Datasheet EBD11ED8ABFB-7B, EBD11ED8ABFB-7A, EBD11ED8ABFB-6B Datasheet (ELPID)

Page 1
PRELIMINARY DATA SHEET
1GB Unbuffered DDR SDRAM DIMM
(128M words ×××× 72 bits, 2 Banks)

Description

The EBD11ED8ABFB is 128M words × 72 bits, 2
banks Double Data Rate (DDR) SDRAM unbuffered module, mounted 18 pieces of 512M bits DDR SDRAM sealed in TSOP package. Read and write operations are performed at the cross points of the CK and the /CK. This high-speed data transfer is realized by the 2 bits prefetch-pipelined architecture. Data strobe (DQS) both for read and write are available for high speed and reliable data bus design. By setting extended mode register, the on-chip Delay Locked Loop (DLL) can be set enable or disable. This module provides high density mounting without utilizing surface mount technology. Decoupling capacitors are mounted beside each TSOP on the module board.

Features

184-pin socket type dual in line memory module
(DIMM)
PCB height: 31.75mm Lead pitch: 1.27mm
2.5V power supply
Data rate: 333Mbps/266Mbps (max.)
2.5 V (SSTL_2 compatible) I/O
Double Data Rate architecture; two data transfers per
clock cycle
Bi-directional, data strobe (DQS) is transmitted
/received with data, to be used in capturing data at the receiver
Data inputs and outputs are synchronized with DQS
4 internal banks for concurrent operation
(Component)
DQS is edge aligned with data for READs; center
aligned with data for WRITEs
Differential clock inputs (CK and /CK)
DLL aligns DQ and DQS transitions with CK
transitions
Commands entered on each positive CK edge; data
referenced to both edges of DQS
Auto precharge option for each burst access
Programmable burst length: 2, 4, 8
Programmable /CAS latency (CL): 2, 2.5
Refresh cycles: (8192 refresh cycles /64ms) 7.8µs maximum average periodic refresh interval
2 variations of refresh Auto refresh Self refresh
Document No. E0295E20 (Ver. 2.0) Date Published August 2002 (K) Japan URL: http://www.elpida.com Elpida Memory , Inc. 2002
Page 2
EBD11ED8ABFB

