Datasheet CY7C68013A Datasheet (CYPRESS)

Page 1
EZ-USB FX2LP™ USB Microcontroll
er
A A
1.0 Features (CY7C68013A/14A/15A/16A)
• Single-chip integr ated USB 2.0 transceiver, smart SIE, and enhanced 8051 microprocessor
• Fit, form and function compatible with the FX2
—Pin-compatible —Object-code-compatible —Functionally-compatible (FX2LP is a super set)
• Ultra Low power: I
—Ideal for bus and battery powered applications
• Software: 8051 code runs from:
—Internal RAM, which is downloaded via USB —Internal RAM, which is loaded from EEPROM —External memory device (128 pin package)
• 16 KBytes of on-chip Code/Data RAM
• Four programmable BULK/INTERRUPT/ISOCHRO­NOUS endpoints
—Buffering options: double, triple, and quad
• Additional programmable (BULK/INT ERRUPT) 64-byte endpoint
• 8- or 16-bit external data interface
• Smart Media Standard ECC generation
• GPIF (General Programmable Interface)
—Allows direct connection to most parallel interface
no more than 85 mA in any mode
CC
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
—Programmable waveform descr iptors and configu-
ration registers to define waveforms
—Supports multiple Ready (RDY) inputs and Control
(CTL) outputs
• Integrate d, industry-standard enhanced 8051 —48-MHz, 24-MHz, or 12-MHz CPU operation —Four clocks per instructi on cycle —Two USARTS —Three counter/timers —Expanded interrupt system —Two data pointers
• 3.3V operation with 5V tolerant inputs
• Vectored USB interrupts and GPIF/FIFO interrupts
• Separ ate dat a buffe rs for the Set-u p and Data por tions
of a CONTROL transfer
2
• Integrated I
• Four integrated FIFOs —Integrated glue logic and FIFOs lower system cost
—Automatic conversion to and from 16-bit buses —Master or slave operation —Uses external clock or asynchronous strobes —Easy interface to ASIC and DSP ICs
• Avai lable in Commercial and Industrial temperature
grade (all packages except VFBGA)
C controller, runs at 100 or 400 kHz
Integrated
full- and high-s peed
XCVR
D+
D–
24 MHz Ext. XTAL
FX2LP
x20
VCC
PLL
1.5k connected f or
full speed
USB
2.0
XCVR
Enhanced USB core Simplifies 8051 code
/0.5 /1.0 /2.0
High-perfo rm ance micro using standard t ools with lower-power options
12/24/48 MHz,
four clocks/cycle
CY
Smart
USB
1.1/2.0
Engine
Easy firmware change s
Figure 1-1. Block Diagram
Address (16)
8051 Core
16 KB
RAM
“Soft Conf iguratio n”
Data (8)
Additional I/Os (24)
GPIF
ECC
Address (16) / Data Bus (8)
4 kB
FIFO
FIFO and endpoint mem ory (master or s lav e operation )
2
C
I
Master
ADDR (9)
RDY (6) CTL (6)
8/16
Abundant I/O
including t w o USART S
General programm able I/F to ASIC/DSP or bus
standards such as ATAPI, EPP, etc.
Up to 96 MBytes/s
burst rate
Cypress Semiconductor Corporation 198 Champion Court San Jose, CA 95134-1709 408-943-2600 Document #: 38-08032 Rev. *K Revised January 26, 2006
Page 2
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
1.1 Features (CY7C68013A/14A only)
• CY7C68014A: Ideal for battery powered applications —Suspend current: 100 ∝A (typ)
• CY7C68013A: Ideal for non-battery powered appli ca-
tions
—Suspend current: 300 ∝A (typ)
• Ava ilable in five lea d-free packag es with up to 40 GPIOs —128-pin TQFP (40 GPIOs), 100-pin TQFP (40 GPIOs),
56-pin QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), a nd 56-pin VFBGA (24 GPIOs)
1.2 Features (CY7C68015A/16A only)
• CY7C68016A: Ideal for battery powered applications —Suspend current: 100 ∝A (typ)
• CY7C68015A: Ideal for non-battery powered appli ca-
tions
—Suspend current: 300 ∝A (typ)
• Available in lead-free 56-pin QFN package (26 GPIOs) —2 more GPIOs than CY7C68013A/14A enabl ing addi -
tional features in same foot print
Cypress Semiconductor Corporation’s (Cypress’s) EZ-USB FX2LP (CY7C68013A/14A) is a low-power version of the EZ-USB FX2(CY7C68013), which is a highly integrated, low-power USB 2.0 microcontroll er. By integr ating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypr ess has cr eated a ve ry cost -ef fec tive s oluti on that provides superior time-to-market advantages with low power to enable bus powered applications.
The ingenious architecture of FX2LP results in data transfer rates of over 53 Mbytes per second, the maximum-allowable USB 2.0 bandwid th, while still using a low-cost 8051 microcon­troller in a package as small as a 56 VFBGA (5mm x 5mm). Because it incorporat es the USB 2.0 transcei ver , the FX2LP is more economical, providing a smaller footprint solution than USB 2.0 SIE or external transceiver implementations. With
EZ-USB FX2LP, the Cypress Smart SIE handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing development time to ensure USB comp atibility.
The General Programmable Interface (GPIF) and Master/Slave Endpoint FIFO (8- or 16-bit data bus) provides an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors.
The FX2LP draws considerably less current than the FX2 (CY7C68013), has double the on-chip code/data RAM and is fit, form and function compatible with the 56-, 100-, and 128-pin FX2.
Five package s are def ined for th e family: 56VFBGA, 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP.
2.0 Applications
• Portable video recorder
• MPEG/TV conversion
• DSL modems
• ATA interface
• Memory card reade rs
• Legacy conversion devices
• Cameras
• Scanners
• Home PNA
• Wireless LAN
• MP3 players
•Networking
The “Reference Designs” section of the Cypress web site provides addi tional tools for typical USB 2.0 applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Please visit http://www.cypress.com for more inform a tion.
Document #: 38-08032 Rev. *K Page 2 of 60
Page 3
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
3.0 Functional Overview
3.1 USB Signaling Speed
FX2LP operates at two of the three rates defined in the USB Specification Revision 2.0, dated April 27, 2000:
• Full speed, with a signaling bit rate of 12 Mbps
• High speed, with a signaling bit rate of 480 Mbps.
FX2LP does not support the low-speed signaling mode of
1.5 Mbps.
3.2 8051 Microprocessor
The 8051 microprocessor embedded in the FX 2LP family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs.
3.2.1 8051 Clock Frequency
FX2LP has an on-chip oscillator circuit that uses an external 24-MHz (±1 00-ppm) crystal with the following characteristics:
• Parallel resonant
• Fundamental mode
• 500-∝W drive level
• 12-pF (5% tolerance) load capacitors.
An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz, as required by the transceiver/PHY, and internal counters divide it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 can be changed by the 8051 through the CPUCS register, dynamically.
24 MHz
C1
12 pf
C2
12 pf
The CLKOUT pin, which can be three-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency—48, 24, or 12 MHz.
3.2.2 USARTS
FX2LP contains two standard 8051 USARTs, addressed via Special Function Register (SFR) bits. The USART interface pins are available on separate I/O pins, and are not multi­plexed with port pi ns.
UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230-KBaud operation i s achieved by an internal ly derived clo ck source that generates overflow pulses at the appropriate time. The internal clock adjust s for the 8051 clock rate (48, 24, 12 MHz) such that it always presents the correct frequency for 230-KBaud operati on.
3.2.3 Special Function Registers
Certain 8051 SFR addresses are populated to provide fast access to critical FX2LP functions. These SFR additions are shown in Table 3-1. Bold type indicates non-standard, enhanced 80 51 registers. The two SFR ro ws that end with “0” and “8” contain bit-addressable registers. The four I/O ports A–D use the SFR addresses used in the standard 8051 for ports 0–3, which are not implemented in FX2LP. Because of the faster and more efficient SFR addressing, the FX2LP I/O ports are not addressable in external RAM space (using the MOVX instruction).
[1]
3.3 I2C Bus
FX2LP supports the I2C bus as a master only at 10 0-/400-KHz. SCL and SDA pins have open-drain outputs and hysteresis inputs. These signal s must be pul led up t o 3.3V, even if no I device is connect ed.
2
C
3.4 Buses
20 × PLL
12-pF capacitor va lu es assume s a tr ac e ca pac i ta nc e
of 3 pF per side on a four-lay er F R4 P CA
Figure 3-1. Crystal Configuration
Note:
1. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0 and/or UART1, respectively.
Document #: 38-08032 Rev. *K Page 3 of 60
All packages: 8- or 16-bit “FIFO” bidirectional data bus, multi­plexed on I/O ports B and D. 128-pin package: adds 16-bit output-onl y 8051 address bus, 8-bit bi directional dat a bus.
Page 4
A A
N
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 3-1. Special Function Registers
x8x 9x Ax Bx CxDxExFx
0 1SP EXIF 2DPL0 MPAGE 3DPH0 4 DPL1 5 DPH1 6 DPS 7PCON 8 TCON SCON0 IE IP T2CON EICON EIE EIP 9 TMOD SBUF0 ATL0AUTOPTRH1 EP2468STAT EP01STAT RCAP2L
BTL1AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H CTH0reserved EP68FIFOFLGS TL2 DTH1AUTOPTRH2 GPIFSGLDATH TH2 E CKCON AUTOPTRL2 GPIFSGLDATLX F reserved AUTOPTRSET-UP GPIFSGLDATLNOX
IOA IOB IOC IOD SCON1 PSW ACC B
INT2CLR IOE SBUF1 INT4CLR OEA
OEB OEC OED OEE
3.5 USB Boot Methods
During the power-up sequence, internal logic checks the I2C port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the inte rnally store d values (0xC0) , or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2LP enumerates using internally sto red descriptors. The defaul t ID val ues for FX2LP are VID/PID/DID (0x04B4, 0x8613, 0xAxxx where xxx = Chip revision).
T able 3-2. Default ID V alues for FX2LP
Vendor ID 0x04B4 Cypress Semiconductor Product ID 0x8613 EZ-USB FX2LP Device release 0xAnnn Depends on chi p revision
[2]
Default VID/PID/DID
(nnn = chip revision where first silicon = 001)
3.6 ReNumeration™
Because the FX2LP’s configuration is soft, one chip can take on the identities of multiple distinct USB devices.
When first p lugged into USB, the FX2LP enumerates automat­ically and down loa ds firmware and USB des cript or t ab les ov er the USB cable. Next, the FX2LP enumerates again, this time as a device defined by the downloaded information. This patented two-step process, called ReNumeration, happens instantly when the device is plugged in, with no hint that the initial download step has occurred.
Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and
RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the fir mware clear s DISCON to 0.
Before reconnecting, the firmware sets or clears the RENUM bit to indi cate whet her the f irmware or the Default USB Dev ice will handle de vi ce reques ts ov er endpoi nt zer o: if RENUM = 0, the Default USB Device will handl e device r equests; if RENUM = 1, the firmware will.
3.7 Bus-powered Applications
The FX2LP fully supports bus-powered designs by enumer­ating with less than 100 m A as requi red by t he USB 2.0 spec i­fication.
3.8 Inter rupt Syst em
3.8.1 INT2 Interrupt Request and Enable Registers
FX2LP implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See EZ-USB Technical Reference Manual (TRM) for more detail s.
3.8.2 USB-Interrupt Autovectors
The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that normally would be required to identify the individual USB interrupt source, the FX2LP provides a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the FX2LP pushes the program counter onto its stack then jumps to address 0x0043, where it expects to find a “jump” instruction to the USB Interrupt serv ice routine.
ote:
2
2. The I
Document #: 38-08032 Rev. *K Page 4 of 60
C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.
Page 5
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
The FX2LP jump instruction is encoded as follows.
Table 3-3. INT2 USB Interrupts
USB INTERRUPT TABLE FOR INT2
Priority INT2VEC Val ue Source Notes
1 00 SUDAV Set-up Data Available 2 04 SOF Start of Frame (or microframe) 3 08 SUTOK Set-up Token Received 4 0C SUSPEND USB Suspend request 5 10 USB RESET Bus reset 6 14 HISPEED Entered high speed operation 7 18 EP0ACK FX2LP ACK’d the CONTROL Handshake 8 1C reserved 9 20 EP0-IN EP0-IN ready to be loaded with data
10 24 EP0-OUT EP0-OUT has USB data
11 28 EP1-IN EP1-IN ready to be loaded with data 12 2C EP1-OUT EP1-OUT has USB data 13 30 EP2 IN: buffer available. OUT: buffer has data 14 34 EP4 IN: buffer available. OUT: buffer has data 15 38 EP6 IN: buffer available. OUT: buffer has data 16 3C EP8 IN : buf fer available. OUT: buffer has data 17 40 IBN IN-Bulk-NAK (any IN endpoint) 18 44 reserved 19 48 EP0PING EP0 OUT was Pinged and it NAK’d 20 4C EP1PING EP1 OUT was Pinged and it NAK’d 21 50 EP2PING EP2 OUT was Pinged and it NAK’d 22 54 EP4PING EP4 OUT was Pinged and it NAK’d 23 58 EP6PING EP6 OUT was Pinged and it NAK’d 24 5C EP8PING EP8 OUT was Pinged and it NAK’d 25 60 ERRLIMIT Bus errors exceeded t he programmed limit 26 64 27 68 reserved 28 6C reserved 29 70 EP2ISOERR ISO EP2 OUT PID sequence error 30 74 EP4ISOERR ISO EP4 OUT PID sequence error 31 78 EP6ISOERR ISO EP6 OUT PID sequence error 32 7C EP8ISOERR ISO EP8 OUT PID sequence error
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), t he FX2LP substitutes i ts INT2VEC byte. Therefore, if the high byte (“page”) of a jump-table address is preloaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045 wil l direct the jump to the correct address out of the 27 addresses within the page.
