR
CMRR
ICMR and IPSR vs Temperature
2
1.5
1
0.5
ICMR/IPSR (µA/V)
0
-0.5
-401060110160
60
40
20
0
-20
Input Current (µA)
-40
-60
-4010110160
ICMR+
IPSR
ICMR-
Die Temperature (°C)
Input Current vs Temperature
60
Temperature (°C)
IB-
IB+
Positive Input Resistance vs Temperature
60
50
40
30
+ (kΩ)
IN
R
20
10
0
-4010110160
60
Temperature (°C)
Supply Current vs Temperature
5
4
3
2
Supply Current (mA)
1
0
-4010110160
60
Temperature (°C)
10
Page 11
Typical Performance Curves
EL5396C - Preliminary
EL5396C - Preliminary
Triple 400MHz Fixed Gain Amplifier
Positive Output Swing vs Temperature for Various Loads
4.2
4.1
4
3.9
(V)
OUT
3.8
V
3.7
3.6
3.5
-4010110160
130
125
(mA)
OUT
I
120
115
-401060110160
1kΩ
150Ω
60
Temperature (°C)
Output Current vs Temperature
Sink
Source
Die Temperature (°C)
Negative Output Swing vs Temperature for Various Loads
-3.5
-3.6
-3.7
-3.8
(V)
OUT
-3.9
V
-4
-4.1
-4.2
-4010110160
Temperature (°C)
Slew Rate vs Temperature
4000
3500
3000
Slew Rate (V/µS)
2500
-401060110160
Die Temperature (°C)
150Ω
1kΩ
60
AV=2
RF=RG=500Ω
RL=150Ω
Channel-to-Channel Isolation vs Frequency
0
-20
-40
Gain (dB)
-60
-80
-100
100k1M10M100M
Frequency (Hz)
400M
Package Power Dissipation vs Ambient Temp.
JEDEC JESD51-3 Low Effective Thermal Conductivity Test Board
Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described
herein and makes no representations that they are free from patent infringement.
WARNING - Life Support Policy
Elantec, Inc. products are not authorized for and should not be used
within Life Support Systems without the specific written consent of
Elantec, Inc. Life Support systems are equipment intended to sup-
Elantec Semiconductor, Inc.
675 Trade Zone Blvd.
Milpitas, CA 95035
Telephone: (408) 945-1323
(888) ELANTEC
Fax:(408) 945-9305
European Office: +44-118-977-6020
Japan Technical Center: +81-45-682-5820
port or sustain life and whose failure to perform when properly used
in accordance with instructions provided can be reasonably
expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support
Systems are requested to contact Elantec, Inc. factory headquarters
to establish suitable terms & conditions for these applications. Elantec, Inc.’s warranty is limited to replacement of defective
components and does not cover injury to persons or property or
other consequential damages.
September 19, 2001
13
Printed in U.S.A.
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.