Ordering Information

Part number
EBD11ED8ABFB -6B EBD11ED8ABFB -7A EBD11ED8ABFB -7B

Pin Configurations

Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name
1 VREF 47 DQS8 93 VSS 139 VSS
2 DQ0 48 A0 94 DQ4 140 DM8/DQS17
3 VSS 49 CB2 95 DQ5 141 A10
4 DQ1 50 VSS 96 VDDQ 142 CB6
5 DQS0 51 CB3 97 DM0/DQS9 143 VDDQ
6 DQ2 52 BA1 98 DQ6 144 CB7
7 VDD 53 DQ32 99 DQ7 145 VSS
8 DQ3 54 VDDQ 100 VSS 146 DQ36
9 NC 55 DQ33 101 NC 147 DQ37
10 NC 56 DQS4 102 NC 148 VDD
11 VSS 57 DQ34 103 NC 149 DM4/DQS13
12 DQ8 58 VSS 104 VDDQ 150 DQ38
13 DQ9 59 BA0 105 DQ12 151 DQ39
14 DQS1 60 DQ35 106 DQ13 152 VSS
15 VDDQ 61 DQ40 107 DM1/DQS10 153 DQ44
16 CK1 62 VDDQ 108 VDD 154 /RAS
17 /CK1 63 /WE 109 DQ14 155 DQ45
18 VSS 64 DQ41 110 DQ15 156 VDDQ
19 DQ10 65 /CAS 111 CKE1 157 /CS0
20 DQ11 66 VSS 112 VDDQ 158 /CS1
21 CKE0 67 DQS5 113 NC 159 DM5/DQS14
22 VDDQ 68 DQ42 114 DQ20 160 VSS
23 DQ16 69 DQ43 115 A12 161 DQ46
24 DQ17 70 VDD 116 VSS 162 DQ47
25 DQS2 71 NC 117 DQ21 163 NC
26 VSS 72 DQ48 118 A11 164 VDDQ
27 A9 73 DQ49 119 DM2/DQS11 165 DQ52
28 DQ18 74 VSS 120 VDD 166 DQ53
Data rate Mbps (max.)
333 266 266
Component JEDEC speed bin (CL-tRCD-tRP)
DDR333B (2.5-3-3) DDR266A (2-3-3) DDR266B (2.5-3-3)
Front side
1 pin
93 pin 144 pin 145 pin184 pin
Back side
52 pin53 pin 92 pin
Package
184-pin DIMM
Contact pad
Gold EDD5108ABTA
Mounted devices
Preliminary Data Sheet E0295E20 (Ver. 2.0)
2
Page 3
EBD11ED8ABFB
Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name
29 A7 75 /CK2 121 DQ22 167 NC
30 VDDQ 76 CK2 122 A8 168 VDD
31 DQ19 77 VDDQ 123 DQ23 169 DM6/DQS15
32 A5 78 DQS6 124 VSS 170 DQ54
33 DQ24 79 DQ50 125 A6 171 DQ55
34 VSS 80 DQ51 126 DQ28 172 VDDQ
35 DQ25 81 VSS 127 DQ29 173 NC
36 DQS3 82 VDDID 128 VDDQ 174 DQ60
37 A4 83 DQ56 129 DM3/DQS12 175 DQ61
38 VDD 84 DQ57 130 A3 176 VSS
39 DQ26 85 VDD 131 DQ30 177 DM7/DQS16
40 DQ27 86 DQS7 132 VSS 178 DQ62
41 A2 87 DQ58 133 DQ31 179 DQ63
42 VSS 88 DQ59 134 CB4 180 VDDQ
43 A1 89 VSS 135 CB5 181 SA0
44 CB0 90 NC 136 VDDQ 182 SA1
45 CB1 91 SDA 137 CK0 183 SA2
46 VDD 92 SCL 138 /CK0 184 VDDSPD
Preliminary Data Sheet E0295E20 (Ver. 2.0)
3
Page 4
EBD11ED8ABFB

Pin Description

Pin name Function
Address input
A0 to A12
BA0, BA1 Bank select address
DQ0 to DQ63 Data input/output
CB0 to CB7 Check bit (Data input/output)
/RAS Row address strobe command
/CAS Column address strobe command
/WE Write enable
/CS0, /CS1 Chip select
CKE0, CKE1 Clock enable
CK0 to CK2 Clock input
/CK0 to /CK2 Differential clock input
DQS0 to DQS8 Input and output data strobe
DM0 to DM8/DQS9 to DQS17 Input mask
SCL Clock input for serial PD
SDA Data input/output for serial PD
SA0 to SA2 Serial address input
VDD Power for internal circuit
VDDQ Power for DQ circuit
VDDSPD Power for serial EEPROM
VREF Input reference voltage
VSS Ground
VDDID VDD identification flag
NC No connection
Row address A0 to A12 Column address A0 to A9, A11
Preliminary Data Sheet E0295E20 (Ver. 2.0)
4
Page 5
EBD11ED8ABFB