Document #: 38-08032 Rev. *K Page 5 of 60
3.8.3 FIFO/GPIF Inte rrupt (INT4)
Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 3-4 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.
Page 6
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 3-4. Individual FIFO/GPIF Interrupt Sources
Priority INT4VEC Value Source Notes
1 80 EP2PF Endpoint 2 Programmable Flag 2 84 EP4PF Endpoint 4 Programmable Flag 3 88 EP6PF Endpoint 6 Programmable Flag 4 8C EP8PF Endpoint 8 Programmable Flag 5 90 EP2EF Endpoint 2 Empty Flag 6 94 EP4EF Endpoint 4 Empty Flag 7 98 EP6EF Endpoint 6 Empty Flag 8 9C EP8EF Endpoint 8 Empty Flag
9 A0 EP2FF Endpoint 2 Full Fl ag 10 A4 EP4FF Endpoint 4 Full Flag 1 1 A8 EP6FF Endpoint 6 Full Flag 12 AC EP8FF Endpoint 8 Full Flag 13 B0 GPIFDONE GPIF Operation Complete 14 B4 GPIFWF GPIF Waveform
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP register), t he FX 2LP s ubst itutes its I NT4VEC by te. The refor e, if the high byte (“page”) of a jump-table address is preloaded at location 0x0054, the automatically-inserted INT4VEC byte at 0x0055 wil l direct the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2LP pushes the program counter onto its stack then jumps to address 0x 0053, where it expect s to f ind a “j ump” inst ruction to the ISR Interrupt se rvi ce routine.
3.9 Reset and Wakeup
3.9.1 Reset Pin
The input pin, RESET#, will reset the FX2LP when asserted. This pin has hysteresis and is active LOW. When a crystal is
used with t he CY7C680x xA t he rese t period must al low f or th e stabilization of the crystal and the PLL. This reset period should be approxi m ately 5 ms after VCC has reac hed 3.0V. If the cryst al in put pin is dri ven by a c loc k signal the i ntern al PLL stabilizes in 200 ∝s after VCC has reached 3.0V shows a power-on reset condition and a reset applied during operation. A power-on reset is defined as the time reset is asserted while power is being appl ied to the circ uit. A powered reset is defined to be when the FX2LP has previously been powered on and operating and the RESET# pin is asserted.
Cypress provides an application note which describes and recommends power on reset implementat ion and can be found on the Cypress web s ite. For more i nformat io n on reset imple­mentation for the FX2 family of products visit the http://www.cypress.com.
[3]
. Figure 3-2
Note:
3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 ∝s.
Document #: 38-08032 Rev. *K Page 6 of 60
Page 7
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
RESET#
V
IL
3.3V
3.0V
VCC
0V
T
RESET
Power on Res et
Figure 3-2. Reset Timing Plots
Table 3-5. Reset Timing Values
Condition T
Power-on Reset with crystal 5 ms Power-on Reset with external
clock Powered Reset 200 ∝s
3.9.2 Wakeup Pins
The 8051 puts itself and the re st of the chip into a power-down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic, the oscil­lator restarts, after the PLL stabilizes, and then the 8051 receives a wakeup interrupt. This applies whether or not FX2LP is connected to the USB.
The FX2LP exits the power-down (USB suspend) state using one of the following meth ods:
• USB bus activity (if D+/D– lines are lef t floating, noise on these lines may i ndicate activ ity to the FX2LP and i nitiate a wakeup).
• External l ogic asserts the WAKEUP pin
• Externa l l ogic asserts the PA3/WU2 pin.
The second wakeup pin, WU2, can also be configured as a general purpose I/O pin. This allows a simple external R-C network to be used as a periodic wakeup source. Note that WAKEUP is by default active LOW.
200 ∝s + Clock stabili ty tim e
RESET
RESET#
V
IL
3.3V
VCC
0V
T
RESET
Powered Reset
3.10 Program/Data RAM
3.10.1 Size
The FX2LP has 16 KBytes of internal program/data RAM, where PSEN#/RD# signals are internally ORed to allow the 8051 to access it as both program and dat a m em ory. No USB control registers appear in this space.
Two memory maps are shown in the following diagrams:
Figure 3-3 Internal Code Memory, EA = 0 Figure 3-4 External Code Memory, EA = 1.
3.10.2 Internal Code Memory, EA = 0
This mode implements the internal 16-KByte block of RAM (starting at 0) as combined code and data memory. When external RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This allows the user to connect a 64-KByte memory without requiring address decodes to keep clear of internal memory spaces.
Only the internal 16 KBytes and scratch p ad 0.5 KByt es RAM spaces have the following access:
• USB download
• USB upload
• Set-up data poi nter
2
•I
C interface boot loa d.
3.10.3 External Code Memory, EA = 1
The bottom 16 KBytes of program memory is external, and therefore the bottom 16 KBytes of internal RAM is accessible only as data memory.
Document #: 38-08032 Rev. *K Page 7 of 60
Page 8
A A
Inside FX2LP Outside FX2LP
FFFF
4K FIFO buffers
E200 E1FF
0.5 KBytes RAM
Data (RD#,WR#)*
E000
3FFF
7.5 KBytes USB regs and
(RD#,WR#)
(OK to populate data memory here—RD#/WR# strobes are not active)
40 KBytes External Data Memory (RD#,WR#)
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
48 KBytes External Code Memory (PSEN#)
16 KBytes RAM Code and Data (PSEN#,RD#,WR#)*
0000
(Ok to populate data memory here—RD#/WR# strobes are not active)
Data Code
(OK to populate program memory here— PSEN# strobe is not active)
*SUDPTR, USB upload/download, I2C interface boot access
Figure 3-3. Internal Code Memory, EA = 0
Inside FX2LP Outside FX2LP
FFFF
4K FIFO buffers
E200 E1FF
0.5 KBytes RAM
Data (RD#,WR#)*
E000
3FFF
7.5 KBytes USB regs and
(RD#,WR#)
(OK to populate data memory here—RD#/WR# strobes are not active)
40 KBytes External Data Memory (RD#,WR#)
64 KBytes External Code Memory (PSEN#)
(Ok to populate data memory here—RD#/WR# strobes are not active)
Data Code
0000
16 KBytes RAM Data (RD#,WR#)*
*SUDPTR, USB upload/download, I2C interface boot access
Figure 3-4. External Code Memory, EA = 1
Document #: 38-08032 Rev. *K Page 8 of 60
Page 9
A A
3.11 Register Addresses
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
FFFF
F000 EFFF
E800 E7FF
E7C0 E7BF
E780 E77F
E740
E73F
E700 E6FF
E500 E4FF E480 E47F
E400
E3FF E200
E1FF
E000
4 KBytes EP2-EP8
2 KBytes RESERVED
64 Bytes EP1IN
64 Bytes EP1OUT
64 Bytes EP0 IN/OUT
64 Bytes RESERVED
8051 Addressable Registers
Reserved (128)
128 bytes GPIF Waveforms
Reserved (512)
512 bytes
8051 xdata RAM
buffers
(8 x 512)
(512)
3.12 Endpoint RAM
3.12.1 Size
• 3× 64 bytes (Endpoints 0 and 1)
• 8 × 512 bytes (Endpoints 2, 4, 6, 8)
3.12.2 Organization
• EP0
• Bidirect ional endpoint zero, 64-byte buffer
• EP1IN, EP1OUT
• 64-byte buffers, bulk or int errupt
• EP2,4,6,8
• Eight 512- byte buff ers, bulk, i nterrup t, or isochr onous. EP4 and EP8 can be double buffe red, while EP2 and 6 can be either double, tr iple , or quad buff er ed. For high- speed end­point configuration options, see Figure 3- 5.
3.12.3 Set-up Data Buffer
A separate 8-byte buffer at 0xE6B8-0xE6BF holds the Set-up data from a CONTROL transfer.
3.12.4 Endpoint Configurations (H igh-speed Mode)
Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and end point 1 can be either BULK or INTERRUPT. The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. When operating in full-speed BULK mode only the first 64 bytes of each buffer a re used. For example in high-speed, the max packet size is 512 bytes but in full-speed it is 64 bytes. Even though a buffer is configured to be a 512 byte buffer, in full-speed only the first 64 bytes are used. The unused end point buffer space is not available for other opera­tions. An example endpoint configuration would be:
Document #: 38-08032 Rev. *K Page 9 of 60
Page 10
A A
EP2–1024 double buffered; EP6–512 quad buffered
N
1.
(column 8).
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
EP0 IN&OUT
EP1 IN
EP1 OUT
64 64 64
EP2
512
512
EP4
512
512
EP6
512 512
EP8
512
512
1
64 64 64
EP2
512 512
EP4
512 512
EP6
512 512
512
512
2
64 64 64
EP2
512 512
EP4
512 512
EP6
1024
1024
3
64
64
64
64
64
64
EP2
EP2
512
512
512
512
512
512
512
512
EP6
EP6
512
512
512
512
EP8
512
512
512
512
45
64 64 64
EP2
512 512
512 512
EP6
1024
1024
6
64 64 64
EP2
1024
1024
EP6
512 512
EP8
512 512
7
64 64 64
EP2
1024
1024
EP6
512 512
512
512
8
64 64 64
EP2
1024
1024
EP6
1024
1024
9
64 64 64
EP2
512
512
512
EP6
512
512
512
EP8
512 512
10
64 64 64
EP2
1024
1024
1024
1024
EP8
512 512
11
64 64 64
EP2
1024
1024
1024
1024
12
Figure 3-5. Endpoint Configuration
3.12.5 Default Full-Speed Alternate Settings
T able 3-6. Default Full-Speed Alternate Settings
[4, 5]
Alternate Setting 0 1 2 3
ep0 64 64 64 64 ep1out 0 64 bulk 64 int 64 int ep1in 0 64 bulk 64 int 64 int ep2 0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×) ep4 0 64 bulk out (2×) 64 bulk out (2×) 64 bulk out (2×) ep6 0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×) ep8 0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×)
3.12.6 Default High-Speed Alternate Settings
T able 3-7. Default High-Speed Alternate Settings
[4, 5]
Alternate Setting 0 1 2 3
ep0 64 64 64 64 ep1out 0 512 bulk ep1in 0 512 bulk
[6] [6]
64 int 64 int
64 int 64 int ep2 0 512 bulk out (2×) 512 int out (2×) 512 iso out (2×) ep4 0 512 bulk out (2×) 512 bulk out (2×) 512 bulk out (2×) ep6 0 512 bulk in (2×) 512 int in (2×) 512 iso in (2×) ep8 0 512 bulk in (2×) 512 bulk in (2×) 512 bulk in (2×)
otes:
4. “0” means “not implemented.”
5. “2×” means “double buffered.”
6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP
Document #: 38-08032 Rev. *K Page 10 of 60
Page 11
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
3.13 Extern al FIF O Interface
3.13.1 Architecture
The FX2LP slave FIFO ar chi tect ure has ei ght 512 -by te bloc ks in the endpoint RAM that directly serve as FIFO memories, and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).
In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transf er logic tak es two forms, the GPIF f or internally generated control signals, or the slave FIFO interface for externally controlled transfers.
3.13.2 Master/Slave Control Signals
The FX2LP endpoint FIFOS are implemented as eight physi­cally distinct 256x16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between “USB FIFOS” and “Slave FIFOS.” Since they are physically the same memory, no bytes are actua lly t ransf erred between buffer s.
At any given time, some RAM blocks are filling/emptying with USB data under SIE control, while other RAM blocks are available to the 8051 and/or the I/O control unit. The RAM blocks operate as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single, doubl e, triple, o r quad buffered as previ­ously shown.
The I/O control unit implements either an internal-master (M for master) or external-master (S for Slave) interface.
In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100 -pin and 128- pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPI F ca n be run from ei the r an in ternal ly der ived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s (48-MHz IFCLK with 16-bit interface).
In Slave (S) mode, the FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max. frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock m ust be pres ent before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit, and a Slave FIFO Output Enable signal SLOE ena ble s dat a o f the se lected widt h. Ex ternal logi c must insure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLW R signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signals SLRD, SLWR, SLOE and PKTEND are gated by the signal SLCS#.
3.13.3 GPIF and FIFO Clock Rates
An 8051 register bit selects one of two frequencies for the internal ly supplied interface clock: 30 M H z and 48 M Hz. Alter­natively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Anothe r bit with in the IF CONFIG re gister w ill invert the IFCLK signal whether internally or externally sourced.
3.14 GPIF
The GPIF is a flex ible 8- or 1 6-bit paral lel i nterface driven by a user-programmable finite state machine. It allows the CY7C68013A/15A to perform local bus mastering, and can implement a wide variety of protocols such as ATA interface, printer pa ral lel port, and Utopia.
The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector def ines the st ate of the control output s, and det er­mines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that will be executed to perform the desired data move between the FX2LP and the external device.
3.14.1 Six Control OUT Signals
The 100- and 128-pin pa ckages bring out all six Control Output pins (CTL0-CTL5) . The 8051 progr ams the GPIF unit to def ine the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz cl ock).
3.14.2 Six Ready IN Signals
The 100- and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1.
3.14.3 Nine GPIF Address OUT Signals
Nine GPIF address l ines are availa ble in the 100- and 128- pin packages, GPIFADR[8..0]. The GPIF address lines allow indexing through up to a 512-byte block of RAM. If more address lines are needed, I/O port pins can be used.
3.14.4 Long Transfer Mode
In master mode, the 8 051 appropr iate ly set s GPI F trans actio n count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unatte nded transf ers of up to 2 The GPIF automatical ly throt tles dat a flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction .
32
transacti ons.
Document #: 38-08032 Rev. *K Page 1 1 of 60
Page 12
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
3.15 ECC Gen erati on
[7]
The EZ-USB can calc ulate ECCs (Err or-Cor recting Co des) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calcu­lated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes.
The ECC can correct any one-bit error or detect any two-bit error.
3.15.1 ECC Implementation
The two ECC configurations are selected by the ECCM bit:
3.15.1.1 ECCM = 0
Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.
Write any value to ECCRESET, then pass data across the GPIF or Slave FI FO interface. The ECC for the f ir st 256 bytes of data will be calculat ed and stored in ECC1. The ECC for the next 256 bytes will be stored in ECC2. After the second ECC is calculated, the values in the ECCx registers will not change until ECCRESET is written agai n, even if more data is subse­quently passed across the interface.
3.15.1.2 ECCM = 1
One 3-byte ECC calculated over a 512-byte block of data. Write any value to ECCRESET then pass data across the
GPIF or Slave FI FO interface. The ECC for the f ir st 512 bytes of data will be calcul ated and stored in ECC1; ECC2 is unused. After the ECC is cal culat ed, t he value i n ECC1 wil l not ch ange until ECCRESET is written agai n, even if more data is subse­quently passed across the interface
3.16 USB Uploads and Downlo ads
The core has the abi lit y to di rect ly edi t the dat a content s of t he internal 16-KByte RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when “soft” downloading user code and is available only to and from internal RAM, only when the 8051 is held in reset. The availab le RAM spaces ar e 16 KBytes fro m 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scrat ch pad data RAM).
[8]
3.17 Autopo inter Access
FX2LP provides t wo ident ical a utopoi nters. They are simi lar to the internal 8051 data pointers, but with an additional feature: they can opt ionally increment after every m emory acces s. This capability is available to and from both internal and external RAM. The autopointers are available in external FX2LP registers, under control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B – 0xE67C) allows the autopointer to access all RAM, internal and external to the p art. Also, the a utopointers can point to any FX2LP register or endpoint buffer space. When autopointer access to external memory is enabled, location 0xE67B and 0xE67C in XDATA and code space cannot be used.
3.18 I2C Controller
FX2LP has one I2C port that is driven by two internal controllers, one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051, once running, uses to control external I devices. The I
3.18.1 I
2
C pins SCL and SDA must have exter nal 2.2-k. pull-up
The I
2
C port operates in master mode only.
2
C Port Pins
2
resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 3-8 for configuring the device address pins.
T able 3-8. Strap Boot EEPROM Address Lines to These Values
Bytes Example EEPROM A2 A1 A0
16 24LC00
[9]
N/A N/A N/A 128 24LC01 0 0 0 256 24LC02 0 0 0 4K 24LC32 0 0 1 8K 24LC64 0 0 1 16K 24LC128 0 0 1
3.18.2 I
At power-on reset the I
2
C Interface Boot Load Access
2
C interface boot loader will load the VID/PID/DID configuration bytes and up to 16 KBytes of program/data. The ava il able RAM spaces are 16 KByt es from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 will be in reset. I
2
C interface boot loads only occur after
power-on reset .
3.18.3 I
The 8051 can control peripherals connected to the I using the I2CTL and I2DAT registers. FX2LP provides I master control only, it is never an I
2
C Interface General-Purpose Access
2
C slave.
2
C bus
2
3.19 Compatible with Previous Generation EZ-USB FX2
The EZ-USB FX2LP is form/fit and with minor exceptions functionall y compatibl e with its pre decessor , the EZ-USB FX2. This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical, and the vast majority of firmware previously developed for the FX2 will function in the FX2LP.
For designers migrating from the FX2 to the FX2LP a change in the bill o f materi al and review o f the mem ory al locat ion (du e to increas ed int ernal memory ) is requ ired for mor e info rmat ion about migrating fr om EZ-US B FX2 to EZ-USB FX2LP, please see further details in the application note titled Migrating from EZ-USB FX2 to EZ-USB FX2LP, which is available on the Cypress Webs it e.
C
C
Notes:
7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.
8. After the data has been downloaded from the host, a “loader” can execute from internal RAM in order to transfer downloaded data to external memory.
9. This EEPROM does not have address pins.
Document #: 38-08032 Rev. *K Page 12 of 60
Page 13
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
T able 3-9. Part Number Conversion Table
EZ-USB FX2
Part Number
CY7C68013-56PVC CY7C68013A-56PVXC or CY7C68014A-56PVXC 56-pin SSOP
CY7C68013-56PVCT CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel
CY7C68013-56LFC CY7C6801 3A-56LFXC or CY7C68014A-56LFXC 56-pin QFN CY7C68013-100AC CY7C68013A-100AXC or CY7C68014A-100AXC 100-pin TQFP CY7C68013-128AC CY7C68013A-128AXC or CY7C68014A-128AXC 128-pin TQFP
EZ-USB FX2LP
Part Number Package Description
3.20 CY7C68 013A/ 14A and CY7C68 015A/16A Differences
CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively: hence are ideal for power-sensitive battery applications.
CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide mo re flexibility when neither IFCLK or CLKOUT are needed in the 56-pin
package. The USB developers who want to convert their FX2 56-pin appli cation to a bus-powered syst em will directly benefit from these additional signals. The two GPIOs will give these developers the signals they need for the power cont rol circuitry of their bus-powered application without pushing them to a high-pincount version of FX2LP. The CY7C68015A is only available in the 56-pin QFN package
Table 3-10. CY7C68013A/14A and CY7C68015A/16A Pin Differences
CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A
IFCLK PE0/T0OUT
CLKOUT PE1/T1OUT
Document #: 38-08032 Rev. *K Page 13 of 60
Page 14
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
4.0 Pin Assignments
Figure 4-1 identifi es all signa ls for the f ive packag e ty pes. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-, 100-, and 56-pin packages.
The signals on the left edge of the 56-pin package in Figure 4-1 are common to all versions in the FX2LP family wi th the noted differences between the CY7C68013A and the CY7C68015A. Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power-on default configuration.
The 100-pin packag e adds fu nctio nalit y to the 56-pi n pac kage by adding these pins:
• PORTC or alternate GPIFADR[7:0] address signals
• PORTE or al ternate GPIF ADR[8] address si gnal and seven additional 8051 signals
• Three GPIF Control signals
• Four GPIF Ready signals
• Nine 8051 signals (two USARTs, three timer inputs, INT4,and INT5#)
• BKPT, RD#, WR#.
The 128-pin package adds the 8051 address and data buses plus control si gnals. Note that two of the requir ed signals, RD# and WR#, are present in the 100-pin version. In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.
Section 10.5 displ ays the timing di agram of the read and wri te strobing function on accessing PORTC.
Document #: 38-08032 Rev. *K Page 14 of 60
Page 15
A A
Port GPIF Master Slave FIFO
XTALIN XTALOUT RESET# WAKEUP#
SCL SDA
**PE0 replaces IFCLK
& PE1 replaces CLKOUT on CY7C68015A
**PE0/T0OUT **PE1/T1OUT
IFCLK CLKOUT
DPLUS DMINUS
56
100
BKPT PORTC7/GPIFADR7
PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC4/GPIFADR4 PORTC3/GPIFADR3 PORTC2/GPIFADR2 PORTC1/GPIFADR1 PORTC0/GPIFADR0
PE7/GPIFADR8 PE6/T2EX PE5/INT6 PE4/RxD1OUT PE3/RxD0OUT PE2/T2OUT PE1/T1OUT PE0/T0OUT
D7 D6 D5 D4 D3 D2 D1 D0
128
EA
** pinout for CY7C68015A/CY7C680 16A only
FD[15]
PD7
FD[14]
PD6
FD[13]
PD5
FD[12]
PD4
FD[11]
PD3
FD[10]
PD2
FD[9]
PD1
FD[8]
PD0
FD[7]
PB7
FD[6]
PB6
FD[5]
PB5
FD[4]
PB4
FD[3]
PB3
FD[2]
PB2
FD[1]
PB1
FD[0]
PB0
RDY0 RDY1
CTL0 CTL1 CTL2
INT0#/PA0 INT1#/PA1
WU2/PA3
Figure 4-1. Signals
PA2 PA4
PA5 PA6 PA7
RxD0
TxD0
RxD1
TxD1
INT4
INT5#
T2 T1 T0
RD#
WR#
CS# OE#
PSEN#
A15 A14 A13 A12 A11 A10
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7
CTL3 CTL4 CTL5 RDY2 RDY3 RDY4 RDY5
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0]
SLRD SLWR
FLAGA FLAGB FLAGC
INT0#/ PA0 INT1#/ PA1 SLOE WU2/PA3 FIFOADR0 FIFOADR1 PKTEND PA7/FLAGD/SLCS#
Document #: 38-08032 Rev. *K Page 15 of 60
Page 16
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
A4
A5
A6
A7
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
A8
A9
A10
1
CLKOUT
2
VCC
3
GND
4
RDY0/*SLRD
5
RDY1/*SLWR
6
RDY2
7
RDY3
8
RDY4
9
RDY5
10
AVCC
11
XTALOUT
12
XTALIN
13
AGND
14
NC
15
NC
16
NC
17
AVCC
18
DPLUS
19
DMINUS
20
AGND
21
A11
22
A12
23
A13
24
A14
25
A15
26
VCC
27
GND
28
INT4
29
T0
30
T1
31
T2
32
*IFCLK
33
RESERVED
34
BKPT
35
EA
36
SCL
37
SDA
38
OE#
A3 A2 A1 A0
D7 D6 D5
102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0
CY7C68013A/CY7C68014A
128-pin TQFP
PA3/*WU2
PA2/*SLOE
PA1/INT1# PA0/INT0#
VCC
GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0
CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA
VCC CTL4 CTL3
PSEN#
WR#
RD#
PB0/FD0
RXD0
TXD0
GND
VCC
CS#
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB4/FD4
RXD1
TXD1
GND
D2
D1
D0
D3
VCC
D4
PB7/FD7
PB6/FD6
PB5/FD5
GND
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
Figure 4-2. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment
* denotes programmable polarity
Document #: 38-08032 Rev. *K Page 16 of 60
Page 17
A A
100
CLKOUT
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
1
VCC
2
GND
3
RDY0/*SLRD
4
RDY1/*SLWR
5
RDY2
6
RDY3
7
RDY4
8
RDY5
9
AVCC
10
XTALOUT
11
XTALIN
12
AGND
13
NC
14
NC
15
NC
16
AVCC
17
DPLUS
18
DMINUS
19
AGND
20
VCC
21
GND
22
INT4
23
T0
24
T1
25
T2
26
*IFCLK
27
RESERVED
28
BKPT
29
SCL
30
SDA
CY7C68013A/CY7C68014A
100-pin TQFP
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1# PA0/INT0#
VCC
GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0
CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA
VCC CTL4 CTL3
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
PB4/FD4
RXD1
TXD1
47
46
45
44
43
42
GND
GND
VCC
50
49
48
RD#
31
WR#
VCC
33
32
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
RXD0
TXD0
GND
VCC
41
40
39
38
37
36
35
34
PB7/FD7
PB6/FD6
PB5/FD5
Figure 4-3. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment
* denotes programmab le pol arity
Document #: 38-08032 Rev. *K Page 17 of 60
Page 18
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
CY7C68013A/CY7C68014A
56-pin SSOP
1
PD5/FD13
2
PD6/FD14
3
PD7/FD15
4
GND
5
CLKOUT/T1OUT
6
VCC
7
GND
8
RDY0/*SLRD
9
RDY1/*SLWR
10
AVCC
11
XTALOUT
12
XTALIN
13
AGND
14
AVCC
15
DPLUS
16
DMINUS
17
AGND
18
VCC
19
GND
20
*IFCLK/T0OUT
21
RESERVED
22
SCL
23
SDA
24
VCC
25
PB0/FD0
26
PB1/FD1
27
PB2/FD2
28
PB3/FD3
PD4/FD12 PD3/FD11 PD2/FD10
PD1/FD9 PD0/FD8
*WAKEUP
VCC
RESET#
GND
PA7/*FLAGD/SLCS #
PA6/PKTEND PA5/FIFOADR1 PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1# PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB CTL0/*FLAGA
GND
VCC
GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4
56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
Figure 4-4. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment
* denotes programm able polarity
Document #: 38-08032 Rev. *K Page 18 of 60
Page 19
A A
CLKOUT/**PE1/T1OUT
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
10 11 12
PD7/FD15
GND
VCC
55
56
1 2 3 4 5 6
GND
48
49
50
51
52
53
54
CY7C68013A/CY7C68014A
&
47
PD1/FD9
46
PD2/FD10
PD3/FD11
PD4/FD12
PD5/FD13
PD6/FD14
PD0/FD8
45
*WAKEUP
44
VCC
43
RESET#
42
GND
41
PA7/*FLAGD/SLCS#
40
PA6/*PKTEND
39
PA5/FIFOADR1
38
PA4/FIFOADR0
37
CY7C68015A/CY7C68016A
7 8 9
56-pin QFN
PA3/*WU2
36
PA2/*SLOE
35
PA1/INT1#
34
PA0/INT0#
33
VCC
32
CTL2/*FLAGC
31
*IFCLK/**PE0/T0OUT
RESERVED
13 14
15
SCL
Figure 4-5. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment
17
16
VCC
SDA
** denotes CY7C68015A/ CY7C68016A pinout
19
18
PB1/FD1
PB0/FD0
* denotes programma ble polarity
20
PB2/FD2
21
PB3/FD3
22
PB4/FD4
23
PB5/FD5
24
PB6/FD6
25
PB7/FD7
26
GND
27
VCC
28
GND
30 29
CTL1/*FLAGB CTL0/*FLAGA
Document #: 38-08032 Rev. *K Page 19 of 60
Page 20
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
12345678
A
B
C
D
E
F
G
H
1A 2A 3A 4A 5A 6A 7A 8A
1B 2B 3B 4B 5B 6B 7B 8B
1C 2C 3C 4C 5C 6C 7C 8C
1D 2D 7D 8D
1E 2E 7E 8E
1F 2F 3F 4F 5F 6F 7F 8F
1G 2G 3G 4G 5G 6G 7G 8G
1H 2H 3H 4H 5H 6H 7H 8H
Figure 4-6. CY7C68013A 56-pin VFBGA Pin Assignment - Top view
Document #: 38-08032 Rev. *K Page 20 of 60
Page 21
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
4.1 CY7C68013A/15A Pin Descriptions
Table 4-1. FX2LP Pin Descriptions
128
TQFP
Note:
10. Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up and
100
TQFP
10 9 10 3 2D AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source.