Serial PD Matrix

Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
0
1
2 Memory type 0 0 0 0 0 1 1 1 07H DDR SDRAM
3 Number of row address 0 0 0 0 1 1 0 1 0DH 13
4 Number of column address 0 0 0 0 1 0 1 1 0BH 11
5 Number of DIMM banks 0 0 0 0 0 0 1 0 02H 2
6 Module data width 0 1 0 0 1 0 0 0 48H 72 bits
7 Module data width continuation 0 0 0 0 0 0 0 0 00H 0
8 Voltage interface level of this assembly 0 0 0 0 0 1 0 0 04H SSTL2
9
-7A, -7B 0 1 1 1 0 1 0 1 75H 7.5ns*1
10
-7A, -7B 0 1 1 1 0 1 0 1 75H 0.75ns*1
11 DIMM configuration type 0 0 0 0 0 0 1 0 02H ECC
12 Refresh rate/type 1 0 0 0 0 0 1 0 82H 7.6µs 13 Primary SDRAM width 0 0 0 0 1 0 0 0 08H × 8 14 Error checking SDRAM width 0 0 0 0 1 0 0 0 08H × 8
15
16
17
18
19
20
21 SDRAM module attributes 0 0 1 0 0 0 0 0 20H
22 SDRAM device attributes: General 1 1 0 0 0 0 0 0 C0H VDD ± 0.2V
23
-7B 1 0 1 0 0 0 0 0 A0H 10ns*1
24
-7A, -7B 0 1 1 1 0 1 0 1 75H 0.75ns*1
25 to 26 0 0 0 0 0 0 0 0 00H
27
-7A, -7B 0 1 0 1 0 0 0 0 50H 20ns
Number of bytes utilized by module manufacturer
Total number of bytes in serial PD device
DDR SDRAM cycle time, CL = 2.5
-6B
SDRAM access from clock (tAC)
-6B
SDRAM device attributes: Minimum clock delay back-to-back column access
SDRAM device attributes: Burst length supported
SDRAM device attributes: Number of banks on SDRAM device
SDRAM device attributes: /CAS latency
SDRAM device attributes: /CS latency
SDRAM device attributes: /WE latency
Minimum clock cycle time at CL = 2
-6B, -7A
Maximum data access time (tAC) from clock at CL = 2
-6B
Minimum row precharge time (tRP)
-6B
1 0 0 0 0 0 0 0 80H 128 bytes
0 0 0 0 1 0 0 0 08H 256 bytes
0 1 1 0 0 0 0 0 60H 6.0ns*
0 1 1 1 0 0 0 0 70H 0.7ns*1
0 0 0 0 0 0 0 1 01H 1 CLK
0 0 0 0 1 1 1 0 0EH 2,4,8
0 0 0 0 0 1 0 0 04H 4
0 0 0 0 1 1 0 0 0CH 2, 2.5
0 0 0 0 0 0 0 1 01H 0
0 0 0 0 0 0 1 0 02H 1
0 1 1 1 0 1 0 1 75H 7.5ns*
0 1 1 1 0 0 0 0 70H 0.7ns*1
0 1 0 0 1 0 0 0 48H 18ns
1
Differential Clock
1
Preliminary Data Sheet E0295E20 (Ver. 2.0)
5
Page 6
EBD11ED8ABFB
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
Minimum row active to row active
28
-7A, -7B 0 0 1 1 1 1 0 0 3CH 15ns
29
-7A, -7B 0 1 0 1 0 0 0 0 50H 20ns
30
-7A, -7B 0 0 1 0 1 1 0 1 2DH 45ns
31 Module bank density 1 0 0 0 0 0 0 0 80H 512M bytes
32
-7A, -7B 1 0 0 1 0 0 0 0 90H 0.9ns*1
33
-7A, -7B 1 0 0 1 0 0 0 0 90H 0.9ns*1
34
-7A, -7B 0 1 0 1 0 0 0 0 50H 0.5ns*1
35
-7A, -7B 0 1 0 1 0 0 0 0 50H 0.5ns*1
36 to 40 Superset information 0 0 0 0 0 0 0 0 00H Future use
41
-7A, -7B 0 1 0 0 0 1 0 0 44H 68ns*1
42
-7A, -7B 0 1 0 0 1 0 1 1 4BH 75ns*1
43 SDRAM tCK cycle max. (tCK max.) 0 0 1 1 0 0 0 0 30H 12ns*1