17 16 14 7 1D AVCC Power N/ A Analog VCC. Connect thi s pin t o 3.3V power source.
13 12 13 6 2F AGND Ground N/A Anal og Ground. Connect to ground wi th as short a path
20 19 17 10 1F AGND Ground N/A Analog Ground. Connect to ground wi th as short a path
19 18 16 9 1E DMINUS I/O/Z Z USB D– Signal. Connect to the USB D– signal. 18 17 15 8 2E DPLUS I /O/Z Z USB D+ Signal. Connect to th e U S B D+ si gn al . 94 A0 Output L 8051 Address Bus. This bus is driven at all times. 95 A1 Output L 96 A2 Output L
97 A3 Output L 117 A4 Output L 118 A5 Output L 119 A6 Output L 120 A7 Output L 126 A8 Output L 127 A9 Output L 128 A10 Output L
21 A11 Output L
22 A12 Output L
23 A13 Output L
24 A14 Output L
25 A15 Output L
59 D0 I/O/Z Z 8051 Data Bus. This bidirectional bus is
60 D1 I/O/Z Z
61 D2 I/O/Z Z
62 D3 I/O/Z Z
63 D4 I/O/Z Z
86 D5 I/O/Z Z
87 D6 I/O/Z Z
88 D7 I/O/Z Z
39 PSEN# Output H Program Store Enable. This active-LOW signal
in standby. Note also that no pins should be driven while the device is powered down.
56
SSOP
56
QFN
VFBGA Name Type Default Description
[10]
56
This signal provi des power to the ana log sect ion of the chip.
This signal provi des power to the ana log sect ion of the chip.
as possible.
as possible.
When the 8051 is addressi ng internal RAM it reflect s the internal address.
high-impedanc e when inactive, inpu t for bus reads, and output for bus write s. The dat a bus is used for exter nal 8051 program and dat a memory. The data bus is active only for external bus accesses, and i s driven LOW in suspend.
indicates an 8051 code fetch from external memory. It is active for progr am me mo ry fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH.
Document #: 38-08032 Rev. *K Page 21 of 60
Page 22
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
Port A
100
TQFP
34 28 BKPT Output L Breakpoint. This pin goes active (HIGH) when the 8051
99 77 49 42 8B RESET# Input N/A Activ e LOW Reset. Resets the en tire chip. See sectio n
35 EA Input N/A Ext ernal Access. This pi n deter mine s where t he 8051
12 11 12 5 1C XTALIN I nput N/A Crystal Input. Connect this signal to a 24-MHz
11 10 11 4 2C XTALOUT Output N/A Crystal Output. Connect this signal to a 24-MHz
1 100 5 54 2B CLKOUT on
82 67 40 33 8G PA0 or
83 68 41 34 6G PA1 or
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
CY7C68013A
-----------------­PE1 or T1OUT on CY7C68015A
INT0#
INT1#
[10]
O/Z
----------­I/O/Z
I/O/Z I
I/O/Z I
12 MHz
---------­I
(PE1)
(PA0)
(PA1)
address bus matches the BPADDRH/L registers and breakpoint s are enabled in the BREAKPT regi ster (BPEN = 1). If the BPPULSE bit in the BREAKPT register is HIGH, this signal pulses HIGH for eight 12-/24-/48-MHz c locks. I f the BPPULSE bit is LOW , the signal remains HIGH until the 8051 clears the BREAK bit (by writing 1 to it) in the BREAKPT register.
3.9 ”Reset and Wakeup”on page 6 for more details.
fetches code between addresses 0 x0000 and 0x3FFF. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetc hes this code from externa l memory.
parallel-resonant, fundamental mode crysta l and l oad capacitor to GND. It is also correct to drive XTALIN with an external 24-MHz square wave derived from another cloc k source. When drivi ng from an external source, the driving signal should be a 3.3V square wave.
parallel-resonant, fundamental mode crysta l and l oad capacitor to GND. If an external cloc k is used to drive XTALIN, leave this pin open.
CLKOUT: 12-, 24- or 48-MHz clock, phase locked t o the 24-MHz input cloc k. The 8051 defaults to 12- MHz operation. The 8051 may three-state this output by setting CPUCS.1 = 1.
-----------------------------------------------------------------------­Multiplexe d pin whose function is selected by the PORTECFG.0 bit.
PE1 is a bidirectional I/O port pin. T1OUT is an active-HIGH signal from 8051
Timer-counter1. T1OUT outputs a high level for one CLKOUT clock cycl e when Ti mer1 overfl ows. I f T im er1 is operated in Mode 3 (two separate timer/counters), T1OUT is active when the low byte timer/counter overflows.
Multiplexed pin whose function is selected by PORTACFG.0
PA0 is a bidirectional IO port pin. INT0# is the active-LOW 8051 INT0 interrupt i nput
signal, which is either edge triggered (IT0 = 1) or level triggered (IT0 = 0).
Multiplexed pin whose function is selected by: PORTACFG.1
PA1 is a bidirectional IO port pin. INT1# is the active-LOW 8051 INT1 interrupt i nput
signal, which is either edge triggered (IT1 = 1) or level triggered (IT1 = 0).
Document #: 38-08032 Rev. *K Page 22 of 60
Page 23
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
Port B
100
TQFP
84 69 42 35 8F PA2 or
85 70 43 36 7F PA3 or
89 71 44 37 6F PA4 or
90 72 45 38 8C PA5 or
91 73 46 39 7C PA6 or
92 74 47 40 6C PA7 or
44 34 25 18 3H PB0 or
45 35 26 19 4F PB1 or
46 36 27 20 4H PB2 or
47 37 28 21 4G PB3 or
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
SLOE or
WU2
FIFOADR0
FIFOADR1
PKTEND
FLAGD or SLCS#
FD[0]
FD[1]
FD[2]
FD[3]
[10]
I/O/Z I
(PA2)
I/O/Z I
(PA3)
I/O/Z I
(PA4)
I/O/Z I
(PA5)
I/O/Z I
(PA6)
I/O/Z I
(PA7)
I/O/Z I
(PB0)
I/O/Z I
(PB1)
I/O/Z I
(PB2)
I/O/Z I
(PB3)
Multiplexe d pin whose function is selected by two bi ts: IFCONFIG[1:0].
PA2 is a bidirectional IO port pin. SLOE is an input-only output enable with program-
mable polari ty (F IFOPINPOLAR.4) for the sl ave F IFOs connected to FD[7. .0] or FD[15..0].
Multiplexed pin whose function is selected by: WAKEUP.7 and OEA.3
PA3 is a bidirectional I/O port pin. WU2 is an alternate source for USB W a k e up , enabled
by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin st arts up the oscil ­lator and interr upts the 8051 to allow it to exit the suspend mode. Asserti ng thi s pin i nhibi ts t he ch ip from suspending, i f WU2 EN = 1.
Multiplexed pin whose function is selected by: IFCONFIG[1..0].
PA4 is a bidirectional I/O port pin. FIFOADR0 is an input -only addr ess select for the slave
FIFOs connected to FD[ 7..0] or FD[15..0]. Multiplexed pin whose function is selected by:
IFCONFIG[1..0].
PA5 is a bidirectional I/O port pin. FIFOADR1 is an input -only addr ess select for the slave
FIFOs connected to FD[ 7..0] or FD[15..0]. Multiplexe d pin whose function is selected by the
IFCONFIG[1:0] bits.
PA6 is a bidirectional I/O port pin. PKTEND is an input used to commit the FIFO packet
data to the endpoint and whose polarity is program­mable via FIFOPINPOLAR.5.
Multiplexe d pin whose function is selected by the IFCONFIG[1:0] and PORTACFG.7 bits.
PA7 is a bidirectional I/O port pin. FLAGD is a programmable slave-FIFO output status
flag signal . SLCS# gates all other slave FIFO enable/strobes
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB0 is a bidirection al I/O port pin. FD[0] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB1 is a bidirection al I/O port pin. FD[1] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB2 is a bidirectional I/O port pin. FD[2] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB3 is a bidirectional I/O port pin. FD[3] is the bidirectional FIFO/GPIF data bus.
Document #: 38-08032 Rev. *K Page 23 of 60
Page 24
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
PORT C
PORT D
100
TQFP
54 44 29 22 5H PB4 or
55 45 30 23 5G PB5 or
56 46 31 24 5F PB6 or
57 47 32 25 6H PB7 or
72 57 PC0 or
73 58 PC1 or
74 59 PC2 or
75 60 PC3 or
76 61 PC4 or
77 62 PC5 or
78 63 PC6 or
79 64 PC7 or
102 80 52 45 8A PD0 or
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
FD[4]
FD[5]
FD[6]
FD[7]
GPIFADR0
GPIFADR1
GPIFADR2
GPIFADR3
GPIFADR4
GPIFADR5
GPIFADR6
GPIFADR7
FD[8]
[10]
I/O/Z I
(PB4)
I/O/Z I
(PB5)
I/O/Z I
(PB6)
I/O/Z I
(PB7)
I/O/Z I
(PC0)
I/O/Z I
(PC1)
I/O/Z I
(PC2)
I/O/Z I
(PC3)
I/O/Z I
(PC4)
I/O/Z I
(PC5)
I/O/Z I
(PC6)
I/O/Z I
(PC7)
I/O/Z I
(PD0)
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB4 is a bidirectional I/O port pin. FD[4] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB5 is a bidirectional I/O port pin. FD[5] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB6 is a bidirectional I/O port pin. FD[6] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the follow in g bits: IFCONF IG [ 1 ..0 ] .
PB7 is a bidirectional I/O port pin. FD[7] is the bidirectional FIFO/GPIF data bus.
Multiplexed pin whose function is selected by PORTCCFG.0
PC0 is a bidirectional I/O port pin. GPIFADR0 is a GPIF add ress output pin.
Multiplexed pin whose function is selected by PORTCCFG.1
PC1 is a bidirectional I/O port pin. GPIFADR1 is a GPIF address output pin.
Multiplexed pin whose function is selected by PORTCCFG.2
PC2 is a bidirectional I/O port pin. GPIFADR2 is a GPIF address output pin.
Multiplexed pin whose function is selected by PORTCCFG.3
PC3 is a bidirectional I/O port pin. GPIFADR3 is a GPIF address output pin.
Multiplexed pin whose function is selected by PORTCCFG.4
PC4 is a bidirectional I/O port pin. GPIFADR4 is a GPIF address output pin.
Multiplexed pin whose function is selected by PORTCCFG.5
PC5 is a bidirectional I/O port pin. GPIFADR5 is a GPIF address output pin.
Multiplexed pin whose function is selected by PORTCCFG.6
PC6 is a bidirectional I/O port pin. GPIFADR6 is a GPIF address output pin.
Multiplexed pin whose function is selected by PORTCCFG.7
PC7 is a bidirectional I/O port pin. GPIFADR7 is a GPIF address output pin.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[8] is the bidirectional FIFO/GPIF data bus.
Document #: 38-08032 Rev. *K Page 24 of 60
Page 25
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
Port E
100
TQFP
103 81 53 46 7A PD1 or
104 82 54 47 6B PD2 or
105 83 55 48 6A PD3 or
121 95 56 49 3B PD4 or
122 96 1 50 3A PD5 or
123 97 2 51 3C PD6 or
124 98 3 52 2A PD7 or
108 86 PE0 or
109 87 PE1 or
110 88 PE2 or
111 89 P E3 or
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
FD[9]
FD[10]
FD[11]
FD[12]
FD[13]
FD[14]
FD[15]
T0OUT
T1OUT
T2OUT
RXD0OUT
[10]
I/O/Z I
(PD1)
I/O/Z I
(PD2)
I/O/Z I
(PD3)
I/O/Z I
(PD4)
I/O/Z I
(PD5)
I/O/Z I
(PD6)
I/O/Z I
(PD7)
I/O/Z I
(PE0)
I/O/Z I
(PE1)
I/O/Z I
(PE2)
I/O/Z I
(PE3)
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[9] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[10] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[11] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[12] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[13] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[14] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the IFCONFIG[1..0] and EPxFI FO CFG.0 (wordwide) bits. FD[15] is the bidirectional FIFO/GPIF data bus.
Multiplexe d pin whose function is selected by the PORTECFG.0 bit.
PE0 is a bidirectional I/O port pin. T0OUT is an active-HIGH signal from 8051
Timer-counter0. T0OUT outputs a high level for one CLKOUT clock cycl e when Ti mer0 overfl ows. I f T im er0 is operated in Mode 3 (two separate timer/counters), T0OUT is active when the low byte timer/counter overflows.
Multiplexe d pin whose function is selected by the PORTECFG.1 bit.
PE1 is a bidirectional I/O port pin. T1OUT is an active-HIGH signal from 8051
Timer-counter1. T1OUT outputs a high level for one CLKOUT clock cycl e when Ti mer1 overfl ows. I f T im er1 is operated in Mode 3 (two separate timer/counters), T1OUT is active when the low byte timer/counter overflows.
Multiplexe d pin whose function is selected by the PORTECFG.2 bit.
PE2 is a bidirectional I/O port pin. T2OUT is the active-HIGH out put signal from 8051
Timer2. T2OUT is acti ve (H I G H ) fo r one clock cycl e when Timer/Counter 2 overflows.
Multiplexe d pin whose function is selected by the PORTECFG.3 bit.
PE3 is a bidirectional I/O port pin. RXD0OUT is an active- HIGH signal from 8051 UAR T0.
If RXD0OUT is selected and UART0 is in Mode 0, thi s pin provides the output data for UART0 only when it is in sync mode. Otherwise it is a 1.
Document #: 38-08032 Rev. *K Page 25 of 60
Page 26
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
112 90 PE4 or
113 91 PE5 or
114 92 PE6 or
115 93 PE7 or
43811ARDY0 or
54921BRDY1 or
6 5 RDY2 Input N/A RDY2 is a GPIF input signal. 7 6 RDY3 Input N/A RDY3 is a GPIF input signal. 8 7 RDY4 Input N/A RDY4 is a GPIF input signal. 9 8 RDY5 Input N/A RDY5 is a GPIF input signal.
69 54 36 29 7H CTL0 or
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
RXD1OUT
INT6
T2EX
GPIFADR8
SLRD
SLWR
FLAGA
[10]
I/O/Z I
(PE4)
I/O/Z I
(PE5)
I/O/Z I
(PE6)
I/O/Z I
(PE7)
Input N/A Multi plexed pin whose functi on is selected by the
Input N/A Multi plexed pin whose functi on is selected by the
O/Z H Multiplexed pin whose functi on is selected by the
Multiplexe d pin whose function is selected by the PORTECFG.4 bit.
PE4 is a bidirectional I/O port pin. RXD1OUT is an active-HI GH output from 8051 UAR T1.
When RXD1OUT is selected and UART1 is in Mode 0, this pin provides the output data for UART1 only when it is in sync mo de. In Modes 1, 2, and 3, this pi n is HIGH.
Multiplexe d pin whose function is selected by the PORTECFG.5 bit.
PE5 is a bidirectional I/O port pin. INT6 is the 8051 INT6 interrupt reques t input signal. The
INT6 pin is edge-sensitive, active HIGH. Multiplexe d pin whose function is selected by the
PORTECFG.6 bit.
PE6 is a bidirectional I/O port pin. T2EX is an acti ve-HIGH input signal to t he 8051 T imer2.
T2EX reloads timer 2 on its falling edge. T2EX is acti ve only if the EXEN2 bit is set in T2CON.
Multiplexe d pin whose function is selected by the PORTECFG.7 bit.
PE7 is a bidirectional I/O port pin. GPIFADR8 is a GPIF address output pin.
follow in g bits : IFCONFIG[1..0].
RDY0 is a GPIF input signal. SLRD is the input-o nly rea d strob e with pr ogram mable
polarity (FIFOPINPOLAR.3) for the slave FIFOs connected to FD[7. .0] or FD[15..0].
follow in g bits : IFCONFIG[1..0].
RDY1 is a GPIF input signal. SLWR is the input -only write strobe with programmable
polarity (FIFOPINPOLAR.2) for the slave FIFOs connected to FD[7. .0] or FD[15..0].
follow in g bits : IFCONFIG[1..0].
CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status
flag signal . Defaults to pr ogr ammable fo r the FI FO sel ected by the FIFOADR[1:0] pins.
Document #: 38-08032 Rev. *K Page 26 of 60
Page 27
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
70 55 37 30 7G CTL1 or
71 56 38 31 8H CTL2 or
66 51 CTL3 O/Z H CTL3 is a GPIF contro l output. 67 52 CTL4 Output H CTL4 is a GPIF contro l out put. 98 76 CTL5 Output H CTL5 is a GPIF contro l out put. 32 26 20 13 2G IFCLK on
28 22 INT4 Input N/A INT4 is the 8051 INT4 interrupt reques t input signal. The
106 84 INT5# I nput N/A INT5# is the 8051 INT5 interrupt request input signal.
31 25 T2 Input N/A T2 is the active-HIGH T2 input signal to 8051 Timer2,
30 24 T1 Input N/A T1 is the active-HI GH T1 si gnal f or 8051 Timer1, which
29 23 T0 Input N/A T0 is the active-HI GH T0 si gnal f or 8051 Timer0, which
53 43 RXD1 Input N/A RXD1is an active-HIGH input signal for 8051 UART1,
52 42 TXD1 Output H TXD1is an active-HIGH output pin from 8051 UART1,
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
FLAGB
FLAGC
CY7C68013A
-----------------­PE0 or T0OUT on CY7C68015A
[10]
O/Z H Multiplexed pin whose functi on is selected by the
O/Z H Multiplexed pin whose functi on is selected by the
I/O/Z
----------­I/O/Z
---------­(PE0)
follow in g bits : IFCONFIG[1..0].
CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status
flag signal . Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.
follow in g bits : IFCONFIG[1..0].
CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status
flag signal . Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.
Z
Interface Clock, used for synchr onously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocki ng is used (IF CONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally source d, by setting the bit IFCO NFIG.4 =1.
----------------------------------------------------------------------­Multiplexe d pin whose function is selected by the
I
PORTECFG.0 bit.
PE0 is a bidirectional I/O port pin. T0OUT is an active-HIGH signal from 8051
Timer-counter0. T0OUT outputs a high level for one CLKOUT clock cycl e when Ti mer0 overfl ows. I f T im er0 is operated in Mode 3 (two separate timer/counters), T0OUT is active when the low byte timer/counter overflows.
INT4 pin is edge-sensitive, active HIGH.
The INT5 pin is edge-se nsitive, active LOW.
which provides the in put t o Timer2 when C/T2 = 1. When C/T2 = 0, Timer2 does not use this pin.
provides t he input to T imer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit.
provides t he input to T imer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit.
which provides data to the UART in all modes.
which provides the output cl ock in sync mode, and the output data i n async mode.
Document #: 38-08032 Rev. *K Page 27 of 60
Page 28
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 4-1. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
51 41 RXD0 Input N/A RXD0 is the active-HIGH RXD0 input to 8051 UAR T0,
50 40 TXD0 Output H TXD0 is the active-HIGH TXD0 output from 8051
42 CS# Output H CS# is the active -LOW ch ip select for ext ernal mem ory . 41 32 WR# Output H WR# is the active- LOW wri te str obe o utput f or ext ernal
40 31 RD# Output H RD# is the active-LOW read strobe output for external
38 OE# Output H OE# is the active-LOW output enable for external
33 27 21 14 2H Reserved Input N/A Reserved. Connect to ground.
101 79 51 44 7B WAKEUP Input N/A USB Wakeup. If the 8051 is in suspend, asserting this
36 29 22 15 3F SCL OD Z Clock for the I
37 30 23 16 3G SDA OD Z Data for I
56
SSOP
56
QFN
56
VFBGA Name Type Default Description
[10]
which provides data to the UART in all modes.
UART0, which pr ovides t he o utput cl ock i n sync m ode, and the output dat a in async mode.
memory.
memory.
memory.
pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB This pin has programmab le polarity (W AKEUP.4).
2
C interface. Connect to VCC with a 2. 2K
resistor, even if no I
2
C-compatible interface. Connect to VCC with a 2.2K resistor, even if no I peripheral is attached.
2
C peripheral is attached.
chip from suspendi ng.
2
C-compatible
2 1 6 55 5A VCC Power N/A VCC. Conne c t to 3.3 V pow e r so ur c e. 26 20 18 11 1G VCC Power N/A VCC. Conne c t to 3.3V po w e r so ur c e. 43 33 24 17 7E VCC Power N/A VCC. Conne c t to 3.3 V po w e r so ur c e. 48 38 VCC Power N/A VCC. Co nn e c t to 3.3V po we r source. 64 49 34 27 8E VCC Power N/A VCC. Conne c t to 3.3 V po w e r so ur c e. 68 53 VCC Power N/A VCC. Co nn e c t to 3.3V po we r source. 81 66 39 32 5C VCC Power N/A VCC. Conne c t to 3.3V po w e r so ur c e.
100 78 50 43 5B VCC Power N/ A VCC. C o nn e c t to 3.3V po w e r so ur c e. 107 85 VCC Power N/A VCC. Conne ct to 3.3V pow e r so ur c e.
3 2 7 56 4B GND Ground N/A Ground. 27 21 19 12 1H GND Ground N/A Ground. 49 39 GND Ground N/A Ground. 58 48 33 26 7D GND Ground N/A Ground. 65 50 35 28 8D GND Ground N/A Ground. 80 65 GND Ground N/A Ground. 93 75 48 41 4C GND Ground N/A Ground.
116 94 GND Ground N/A Ground. 125 99 4 53 4A GND Ground N/A Ground.
14 13 NC N/A N/A No Connect. This pin must be left open. 15 14 NC N/A N/A No Connect. This pin must be left open. 16 15 NC N/A N/A No Connect. This pin must be left open.
Document #: 38-08032 Rev. *K Page 28 of 60
Page 29
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
5.0 Register Summary
FX2LP register bit def initions are described in the FX2LP TRM in greater detail.
Table 5-1. FX2LP Register Summary
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
E400 128 WAVEDATA GPIF Waveform
E480 128 reserved
E50D GPCR2 General Purpos e Confi gu-
E600 1 CPUCS CPU Control & Status 0 0 PORTCSTB CLKSPD1 CLKSPD0 CLKINV CLKOE 8051RES 00000010 rrbbbbbr E601 1 IFCONFIG Interface Configuration
E602 1 PINFLAGSAB
E603 1 PINFLAGSCD
E604 1 FIFORESET
E605 1 BREAKPT Breakpoint Control 0 0 0 0 BREAK BPPULSE BPEN 0 00000000 rrrrbbbr E606 1 BPADDRH Breakpoint Address H A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW E607 1 BPADDRL Breakpoint Address L A7 A6 A5 A4 A3 A2 A1 A0 xxxxxxxx RW E608 1 UART230 230 Kbaud internally
E609 1 FIFOPINPOLAR
E60A 1 REVID Chip Revision rv7 rv6 rv5 rv4 rv3 rv2 rv1 rv0 RevA
E60B 1 REVCTL
E60C 1 GPIFHOLDAMOUNT MSTB Hold Time
E610 1 EP1OUTCFG Endpoint 1-OUT
E611 1 EP1INCFG Endpoint 1-IN
E612 1 EP2CFG Endpoint 2 Configuration VALID DIR TYPE1 TYPE0 SIZE 0 BUF1 BUF0 10100010 bbbbbrbb E613 1 EP4CFG Endpoint 4 Configuration VALID DIR TYPE1 TYPE0 0 0 0 0 10100000 bbbbrrrr E614 1 EP6CFG Endpoint 6 Configuration VALID DIR TYPE1 TYPE0 SIZE 0 BUF1 BUF0 11100010 bbbbbrbb E615 1 EP8CFG Endpoint 8 Configuration VALID DIR TYPE1 TYPE0 0 0 0 0 11100000 bbbbrrrr
E618 1 EP2FIFOCFG
E619 1 EP4FIFOCFG
E61A 1 EP6FIFOCFG
E61B 1 EP8FIFOCFG
E61C 4 reserved E620 1 EP2AUTOINLENH
E621 1 EP2AUTOINLENL
E622 1 EP4AUTOINLENH
E623 1 EP4AUTOINLENL
E624 1 EP6AUTOINLENH
E625 1 EP6AUTOINLENL
E626 1 EP8AUTOINLENH
E627 1 EP8AUTOINLENL
E628 1 ECCCFG ECC Configuration 0 0 0 0 0 0 0 ECCM 00000000 rrrrrrrb E629 1 ECCRESET ECC Reset x x x x x x x x 00000000 W E62A 1 ECC1B0 ECC1 Byte 0 Address LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8 00000000 R E62B 1 ECC1B1 ECC1 Byte 1 Address LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0 00000000 R E62C 1 ECC1B2 ECC1 Byte 2 Address COL5 COL4 COL3 COL2 COL1 COL0 LINE17 LINE16 00000000 R E62D 1 ECC2B0 ECC2 Byte 0 Address LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8 00000000 R
Note:
11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”
GPIF Waveform Memories
GENERAL CONFIGURATION
UDMA
3 reserved
ENDPOINT CONFIGURATION
2 reserved
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
Descriptor 0, 1, 2, 3 data
ration Register 2
(Ports, GPIF, slave F IFOs) Slave FIFO FLAGA and
FLAGB Pin Configuration
Slave FIFO FLAGC and
FLAGD Pin Configuration Restore FIFOS to default
state
generated ref. clock Slave FIFO Interface pins
polarity
Chip Revision Control 0 0 0 0 0 0 dyn_out enh_pkt 00000000 rrrrrrbb
(for UDMA)
Configuration
Configuration
Endpoint 2 / slave FIFO configuration
Endpoint 4 / slave FIFO configuration
Endpoint 6 / slave FIFO configuration
Endpoint 8 / slave FIFO configuration
[11
Endpoint 2 AUTOIN
Packet Length H
[11]
Endpoint 2 AUTOIN Packet Length L
[11]
Endpoint 4 AUTOIN Packet Length H
[11]
Endpoint 4 AUTOIN Packet Length L
[11]
Endpoint 6 AUTOIN Packet Length H
[11]
Endpoint 6 AUTOIN Packet Length L
[11]
Endpoint 8 AUTOIN Packet Length H
[11]
Endpoint 8 AUTOIN Packet Length L
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
reserved reserved reserved FULL_SPEE
IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0 10000000 RW
FLAGB3 FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0 00000000 RW
FLAGD3 FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0 00000000 RW
NAKALL 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
0 0 0 0 0 0 230UART1 230UART0 00000000rrrrrrbb
0 0 PKTEND SLOE SLRD SLWR EF FF 00000000rrbbbbbb
0 0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000rrrrrrbb
VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr
VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr
0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101rbbbbbrb
0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101rbbbbbrb
0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101rbbbbbrb
0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101rbbbbbrb
0 0 0 0 0 PL10 PL9 PL8 00000010rrrrrbbb
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
0 0 0 0 0 0 PL9 PL8 00000010rrrrrrbb
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
0 0 0 0 0 PL10 PL9 PL8 00000010rrrrrbbb
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
0 0 0 0 0 0 PL9 PL8 00000010rrrrrrbb
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
D_ONLY
reserved reserved reserved reserved 00000000R
00000001
R
Document #: 38-08032 Rev. *K Page 29 of 60
Page 30
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 5-1. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access E62E 1 ECC2B1 ECC2 Byte 1 Address LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0 00000000 R E62F 1 ECC2B2 ECC2 Byte 2 Address COL5 COL4 COL3 COL2 COL1 COL0 0 0 00000000 R E630
1 EP2FIFOPFH
H.S. E630
F.S. E631
H.S. E631
F.S E632
H.S. E632
F.S E633
H.S. E633
F.S E634
H.S. E634
F.S E635
H.S. E635
F.S E636
H.S. E636
F.S E637
H.S. E637
F.S
E640 1 EP2ISOINPKTS EP2 (if ISO) IN Packets
E641 1 EP4ISOINPKTS EP4 (if ISO) IN Packets
E642 1 EP6ISOINPKTS EP6 (if ISO) IN Packets
E643 1 EP8ISOINPKTS EP8 (if ISO) IN Packets
E644 4 reserved E648 1 INPKTEND E649 7 OUTPKTEND
E650 1 EP2FIFOIE
E651 1 EP2FIFOIRQ
E652 1 EP4FIFOIE
E653 1 EP4FIFOIRQ
E654 1 EP6FIFOIE
E655 1 EP6FIFOIRQ
E656 1 EP8FIFOIE
E657 1 EP8FIFOIRQ
E658 1 IBNIE IN-BULK-NAK Interrupt
E659 1 IBNIRQ
E65A 1 NAKIE Endpoint Ping-NAK / IBN
E65B 1 NAKIRQ
E65C 1 USBIE USB Int Enables 0 EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 00000000 RW E65D 1 USBIRQ E65E 1 EPIE Endpoint Interrupt
E65F 1 EPIRQ
E660 1 GPIFIE E661 1 GPIFIRQ
1 EP2FIFOPFH
1 EP2FIFOPFL
1 EP2FIFOPFL
1 EP4FIFOPFH
1 EP4FIFOPFH
1 EP4FIFOPFL
1 EP4FIFOPFL
1 EP6FIFOPFH
1 EP6FIFOPFH
1 EP6FIFOPFL
1 EP6FIFOPFL
1 EP8FIFOPFH
1 EP8FIFOPFH
1 EP8FIFOPFL
1 EP8FIFOPFL
8 reserved
INTERRUPTS
Note:
12. The register can only be reset, it cannot be set.
[11]
Endpoint 2 / slave FIFO Programmable Flag H
[11]
Endpoint 2 / slave FIFO Programmable Flag H
[11]
Endpoint 2 / slave FIFO Programmable Flag L
[11]
Endpoint 2 / slave FIFO Programmable Flag L
[11]
Endpoint 4 / slave FIFO Programmable Flag H
[11]
Endpoint 4 / slave FIFO Programmable Flag H
[11]
Endpoint 4 / slave FIFO Programmable Flag L
[11]
Endpoint 4 / slave FIFO Programmable Flag L
[11]
Endpoint 6 / slave FIFO Programmable Flag H
[11]
Endpoint 6 / slave FIFO Programmable Flag H
[11]
Endpoint 6 / slave FIFO Programmable Flag L
[11]
Endpoint 6 / slave FIFO Programmable Flag L
[11]
Endpoint 8 / slave FIFO Programmable Flag H
[11]
Endpoint 8 / slave FIFO Programmable Flag H
[11]
Endpoint 8 / slave FIFO Programmable Flag L
[11]
Endpoint 8 / slave FIFO Programmable Flag L
per frame (1-3)
per frame (1-3)
per frame (1-3)
per frame (1-3)
[11]
Force IN Packet End Skip 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
[11]
Force OUT Packet End Skip 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
[11]
Endpoint 2 slave FIFO Flag Interrupt Enable
[11,12]
Endpoint 2 slave FIFO Flag Interrupt Request
[11]
Endpoint 4 slave FIFO Flag Interrupt Enable
[11,12]
Endpoint 4 slave FIFO Flag Interrupt Request
[11]
Endpoint 6 slave FIFO Flag Interrupt Enable
[11,12]
Endpoint 6 slave FIFO Flag Interrupt Request
[11]
Endpoint 8 slave FIFO Flag Interrupt Enable
[11,12]
Endpoint 8 slave FIFO Flag Interrupt Request
[12]
[12]
[12]
[12]
[11]
GPIF Interrupt Enable 0 0 0 0 0 0 GPIFWF GPIFDONE 00000000 RW
[11]
Enable IN-BULK-NAK interrupt
Request
Interrupt Enable Endpoint Ping-NAK / IBN
Interrupt Request
USB Interrupt Requests 0 EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 0xxxxxxx rbbbbbbb
Enables Endpoint Interrupt
Requests
GPIF Interrupt Request 0 0 0 0 0 0 GPIFWF GPIFDONE 000000xx RW
DECIS PKTSTAT IN:PKTS[2]
DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 IN:PKTS[2]
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
IN:PKTS[1] OUT:PFC7
DECIS PKTSTAT 0 IN: PKTS[1]
DECIS PKTSTAT 0 OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000bbrbbrrb
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
IN: PKTS[1] OUT:PFC7
DECIS PKTSTAT IN:PKTS[2]
DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 IN:PKTS[2]
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
IN:PKTS[1] OUT:PFC7
DECIS PKTSTAT 0 IN: PKTS[1]
DECIS PKTSTAT 0 OUT:PFC10 OUT:PFC9 0 0 PFC8 00001000bbrbbrrb
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
IN: PKTS[1] OUT:PFC7
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001brrrrrbb
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001brrrrrrr
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001brrrrrbb
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001brrrrrrr
0 0 0 0 EDGEPF PF EF FF 00000000 RW
0 0 0 0 0 PF EF FF 00000000rrrrrbbb
0 0 0 0 EDGEPF PF EF FF 00000000 RW
0 0 0 0 0 PF EF FF 00000000rrrrrbbb
0 0 0 0 EDGEPF PF EF FF 00000000 RW
0 0 0 0 0 PF EF FF 00000000rrrrrbbb
0 0 0 0 EDGEPF PF EF FF 00000000 RW
0 0 0 0 0 PF EF FF 00000000rrrrrbbb
0 0 EP8 EP6 EP4 EP2 EP1 EP0 00000000RW
0 0 EP8 EP6 EP4 EP2 EP1 EP0 00xxxxxx rrbbbbbb
EP8 EP6 EP4 EP2 EP1 EP0 0 IBN 00000000 RW
EP8 EP6 EP4 EP2 EP1 EP0 0 IBN xxxxxx0x bbbbbbrb
EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 00000000 RW
EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 0 RW
IN:PKTS[0] OUT:PFC6
IN: PKTS[0] OUT:PFC6
IN:PKTS[0] OUT:PFC6
IN: PKTS[0] OUT:PFC6
OUT:PFC12
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000RW
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000RW
OUT:PFC12
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000RW
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000RW
IN:PKTS[1] OUT:PFC11
OUT:PFC10
IN:PKTS[1] OUT:PFC11
OUT:PFC10
IN:PKTS[0] OUT:PFC10
IN: PKTS[0] OUT:PFC9
IN:PKTS[0] OUT:PFC10
IN: PKTS[0] OUT:PFC9
0 PFC9 PFC8 10001000 bbbbbrbb
OUT:PFC8
0 0 PFC8 10001000bbrbbrrb
0 PFC9 PFC8 00001000 bbbbbrbb
OUT:PFC8
0 0 PFC8 00001000bbrbbrrb
10001000bbbbbrbb
00001000bbbbbrbb
Document #: 38-08032 Rev. *K Page 30 of 60
Page 31
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 5-1. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access E662 1 USBERRIE USB Error Interrupt
E663 1 USBERRIRQ
E664 1 ERRCNTLIM USB Error counter and
E665 1 CLRERRCNT Clear Error Counter EC3:0x x x x x x x x xxxxxxxx W E666 1 INT2IVEC Interrupt 2 (USB)
E667 1 INT4IVEC Interrupt 4 (slave FIFO &
E668 1 INTSET-UP Interrupt 2&4 set-up 0 0 0 0 AV2EN 0 INT4SRC AV4EN 00000000RW E669 7 reserved
E670 1 PORTACFG I/O PORTA Alternate
E671 1 PORTCCFG I/O PORTC Alternate
E672 1 PORTECFG I/O PORTE Alternate
E673 4 reserved E677 1 reserved E678 1 I2CS I²C Bus
E679 1 I2DAT I²C Bus
E67A 1 I2CTL I²C Bus
E67B 1 XAUTODAT1 Autoptr1 MOVX access,
E67C 1 XAUTODAT2 Autoptr2 MOVX access,
E67D 1 UDMACRCH E67E 1 UDMACRCL E67F 1 UDMACRC-
E680 1 USBCS USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUME x0000000 rrrrbbbb E681 1 SUSPEND Put chip into suspend x x x x x x x x xxxxxxxx W E682 1 WAKEUPCS Wakeup Control & Status WU2 WU WU2POL WUPOL 0 DPEN WU2EN WUEN xx000101 bbbbrbbb E683 1 TOGCTL Toggle Control Q S R IO EP3 EP2 EP1 EP0 x0000000 rrrbbbbb E684 1 USBFRAMEH US B Frame count H 0 0 0 0 0 FC10 FC9 FC8 00000xxx R E685 1 USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 xxxxxxxx R E686 1 MICROFRAME Microframe count, 0-7 0 0 0 0 0 MF2 MF1 MF0 00000xxx R E687 1 FNADDR USB Function address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 0xxxxxxx R E688 2 reserved
E68A 1 EP0BCH E68B 1 EP0BCL E68C 1 reserved E68D 1 EP1OUTBC Endpoint 1 OUT Byte
E68E 1 reserved E68F 1 EP1INBC Endpoint 1 IN Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW E690 1 EP2BCH E691 1 EP2BCL E692 2 reserved E694 1 EP4BCH E695 1 EP4BCL E696 2 reserved E698 1 EP6BCH E699 1 EP6BCL E69A 2 reserved E69C 1 EP8BCH E69D 1 EP8BCL E69E 2 reserved E6A0 1 EP0CS Endpoint 0 Control and
E6A1 1 EP1OUTCS Endpoint 1 OUT Control
E6A2 1 EP1INCS Endpoint 1 IN Control and
E6A3 1 EP2CS Endpoint 2 Control and
INPUT / OUTPUT
UDMA CRC
QUALIFIER USB CONTROL
ENDPOINTS
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
Enables
[12]
USB Error Interrupt Requests
limit
Autovector
GPIF) Autovector
Configuration
Configuration
Configuration
Control & Status
Data
Control
when APTREN=1
when APTREN=1
[11]
UDMA CRC MSB CRC15 CRC14 CRC13 CRC12 CRC11 CRC10 CRC9 CRC8 01001010 RW
[11]
UDMA CRC LSB CRC7 CRC6 CRC5 CRC4 CRC3 CRC2 CRC1 CRC0 10111010 RW UDMA CRC Qualifier QENABLE 0 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb
Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8) xxxxxxxx RW Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
Count
Endpoint 2 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
Endpoint 2 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
Endpoint 4 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
Endpoint 4 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
Endpoint 6 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
Endpoint 6 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW Endpoint 8 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
Status
and Status
Status
Status
ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 00000000RW
ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 0000000x bbbbrrrb
EC3 EC2 EC1 EC0 LIMIT3 LIMIT2 LIMIT1 LIMIT0 xxxx0100 rrrrbbbb
0 I2V4 I2V3 I2V2 I2V1 I2V0 0 0 00000000 R
1 0 I4V3 I4V2 I4V1 I4V0 0 0 10000000 R
FLAGD SLCS 0 0 0 0 INT1 INT0 00000000 RW
GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000RW
GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT 00000000 RW
START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr
d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW
0 0 0 0 0 0 STOPIE 400KHZ 00000000 RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW
HSNAK 0 0 0 0 0 BUSY STALL 10000000 bbbbbbrb
0 0 0 0 0 0 BUSY STALL 00000000bbbbbbrb
0 0 0 0 0 0 BUSY STALL 00000000bbbbbbrb
0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb
Document #: 38-08032 Rev. *K Page 31 of 60
Page 32
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 5-1. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access E6A4 1 EP4CS Endpoint 4 Control and
E6A5 1 EP6CS Endpoint 6 Control and
E6A6 1 EP8CS Endpoint 8 Control and
E6A7 1 EP2FIFOFLGS Endpoint 2 slave FIFO
E6A8 1 EP4FIFOFLGS Endpoint 4 slave FIFO
E6A9 1 EP6FIFOFLGS Endpoint 6 slave FIFO
E6AA 1 EP8FIFOFLGS Endpoint 8 slave FIFO
E6AB 1 EP2FIFOBCH Endpoint 2 slave FIFO
E6AC 1 EP2FIFOBCL Endpoint 2 slave FIFO
E6AD 1 EP4FIFOBCH Endpoint 4 slave FIFO
E6AE 1 EP4FIFOBCL Endpoint 4 slave FIFO
E6AF 1 EP6FIFOBCH Endpoint 6 slave FIFO
E6B0 1 EP6FIFOBCL Endpoint 6 slave FIFO
E6B1 1 EP8FIFOBCH Endpoint 8 slave FIFO
E6B2 1 EP8FIFOBCL Endpoint 8 slave FIFO
E6B3 1 SUDPTRH Set-up Data Pointer high
E6B4 1 SUDPTRL Set-up Data Pointer low
E6B5 1 SUDPTRCTL Set-up Data Pointer Auto
2 reserved
E6B8 8 SET-UPDAT 8 bytes of set-up data D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
GPIF E6C0 1 GPIFWFSELECT Waveform Selector SINGLEWR1 SINGLEWR0SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0 FIFORD1 FIFORD0 11100100 RW E6C1 1 GPIFIDLECS GPIF Done, GPIF IDLE
E6C2 1 GPIFIDLECTL Inactive Bus, CTL states 0 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 11111111 RW E6C3 1 GPIFCTLCFG CT L Drive Type TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 00000000RW E6C4 1 GPIFADRH E6C5 1 GPIFADRL
FLOWSTATE E6C6 1 FLOWSTATE Flowstate Enable and
E6C7 1 FLOWLOGIC Flowstate Logic LFUNC1 LFUNC0 TERMA2 TERMA1 TERMA0 TERMB2 TERMB1 TERMB0 00000000 RW E6C8 1 FLOWEQ0CTL CTL-Pin States in
E6C9 1 FLOWEQ1CTL CTL-Pin States in Flow-
E6CA 1 FLOWHOLDOFF Holdoff Configuration HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD0HOSTATE HOCTL2 HOCTL1 HOCTL0 00010010RW
E6CB 1 FLOWSTB Flowstate Strobe
E6CC 1 FLOWSTBEDGE Flowstate Rising/Falling
E6CD 1 FLOWSTBPERIOD Master-Strobe Half-PeriodD7 D6 D5 D4 D3 D2 D1 D0 00000010RW E6CE 1 GPIFTCB3
E6CF 1 GPIFTCB2
E6D0 1 GPIFTCB1
E6D1 1 GPIFTCB0
2 reserved 00000000RW
Status
Status
Status
Flags
Flags
Flags
Flags
total byte count H
total byte count L
total byte count H
total byte count L
total byte count H
total byte count L
total byte count H
total byte count L
address byte
address byte
Mode
SET-UPDAT[0] = bmRequestType
SET-UPDAT[1] = bmRequest
SET-UPDAT[2:3] = wVal­ue
SET-UPDAT[4:5] = wInd­ex
SET-UPDAT[6:7] = wLength
drive mode
[11]
GPIF Address H 0 0 0 0 0 0 0 GPIFA8 00000000 RW