44
-7A, -7B 0 0 1 1 0 0 1 0 32H 500ps*1
45
-7A, -7B 0 1 1 1 0 1 0 1 75H 750ps*1
46 to 61 Superset information 0 0 0 0 0 0 0 0 00H Future use
62 SPD Revision 0 0 0 0 0 0 0 0 00H
63
-7A 0 0 0 0 1 1 1 0 0EH
-7B 0 0 1 1 1 0 0 1 39H
64 to 65 Manufacturer’s JEDEC ID code 0 1 1 1 1 1 1 1 7FH
delay (tRRD)
-6B
Minimum /RAS to /CAS delay (tRCD)
-6B
Minimum active to precharge time (tRAS)
-6B
Address and command setup time before clock (tIS)
-6B
Address and command hold time after clock (tIH)
-6B
Data input setup time before clock (tDS)
-6B
Data input hold time after clock (tDH)
-6B
Active command period (tRC)
-6B
Auto refresh to active/ Auto refresh command cycle (tRFC)
-6B
Dout to DQS skew
-6B
Data hold skew (tQHS)
-6B
Checksum for bytes 0 to 62
-6B
0 0 1 1 0 0 0 0 30H 12ns
0 1 0 0 1 0 0 0 48H 18ns
0 0 1 0 1 0 1 0 2AH 42ns
0 1 1 1 0 1 0 1 75H 0.75ns*1
0 1 1 1 0 1 0 1 75H 0.75ns*1
0 1 0 0 0 1 0 1 45H 0.45ns*1
0 1 0 0 0 1 0 1 45H 0.45ns*1
0 0 1 1 1 1 0 0 3CH 60ns*
1
0 1 0 0 1 0 0 0 48H 75ns*1
0 0 1 0 1 1 0 1 2DH 450ps*
0 1 0 1 0 1 0 1 55H 550ps*
1
1
0 1 0 1 0 1 0 0 54H
Continuation code
Preliminary Data Sheet E0295E20 (Ver. 2.0)
6
Page 7
EBD11ED8ABFB
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
66 Manufacturer’s JEDEC ID code 1 1 1 1 1 1 1 0 FEH Elpida Memory
67 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00H
72 Manufacturing location × × × × × × × × ××
73 Module part number 0 1 0 0 0 1 0 1 45H E
74 Module part number 0 1 0 0 0 0 1 0 42H B
75 Module part number 0 1 0 0 0 1 0 0 44H D
76 Module part number 0 0 1 1 0 0 0 1 31H 1
77 Module part number 0 0 1 1 0 0 0 1 31H 1
78 Module part number 0 1 0 0 0 1 0 1 45H E
79 Module part number 0 1 0 0 0 1 0 0 44H D
80 Module part number 0 0 1 1 1 0 0 0 38H 8
81 Module part number 0 1 0 0 0 0 0 1 41H A
82 Module part number 0 1 0 0 0 0 1 0 42H B
83 Module part number 0 1 0 0 0 1 1 0 46H F
84 Module part number 0 1 0 0 0 0 1 0 42H B
85 Module part number 0 0 1 0 1 1 0 1 2DH
86
-7A, -7B 0 0 1 1 0 1 1 1 37H 7
87
-6B, -7B 0 1 0 0 0 0 1 0 42H B
88 to 90 Module part number 0 0 1 0 0 0 0 0 20H (Space)
91 Revision code 0 0 1 1 0 0 0 0 30H Initial
92 Revision code 0 0 1 0 0 0 0 0 20H (Space)
93 Manufacturing date × × × × × × × × ××
94 Manufacturing date × × × × × × × × ××
95 to 98 Module serial number
99 to 127 Manufacture specific data
Module part number
-6B
Module part number
-7A
0 0 1 1 0 1 1 0 36H 6
0 1 0 0 0 0 0 1 41H A
Note: These specifications are defined based on component specification, not module.
(ASCII-8bit code)
Year code (HEX)
Week code (HEX)
Preliminary Data Sheet E0295E20 (Ver. 2.0)
7
Page 8

Block Diagram

EBD11ED8ABFB
/CS0
DQS0
DQ0 to DQ7
DQS1
DQ8 to DQ15
DQS2
DQ16 to DQ23
DQS3
DQ24 to DQ31
DQS4
DQ32 to DQ39
DQS5
DQ40 to DQ47
DQS6
DQ48 to DQ55
DQS7
DQ56 to DQ63
DQS8
CB0 to CB7
/CS1
RS
/CS
8
RS
RS
8
RS
RS
8
RS
RS
8
RS
RS
8
RS
RS
8
RS
RS
8
RS
RS
8
RS
RS
8
U1
DQ
DQS DM/CS
U11
DQ
DQS DM/CS
U3
DQ
DQS DM/CS
U13
DQ
DQS DM/CS
U14
DQ
DQS DM/CS
U6
DQ
DQS DM/CS
U16
DQ
DQS DM/CS
U8
DQ
DQS DM/CS
U9
DQ
DQS DM
RS
DQS DM/CS
U10
DQ
DQS DM/CS
U2
DQ
DQS DM/CS
U12
DQ
DQS DM/CS
U4
DQ
DQS DM/CS
U5
DQ
DQS DM/CS
U15
DQ
DQS DM/CS
U7
DQ
DQS DM/CS
U17
DQ
DQS DM/CS
U18
DQ
RS
RS
RS
RS
RS
RS
RS
RS
DM0/DQS9
DM1/DQS10
DM2/DQS11
DM3/DQS12
DM4/DQS13
DM5/DQS14
DM6/DQS15
DM7/DQS16
DM8/DQS17
3.3
* U1 to U18: 512M bits DDR SDRAM
U20: 2k bits EEPROM RS: 22
VDD, VDDQ
VREF
VSS
VDDID
open
Clock wiring Clock input CK0, /CK0 CK1, /CK1 CK2, /CK2 Note: Wire per Clock loading table/Wiring diagrams.
DDR SDRAMS 6DRAM loads 6DRAM loads 6DRAM loads
U1 to U18 U1 to U18 U1 to U18
A0 to A12 BA0, BA1
/RAS /CAS
/WE
CKE0 CKE1
SCL
Notes:
1. The SDA pull-up resistor is required due to
2. The SCL pull-up resistor is recommended
SCL
A0
SA0 SA1 SA2
the open-drain/open-collector output.
because of the normal SCL line inacitve "high" state.
A0 to A12 (U1 to U18)
3.3 BA0, BA1 (U1 to U18)
3.3 /RAS (U1 to U18)
3.3 /CAS (U1 to U18)
3.3 /WE (U1 to U18)
CKE (U1, U3, U6, U8, U9, U11, U13, U14, U16) CKE (U2, U4, U5, U7, U10, U12, U15, U17, U18)
Serial PD
SDA
SDA
U20
A1 A2
Preliminary Data Sheet E0295E20 (Ver. 2.0)
8
Page 9

Logical Clock Net Structure

EBD11ED8ABFB
6DRAM loads
CLK
DIMM connector
/CLK
4DRAM loads
DIMM connector
R = 120
R = 120
DRAM1
DRAM2 DRAM3
DRAM4 DRAM5
DRAM6
DRAM1
DRAM2 Capacitance
Capacitance DRAM5
DRAM6
5DRAM loads
DIMM connector
3DRAM loads
DIMM connector
R = 120
R = 120
DRAM1
DRAM2 DRAM3
Capacitance DRAM5
DRAM6
DRAM1
Capacitance DRAM3
Capacitance DRAM5
Capacitance
2DRAM loads
DIMM connector
R = 120
DRAM1
Capacitance Capacitance
Capacitance DRAM5
Capacitance
1DRAM loads
DIMM connector
R = 120
Capacitance
Capacitance DRAM3
Capacitance
Capacitance
Preliminary Data Sheet E0295E20 (Ver. 2.0)
9
Page 10
EBD11ED8ABFB

Electrical Specifications

All voltages are referenced to VSS (GND).
After power up, wait more than 200 µs and then, execute power on sequence and auto refresh before proper
device operation is achieved.