[11]
GPIF Address L GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW
Selector
Flowstate (when Logic = 0)
state (when Logic = 1)
Configuration
Edge Configuration
[11]
GPIF Transaction Count Byte 3
[11]
GPIF Transaction Count Byte 2
[11]
GPIF Transaction Count Byte 1
[11]
GPIF Transaction Count Byte 0
0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000rrrrrrrb
0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb
0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100rrrrrrrb
0 0 0 0 0 PF EF FF 00000010R
0 0 0 0 0 PF EF FF 00000010R
0 0 0 0 0 PF EF FF 00000110 R
0 0 0 0 0 PF EF FF 00000110 R
0 0 0 BC12 BC11 BC10 BC9 BC8 00000000 R
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000R
0 0 0 0 0 BC10 BC9 BC8 00000000 R
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000R
0 0 0 0 BC11 BC10 BC9 BC8 00000000R
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000R
0 0 0 0 0 BC10 BC9 BC8 00000000 R
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000R
A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW
A7 A6 A5 A4 A3 A2 A1 0 xxxxxxx0 bbbbbbbr
0 0 0 0 0 0 0 SDPAUTO 00000001 RW
DONE 0 0 0 0 0 0 IDLEDRV 10000000 RW
FSE 0 0 0 0 FS2 FS1 FS0 00000000brrrrbbb
CTL0E3 CTL0E2 CTL0E1/
CTL0E3 CTL0E2 CTL0E1/
SLAVE RDYASYNC CTLTOGL SUSTAIN 0 MSTB2 MSTB1 MSTB0 00100000 RW
0 0 0 0 0 0 FALLING RISING 00000001 rrrrrrbb
TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24 00000000RW
TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16 00000000RW
TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000RW
TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0 00000001 RW
CTL5
CTL5
CTL0E0/ CTL4
CTL0E0/ CTL4
CTL3 CTL2 CTL1 CTL0 00000000 RW
CTL3 CTL2 CTL1 CTL0 00000000 RW
Document #: 38-08032 Rev. *K Page 32 of 60
Page 33
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 5-1. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
E6D2 1 EP2GPIFFLGSEL
E6D3 1 EP2GPIFPFSTOP Endpoint 2 GPIF stop
E6D4 1 EP2GPIFTRIG
E6DA 1 EP4GPIFFLGSEL
E6DB 1 EP4GPIFPFSTOP Endpoint 4 GPIF stop
E6DC 1 EP4GPIFTRIG
E6E2 1 EP6GPIFFLGSEL
E6E3 1 EP6GPIFPFSTOP Endpoint 6 GPIF stop
E6E4 1 EP6GPIFTRIG
E6EA 1 EP8GPIFFLGSEL
E6EB 1 EP8GPIFPFSTOP Endpoint 8 GPIF stop
E6EC 1 EP8GPIFTRIG
E6F0 1 XGPIFSGLDATH GPIF Data H
E6F1 1 XGPIFSGLDATLX Read/Write GPIF Data L &
E6F2 1 XGPIFSGLDATL-
E6F3 1 GPIFREADYCFG Internal RDY, Sync/Async,
reserved
reserved
3 reserved
reserved
reserved
3 reserved
reserved
reserved
3 reserved
reserved
reserved
3 reserved
NOX
[11]
Endpoint 2 GPIF Flag select
transaction on prog. flag
[11]
Endpoint 2 GPIF Trigger x x x x x x x x xxxxxxxx W
[11]
Endpoint 4 GPIF Flag select
transaction on GPIF Flag
[11]
Endpoint 4 GPIF Trigger x x x x x x x x xxxxxxxx W
[11]
Endpoint 6 GPIF Flag select
transaction on prog. flag
[11]
Endpoint 6 GPIF Trigger x x x x x x x x xxxxxxxx W
[11]
Endpoint 8 GPIF Flag select
transaction on prog. flag
[11]
Endpoint 8 GPIF Trigger x x x x x x x x xxxxxxxx W
(16-bit mode only)
trigger transaction Read GPIF Data L, no
transaction trigger
RDY pin states
0 0 0 0 0 0 FS1 FS0 00000000RW
0 0 0 0 0 0 0 FIFO2FLAG 00000000RW
0 0 0 0 0 0 FS1 FS0 00000000RW
0 0 0 0 0 0 0 FIFO4FLAG 00000000RW
0 0 0 0 0 0 FS1 FS0 00000000RW
0 0 0 0 0 0 0 FIFO6FLAG 00000000RW
0 0 0 0 0 0 FS1 FS0 00000000RW
0 0 0 0 0 0 0 FIFO8FLAG 00000000RW
D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
INTRDY SAS TCXRDY5 0 0 0 0 0 00000000bbbrrrrr
E6F4 1 GPIFREADYSTAT GPIF Ready Status 0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDY0 00xxxxxx R E6F5 1 GPIFABORT Abort GPIF Waveforms x x x x x x x x xxxxxxxx W E6F6 2 reserved
E740 64 EP0BUF EP0-IN/-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW E780 64 EP10UTBUF EP1-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW E7C0 64 EP1INBUF EP1-IN buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW E800 2048 reserved RW F000 1024 EP2FIFOBUF 512/1024-byte EP 2 /
F400 512 EP4FIFOBUF 512 byte EP 4 / slave FIFO
F600 512 reserved F800 1024 EP6FIFOBUF 512/1024-byte EP 6 /
FC00 512 EP8FIFOBUF 512 byte EP 8 / slave FIFO
FE00 512 reserved xxxx I²C Configuration Byte 0 DISCON 0 0 0 0 0 400KHZ xxxxxxxx
80 1 IOA 81 1 SP Stack Po inter D7 D6 D5 D4 D3 D2 D1 D0 00000111 RW 82 1 DPL0 Data Pointer 0 L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW 83 1 DPH0 Data Pointer 0 H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW 84 1 DPL1 85 1 DPH1 86 1 DPS 87 1 PCON Power Control SMOD0 x 1 1 x x x IDLE 00110000 RW
ENDPOINT BUFFERS
slave FIFO buffer (IN or OUT)
buffer (IN or OUT)
slave FIFO buffer (IN or OUT)
buffer (IN or OUT)
Special Function Registers (SFRs)
[13]
[13]
[13]
[13]
Port A (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
Data Pointer 1 L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW Data Pointer 1 H A15 A14 A13 A12 A11 A10 A9 A8 00000000RW Data Pointer 0/1 select 0 0 0 0 0 0 0 SEL 00000000RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
n/a
[14]
Notes:
13. SFRs not part of the standard 8051 architecture.
14. If no EEPROM is detected by the SIE then the default is 00000000.
Document #: 38-08032 Rev. *K Page 33 of 60
Page 34
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 5-1. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access 88 1 TCON Timer/Counter Control
89 1 TMOD Timer/Counter Mode
8A 1 TL0 Timer 0 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000RW 8B 1 TL1 Timer 1 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000RW 8C 1 TH0 Timer 0 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW 8D 1 TH1 Timer 1 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW 8E 1 CKCON 8F 1 reserved 90 1 IOB 91 1 EXIF 92 1 MPAGE
93 5 reserved 98 1 SCON0 Serial Port 0 Control
99 1 SBUF0 Serial Port 0 Data Buffer D7 D6 D5 D4 D3 D2 D1 D0 00000000RW 9A 1 AUTOPTRH1 9B 1 AUTOPTRL1 9C 1 reserved 9D 1 AUTOPTRH2 9E 1 AUTOPTRL2 9F 1 reserved A0 1 IOC A1 1 INT2CLR A2 1 INT4CLR A3 5 reserved A8 1 IE Interrupt Enable
A9 1 reserved AA 1 EP2468STAT
AB 1 EP24FIFOFLGS
AC 1 EP68FIFOFLGS
AD 2 reserved AF 1 AUTOPTRSETUP B0 1 IOD B1 1 IOE
B2 1 OEA B3 1 OEB B4 1 OEC B5 1 OED B6 1 OEE B7 1 reserved B8 1 IP Interrupt Priority (bit ad-
B9 1 reserved BA 1 EP01STAT
BB 1 GPIFTRIG
BC 1 reserved BD 1 GPIFSGLDATH
BE 1 GPIFSGLDATLX BF 1 GPIFSGLDATL-
C0 1 SCON1
C1 1 SBUF1 C2 6 reserved C8 1 T2CON Timer/Counter 2 Control
C9 1 reserved CA 1 RCAP2L Capture for Timer 2, au-
CB 1 RCAP2H Capture for Timer 2, au-
CC 1 TL2 Timer 2 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000RW CD 1 TH2 Timer 2 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000RW CE 2 reserved
[13]
[13]
NOX
[13]
[13]
[13]
[13]
[13]
[13] [13]
[13] [13]
[13] [13]
[13] [13]
[13]
[13, 11]
[13]
[13]
[13]
(bit addressable)
Control
Clock Control x x T2M T1M T0M MD2 MD1 MD0 00000001 RW
Port B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW External Interrupt Flag(s) IE5 IE4 I²CINT USBNT 1 0 0 0 00001000RW Upper Addr Byte of MOVX
using @R0 / @R1
(bit addressable)
[13]
Autopointer 1 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
[13]
Autopointer 1 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
[13]
Autopointer 2 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
[13]
Autopointer 2 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
Port C (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW Interrupt 2 clear x x x x x x x x xxxxxxxx W Interrupt 4 clear x x x x x x x x xxxxxxxx W
(bit addressable)
[13]
Endpoint 2,4,6,8 status flags
Endpoint 2,4 slave FIFO status flags
Endpoint 6,8 slave FIFO status flags
[13]
Autopointer 1&2 set-up 0 0 0 0 0 APTR2INC APTR1INC APTREN 00000110 RW Port D (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW Port E
(NOT bit addressable) Port A Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Port B Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Port C Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000RW Port D Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000RW Port E Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
dressable)
[13]
Endpoint 0&1 Status 0 0 0 0 0 EP1INBSY EP1OUTBSYEP0BSY 00000000R
Endpoint 2,4,6,8 GPIF slave FIFO Trigger
[13]
GPIF Data H (16-bit mode only)
[13]
GPIF Data L w/ Trigger D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW GPIF Data L w/ No TriggerD7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
Serial Port 1 Control (b it addressable)
Serial Port 1 Data Buffer D7 D6 D5 D4 D3 D2 D1 D0 00000000RW
(bit addressable)
to-reload, up-counter
to-reload, up-counter
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00000000 RW
GATE CT M1 M0 GATE CT M1 M0 00000000RW
A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00000000 RW
EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW
EP8F EP8E EP6F EP6E EP4F EP4E EP2F EP2E 01011010 R
0 EP4PF EP4EF EP4FF 0 EP2PF EP2EF EP2FF 00100010 R
0 EP8PF EP8EF EP8FF 0 EP6PF EP6EF EP6FF 01100110 R
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
1 PS1 PT2 PS0 PT1 PX1 PT0 PX0 10000000RW
DONE 0 0 0 0 RW EP1 EP0 10000xxx brrrrbbb
D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW
SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00000000 RW
TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000RW
D7 D6 D5 D4 D3 D2 D1 D0 00000000RW
D7 D6 D5 D4 D3 D2 D1 D0 00000000RW
Document #: 38-08032 Rev. *K Page 34 of 60
Page 35
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Table 5-1. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access D0 1 PSW Program Status Word (bit
D1 7 reserved D8 1 EICON D9 7 reserved E0 1 ACC Accumulator (bit address-
E1 7 reserved E8 1 EIE
E9 7 reserved F0 1 B B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000RW F1 7 reserved F8 1 EIP
F9 7 reserved
[13]
[13]
[13]
addressable)
External Interrupt Control SMOD1 1 ERESI RESI INT6 0 0 0 01000000 RW
able)
External Interrupt En­able(s)
External Interrupt Priority Control
CY AC F0 RS1 RS0 OV F1 P 00000000RW
D7 D6 D5 D4 D3 D2 D1 D0 00000000RW
1 1 1 EX6 EX5 EX4 EI²C EUSB 11100000 RW
1 1 1 PX6 PX5 PX4 PI²C PUSB 11100000 RW
R = all bits read-only W = all bits write-only
r = read-only bit w = write-only bit b = both read/write bit
Document #: 38-08032 Rev. *K Page 35 of 60
Page 36
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
6.0 Absolute Maximum Ratings
Storage Temperature . .......... .......... .......... ......... ................. .......... .......... ......... .......... .......... ............. ....................–65°C to +150°C