Absolute Maximum Ratings

Parameter Symbol Value Unit Note
Voltage on any pin relative to VSS VT –0.5 to +3.6 V
Supply voltage relative to VSS VDD, VDDQ –0.5 to +3.6 V
Short circuit output current IO 50 mA
Power dissipation PD 18 W
Operating temperature TA 0 to +70 °C 1
Storage temperature Tstg –55 to +125 °C
Note: DDR SDRAM device specification.
Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = 0 to +70°C) (DDR SDRAM Device Specification)
Parameter Symbol Min Typ Max Unit Notes
Supply voltage VDD,VDDQ 2.3 2.5 2.7 V 1
VSS 0 0 0 V
Input reference voltage VREF 0.49 × VDDQ 0.50 × VDDQ 0.51 × VDDQ V
Termination voltage VTT VREF – 0.04 VREF VREF + 0.04 V
Input high voltage VIH (DC) VREF + 0.15 VDDQ + 0.3 V 2
Input low voltage VIL (DC) –0.3 VREF – 0.15 V 3
Input voltage level, CK and /CK inputs
Input differential cross point voltage, CK and /CK inputs
Input differential voltage, CK and /CK inputs
VIN (DC) –0.3 VDDQ + 0.3 V 4
VIX (DC) 0.5 × VDDQ 0.2V 0.5 × VDDQ 0.5 × VDDQ + 0.2V V
VID (DC) 0.36 VDDQ + 0.6 V 5, 6
Notes: 1. VDDQ must be lower than or equal to VDD.
2. VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns.
3. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns.
4. VIN (DC) specifies the allowable dc execution of each differential input.
5. VID (dc) specifies the input differential voltage required for switching.
6. VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF – 0.18V if measurement.
Preliminary Data Sheet E0295E20 (Ver. 2.0)
10
Page 11
EBD11ED8ABFB
DC Characteristics 1 (TA = 0 to 70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
Parameter Symbol Grade max. Unit Test condition Notes
Operating current (ACTV-PRE) IDD0
Operating current (ACTV-READ-PRE)
Idle power down standby current IDD2P 54 mA CKE VIL 4
Floating idle standby current IDD2F
Quiet idle standby current IDD2Q 450 mA
Active power down standby current
Active standby current IDD3N
Operating current (Burst read operation)
Operating current (Burst write operation)
Auto refresh current IDD5
Self refresh current IDD6 72 mA
Operating current (4 banks interleaving)
IDD1
IDD3P 360 mA CKE ≤ VIL 3
IDD4R
IDD4W
IDD7A
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
Notes. 1. These IDD data are measured under condition that DQ pins are not connected.
2. One bank operation.
3. One bank active.
4. All banks idle.
5. Command/Address transition once per one cycle.
6. Data/Data mask transition twice per one cycle.
7. 4 banks active. Only one bank is running at tRC = tRC (min.)
8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general.
9. Command/Address transition once every two clock cycles.
10. Command/Address stable at VIH or VIL.
1980 1755
2250 1980
720 630
1260 1080 2520 2160 2520 2160 5220 4860
4500 3870
mA
mA
mA
mA
mA
mA
mA
mA BL = 4 5, 6, 7
CKE VIH, tRC = tRC (min.)
CKE VIH, BL = 2, CL = 2.5, tRC = tRC (min.)
CKE VIH, /CS VIH, DQ, DQS, DM = VREF
CKE VIH, /CS VIH, DQ, DQS, DM = VREF
CKE VIH, /CS VIH tRAS = tRAS (max.)
CKE VIH, BL = 2, CL = 2.5
CKE VIH, BL = 2, CL = 2.5
tRFC = tRFC (min.), Input VIL or VIH
Input VDD – 0.2 V Input 0.2 V
1, 2, 9
1, 2, 5
4, 5
4, 10
3, 5, 6
1, 2, 5, 6
1, 2, 5, 6
DC Characteristics 2 (TA = 0 to 70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
Parameter Symbol min. max. Unit Test condition Notes
Input leakage current ILI –36 36 µA VDD VIN VSS
Output leakage current ILO –10 10 µA VDD VOUT VSS
Output high current IOH –15.2 mA VOUT = 1.95V
Output low current IOL 15.2 mA VOUT = 0.35V
Pin Capacitance (TA = 25°C, VDD, VDDQ = 2.5V ± 0.2V)
Parameter Symbol Pins max. Unit Notes
Input capacitance CI1
Input capacitance CI2 CK, /CK TBD pF
Data and DQS input/output capacitance
Preliminary Data Sheet E0295E20 (Ver. 2.0)
CO DQ, DQS, CB TBD pF
Address, /RAS, /CAS, /WE, /CS, CKE
TBD pF
11
Page 12
EBD11ED8ABFB
AC Characteristics (TA = 0 to +70°°°°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V) (DDR SDRAM Device Specification)
-6B -7A -7B
Parameter Symbol min. max. min. max min. max Unit Notes
Clock cycle time (CL = 2)
(CL = 2.5) tCK 6 12 7.5 12 7.5 12 ns
CK high-level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK low-level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK half period tHP
DQ output access time from CK, /CK
DQS output access time from CK, /CK
DQS to DQ skew tDQSQ — 0.45 — 0.5 — 0.5 ns 3
DQ/DQS output hold time from DQS
Data hold skew factor tQHS — 0.55 — 0.75 — 0.75 ns
Data-out high-impedance time from CK, /CK
Data-out low-impedance time from CK, /CK
Read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQ and DM input setup time tDS 0.45 0.5 0.5 ns 8
DQ and DM input hold time tDH 0.45 0.5 0.5 ns 8
DQ and DM input pulse width tDIPW 1.75 1.75 1.75 ns 7
Write preamble setup time tWPRES 0 0 0 ns
Write preamble tWPRE 0.25 — 0.25 — 0.25 — tCK
Write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK 9
Write command to first DQS latching transition
DQS falling edge to CK setup time
DQS falling edge hold time from CK
DQS input high pulse width tDQSH 0.35 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 0.35 tCK
Address and control input setup time
Address and control input hold time
Address and control input pulse width
Mode register set command cycle time
Active to Precharge command period
Active to Active/Auto refresh command period
tCK 7.5 12 7.5 12 10 12 ns 10
min (tCH, tCL)
tAC –0.7 0.7 –0.75 0.75 –0.75 0.75 ns 2, 11
tDQSCK –0.6 0.6 –0.75 0.75 –0.75 0.75 ns 2, 11
tQH tHP – tQHS — tHP – tQHS — tHP – tQHS — ns
tHZ –0.7 0.7 –0.75 0.75 –0.75 0.75 ns 5, 11
tLZ –0.7 0.7 –0.75 0.75 –0.75 0.75 ns 6, 11
tDQSS 0.75 1.25 0.75 1.25 0.75 1.25 tCK
tDSS 0.2 — 0.2 — 0.2 — tCK
tDSH 0.2 — 0.2 — 0.2 — tCK
tIS 0.75 — 0.9 — 0.9 — ns 8
tIH 0.75 — 0.9 — 0.9 — ns 8
tIPW 2.2 — 2.2 — 2.2 — ns 7
tMRD 2 — 2 — 2 — tCK
tRAS 42 120000 45 120000 45 120000 ns
tRC 60 — 67.5 — 67.5 — ns
min (tCH, tCL)
min (tCH, tCL)
— tCK
Preliminary Data Sheet E0295E20 (Ver. 2.0)
12
Page 13
EBD11ED8ABFB
-6B -7A -7B
Parameter Symbol min. max. min. max min. max Unit Notes
Auto refresh to Active/Auto refresh command period
Active to Read/Write delay tRCD 18 20 20 ns
Precharge to active command period
Active to auto precharge delay
Active to active command period
Write recovery time tWR 15 — 15 — 15 — ns
Auto precharge write recovery and precharge time
Internal write to Read command delay
Average periodic refresh interval
Notes: 1. On all AC measurements, we assume the test conditions shown in the next page. For timing parameter
definitions, see ‘Timing Waveforms’ section.
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal transition is defined to occur when the signal level crossing VTT.
3. The timing reference level is VTT.
4. Output valid window is defined to be the period between two successive transition of data out or DQS (read) signals. The signal transition is defined to occur when the signal level crossing VTT.
5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage level, but specify when the device output stops driving.
6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This parameter is not referred to a specific DOUT voltage level, but specify when the device output begins driving.
7. Input valid windows is defined to be the period between two successive transition of data input or DQS (write) signals. The signal transition is defined to occur when the signal level crossing VREF.
8. The timing reference level is VREF.
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific reference voltage to judge this transition is not given.
10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not assured.
11. tCK = tCK (min.) when these parameters are measured. Otherwise, absolute minimum values of these values are 10% of tCK.
12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than
0.4V/400 cycle.
13. tDAL = (tWR/tCK)+(tRP/tCK)
For each of the terms above, if not already an integer, round to the next highest integer.
Example: For –7A Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns,
tRFC 72 — 75 — 75 — ns
tRP 18 — 20 — 20 — ns
tRAP tRCD min. — tRCD min. — tRCD min. — ns
tRRD 12 — 15 — 15 — ns
tDAL
tWTR 1 — 1 — 1 — tCK
tREF — 7.8 — 7.8 — 7.8 µs
(tWR/tCK)+ (tRP/tCK)
(tWR/tCK)+ (tRP/tCK)
(tWR/tCK)+ (tRP/tCK)
— tCK 13
tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3) tDAL = 5 clocks
Preliminary Data Sheet E0295E20 (Ver. 2.0)
13
Page 14
EBD11ED8ABFB

Timing Parameter Measured in Clock Cycle for unbuffered DIMM

Number of clock cycle
tCK 6ns 7.5ns
Parameter Symbol min. max. min. max.
Write to pre-charge command delay (same bank) tWPD 4 + BL/2 3 + BL/2
Read to pre-charge command delay (same bank) tRPD BL/2 BL/2
Write to read command delay (to input all data) tWRD 2 + BL/2 2 + BL/2
Burst stop command to write command delay (CL = 2)
(CL = 2.5) tBSTW 3 3
Burst stop command to DQ High-Z (CL = 2)
(CL = 2.5) tBSTZ 2.5 2.5 2.5 2.5
Read command to write command delay (to output all data) (CL = 2)
(CL = 2.5) tRWD 3 + BL/2 3 + BL/2
Pre-charge command to High-Z (CL = 2)
(CL = 2.5) tHZP 2.5 2.5 2.5 2.5
Write command to data in latency tWCD 1 1 1 1
Write recovery time tWR 3 2
DM to data in latency tDMD 0 0 0 0
Mode register set command cycle time tMRD 2 2
Self refresh exit to non-read command tSNR 12 10
Self refresh exit to read command tSRD 200 200
Power down entry tPDEN 1 1 1 1
Power down exit to command input tPDEX 1 1
tBSTW 2 2
tBSTZ 2 2 2 2
tRWD 2 + BL/2 2 + BL/2
tHZP 2 2 2 2
Preliminary Data Sheet E0295E20 (Ver. 2.0)
14
Page 15
EBD11ED8ABFB

Pin Functions

CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held.
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels. See "Command operation".
A0 to A12 (input pins)
Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11) is loaded via theA0 to the A9 and the A11 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address becomes the starting address of a burst operation.
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
BA0, BA1 (input pin)
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See Bank Select Signal Table)
[Bank Select Signal Table]
BA0 BA1
Bank 0 L L
Bank 1 H L
Bank 2 L H
Bank 3 H H
Remark: H: VIH. L: VIL.
CKE (input pin)
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the CKE is driven low and exited when it resumes to high.
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS provide the read data strobes (as output) and the write data strobes (as input).
Preliminary Data Sheet E0295E20 (Ver. 2.0)
15
Page 16
EBD11ED8ABFB
DM (input pins): DM is the reference signal of the data input mask function. DMs are sampled at the cross point of
DQS and VREF
VDD and VDDQ (power supply pins)
2.5V is applied. (VDD is for the internal circuit and VDDQ is for the output buffer.)
VDDSPD (power supply pin)
2.5V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.

Detailed Operation Part, AC Characteristics and Timing Waveforms

Refer to the EDD5104ABTA, EDD5108ABTA datasheet (E0237E).
Preliminary Data Sheet E0295E20 (Ver. 2.0)
16
Page 17

Physical Outline

2.30
1 92
2 – φ 2.50 ± 0.10
133.35 ± 0.15
128.95
(64.48)
(DATUM -A-)
Component area
(Front)
64.77 49.53
EBD11ED8ABFB
Unit: mm
4.00 max
4.00 min
AB
1.27 ± 0.10
93
4.00 ± 0.10
Component area
(Back)
R 2.00
Detail A
1.27 typ
2.50 ± 0.20
1.00 ± 0.05
Note: Tolerance on all dimensions ± 0.13 unless otherwise specified.
Detail B
0.20 ± 0.15
3.80
(DATUM -A-)
6.62
2.175 R 0.90
1.80 ± 0.10
184
10.00
17.80
31.75 ± 0.15
3.00 min
6.35
ECA-TS2-0040-01
Preliminary Data Sheet E0295E20 (Ver. 2.0)
17
Page 18
EBD11ED8ABFB
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. In particular, do not push module cover or drop the modules in order to protect from mechanical defects, which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules.
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V
DD
or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
MDE0202
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function.
CME0107
Preliminary Data Sheet E0295E20 (Ver. 2.0)
18
Page 19
EBD11ED8ABFB
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be used in a non-condensing environment.
If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations.
M01E0107
Preliminary Data Sheet E0295E20 (Ver. 2.0)
19
Loading...