Ambien t Temperatu re w ith Pow e r Su p p lie d (Co m m e rc ia l) .................... ......... .......... .......... .......... ......... ....................0°C to +70°C
Ambient Temperature with Power Supplied (Industrial) .................................................................................... ...–40°C to +105°C
Supply Voltage to Ground Potential.................................... .................... .. ............ .......... ............ ................... ......... –0.5V to +4.0V
DC Input Voltage to Any Input Pin . ...................................................................................................................................5.25V
DC Voltage Applied to Outputs in High Z State...................................................................................... ... .... – 0. 5 V to VC C + 0.5V
Power D is si pa ti on . ... .. .......... .......... .......... ................. ......... .......... .......... ......... .......... ................. .......... .......... ......... .......... 300 mW
Static Disch ar g e Voltage . ... ......... .......... .......... .......... ................. ......... .......... .......... .......... ................................................ > 2000V
Max Output Current, per I/O port ......................................................................................................................................... 10 mA
Max Output Current, all five I/O ports (128- and 100-pin packages).................................................................................... 50 mA
7.0 Operating Conditions
TA (Ambient Temperature Under Bias) Commercial.............. .................... .. .. .......... .. ............ .......... ......................... 0°C to +70°C
(Ambient Temperature Under Bias) Industrial................. ................................. ............................................ ...–40°C to +105°C
T
A
Supply Voltage............ ............ .................... .. ......................................................................................................+3.00V to +3.60V
Ground Voltage.......................................................................................................................................................................... 0V
(Oscillator or Crystal Frequenc y)....... .......... ................... .......... .......... ................... ...24 MHz ± 100 ppm, Parallel Resonant
F
OSC
[15]
8.0 Thermal C h ar acteristics
The following table displays the thermal characteri stics of various packages
Table 8-1. Thermal Characteristics
. Jc
Ambient Temperature
. a
Package
56 SSOP 70 24.4 23.3 47.7 100 TQFP 70 11.9 34.0 45.9 128 TQFP 70 15.5 27.7 43.2 56 QFN 70 10.6 14.6 25.2 56 VFBGA 70 30.9 27.7 58.6
The Junction Temperature
(°C)
. j, can be calculated using the following equation
Junc ti on to Cas e
Temperature
(°C/W)
. Ca
Case to Ambient
Temperature
(°C/W)
Junction to Ambient Temperature
. Ja
. Jc + . Ca
(°C/W)
. j = P*. Ja + . a
where, P = Power
. Ja = Junction to Ambient Temperature (. Jc + . Ca) . a = Ambient Temperature (70 C)
The Case Temperature
. c, can be calculated using the followi ng equation
. c = P*. Ca + . a
where, P = Power
. Ca = Case to Ambient Temperature . a = Ambient Temperature (70 C)
Notes:
15. It is recommended to not power I/O with chip power off.
Document #: 38-08032 Rev. *K Page 36 of 60
Page 37
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
9.0 DC Characteristics
Table 9-1. DC Characteristics
Parameter Description Conditions Min. Typ. Max. Unit
VCC Supply Voltage 3.00 3.3 3.60 V VCC Ramp Up 0 to 3.3V 200 ∝s V
IH
V
IL
V
IH_X
V
IL_X
I
I
V
OH
V
OL
I
OH
I
OL
C
IN
I
SUSP
I
CC
T
RESET
Input HIGH Voltage 2 5.25 V Input LOW Voltage –0.5 0.8 V Crystal Input HIGH Voltage 2 5.25 V Crystal Input LOW Vol tage –0.5 0.8 V Input Leakage Curr ent 0< VIN < VCC ±10 ∝A Output Voltage HIGH I Output LOW Voltage I
= 4 mA 2.4 V
OUT
= –4 mA 0.4 V
OUT
Output Current HIGH 4mA Output Current LOW 4mA Input Pin Capacitance Except D+/D– 10 pF
D+/D– 15 pF Suspend Current Connected 300 380 CY7C68014/CY7C68016 Disconnected 100 150 Suspend Current Connected 0.5 1.2 CY7C68013/CY7C68015 Disconnected 0.3 1.0
[16]
[16] [16] [16]
Supply Current 8051 running, con nected to USB HS 50 85 mA
8051 running, connected to USB FS 35 65 mA Reset Time after Valid Power VCC min = 3.0V 5.0 mS Pin Reset after powered on 200 ∝S
AA
mA mA
Notes:
16. Measured at Max VCC, 25°C.
9.1 USB Transceiver
USB 2.0-compliant in full- and high-speed modes.
10.0 AC Electrical Characteristics
10.1 USB Transceiver
USB 2.0-compliant in full- and high-speed modes.
Document #: 38-08032 Rev. *K Page 37 of 60
Page 38
A A
C
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
10.2 Program Memory Read
t
CL
[17]
LKOUT
t
AV
A[15..0]
t
STBH
t
DH
PSEN#
D[7..0]
OE#
CS#
t
SOEL
t
SCSL
t
STBL
t
ACC1
[18]
data in
Figure 10-1. Program Memory Read Timing Diagram
T able 10-1. Program Memory Read Parameters
Parameter Description Min. Typ. Max. Unit Notes
t
CL
t
AV
t
STBL
t
STBH
t
SOEL
t
SCSL
t
DSU
t
DH
Notes:
17. CLKOUT is shown with positive polarity.
18. t
is computed from the above parameters as follows:
ACC1
t
(24 MHz) = 3*tCL – tAV – t
ACC1
t
(48 MHz) = 3*tCL – tAV – t
ACC1
1/CLKOUT Frequency 20.83 ns 48 MHz
Delay from Clock to Valid Address 0 10.7 ns Clock to PSEN Low 0 8 ns Clock to PSEN High 0 8 ns Clock to OE Low 1 1.1 ns Clock to CS Low 13 ns Data Set- u p to Cl o ck 9.6 ns Data Hold Time 0 ns
= 106 ns
DSU
= 43 ns.
DSU
t
AV
41.66 ns 24 MHz
83.2 ns 12 MHz
Document #: 38-08032 Rev. *K Page 38 of 60
Page 39
A A
10.3 Data Memory Read
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
t
CL
Stretch = 0
CLKOUT
CLKOUT
[17]
A[15..0]
RD#
CS#
OE#
D[7..0]
[17]
A[15..0]
RD#
CS#
D[7..0]
t
AV
DSU
t
ACC1
[19]
t
STBH
t
DH
t
STBL
t
SCSL
t
SOEL
[19
t
ACC1
t
CL
t
AV
t
data in
Stretch = 1
t
AV
t
DSU
data in
t
DH
Figure 10-2. Data Memory Read Timing Diagram
T able 10-2. Data Memory Read Parameters
Parameter Description Min. Typ. Max. Unit Notes
t
CL
1/CLKOUT Frequency 20.83 ns 48 MHz
41.66 ns 24 MHz
83.2 ns 12 MHz
t
AV
t
STBL
t
STBH
t
SCSL
t
SOEL
t
DSU
t
DH
Delay from Clock to Valid Address 10.7 ns Clock to RD LOW 11 ns Clock to RD HIGH 1 1 ns Clock to CS LOW 13 ns Clock to OE LOW 1 1.1 ns Data Set- u p to Cl o ck 9.6 ns Data Hold Time 0 ns
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 will only be active while either RD# or WR# are activ e. The add res s of AUTOP TR2 wi ll b e acti ve thro ughout t he cy cle and mee t the ab ove ad dress va lid time for which is based on the stretch value
Note:
19. t
and t
ACC2
t
(24 MHz) = 3*tCL – tAV –t
ACC2
t
(48 MHz) = 3*tCL – tAV – t
ACC2
t
(24 MHz) = 5*tCL – tAV –t
ACC3
t
(48 MHz) = 5*tCL – tAV – t
ACC3
are computed from the above parameters as follows:
ACC3
DSU
DSU
DSU
DSU
= 106 ns
= 43 ns
= 190 ns
= 86 ns.
Document #: 38-08032 Rev. *K Page 39 of 60
Page 40
A A
10.4 Data Memory Write
t
CL
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
CLKOUT
A[15..0]
WR#
CS#
D[7..0]
CLKOUT
A[15..0]
WR#
CS#
D[7..0]
t
AV
t
SCSL
t
ON1
t
CL
t
AV
t
t
ON1
STBL
data out
t
STBH
Stretch = 1
data out
t
t
OFF1
AV
t
OFF1
Figure 10-3. Dat a Me mory Write Timing Dia gram
Table 10-3. Data Memory Write Parameters
Parameter Description Min. Max. Unit Notes
t
AV
t
STBL
t
STBH
t
SCSL
t
ON1
t
OFF1
Delay from Clock to Valid Address 0 10. 7 ns Clock to WR Pulse LOW 0 11.2 ns Clock to WR Pulse HIGH 0 11.2 ns Clock to CS Pulse LOW 13.0 ns Clock to Data Turn-on 0 13.1 ns Clock to Data Hold Time 0 13.1 ns
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 will only be active while either RD# or WR# are active. The address of AUTOPTR2 will be active throughout the cycle and meet the above address valid time for which is based on the stretch value.
Document #: 38-08032 Rev. *K Page 40 of 60
Page 41
A A
10.5 PORTC Strobe Feature Timings
The RD# and WR# are present in t he 100-pin ver sion and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting PORTCSTB bi t i n CPUCS regis ter.
The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed.
The WR# strobe will be asserted two clock cycles after PORTC is updated and wi ll be a ctive for two c lock cyc les af t er that as shown in Figure 10-4.
As for read, the value of PORTC three cloc k cycles befor e the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for 2 clock cycles after 3 clock cycles from the point when the 8051 has performed a rea d function on PORTC.
t
CLKOUT
CLKOUT
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
The way the feature is intended to work is that the RD# signal will prompt the external logic to prepare the next data byte. Nothing get s sampled int ernally on ass ertion of the RD# signal itself . It is ju st a “pre fetch” type sig nal to get the next dat a byte prepared. So, using it with that in mi nd should easily meet the set-up time to the next read.
The purpose of this pulsing of RD# is to let the external peripheral know t hat the 8051 i s done readi ng PORTC and th e data was latched into PORTC three CLKOUT cycles prior to asserting the RD# signal . Once the RD# is pulsed the external logic may update th e data on PORTC.
Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Section 10.3 and Section 10.4 for det ails on pr opagation delay of RD# and WR# signals.
PORTC IS UPDATED
WR#
CLKOUT
8051 READS PORTC
RD#
t
STBL
t
STBH
Figure 10-4. WR# Strobe Function when PORTC is Accessed by 8051
t
CLKOUT
DATA MUST BE HELD FOR 3 CLK CYLCES
DATA CAN BE UPDATED BY EXTERNAL LOGIC
t
STBL
Figure 10-5. RD# Strob e Functi on w hen PORT C is Accessed by 8051
t
STBH
Document #: 38-08032 Rev. *K Page 41 of 60
Page 42
A A
t
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
10.6 GPIF Synchronous Si gnals
IFCLK
IFCLK
t
SGA
GPIFADR[8:0]
RDY
X
t
SRY
t
t
XGD
valid
RYH
t
DAH
N+1
[20, 21]
[20]
DATA(input)
t
SGD
CTL
X
t
XCTL
DATA(output)
N
Figure 10-6. GPIF Synchronous Signals Timing Diagram
Table 10-4. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK
Parameter Description Min. Max. Unit
t
IFCLK
t
SRY
t
RYH
t
SGD
t
DAH
t
SGA
t
XGD
t
XCTL
IFCLK Period 20.83 ns RDYX to Clock Set-up Time 8.9 ns Clock to RDYX 0ns GPIF Data to Clock Set-up Time 9.2 ns GPIF Data Hold Time 0 ns Clock to GPIF Address Propagation Delay 7.5 ns Clock to GPIF Data Output Propagation Delay 11 ns Clock to CTLX Output Propagation Delay 6.7 ns
Table 10-5. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SRY
t
RYH
t
SGD
t
DAH
t
SGA
t
XGD
t
XCTL
Notes:
20. Dashed lines denote signals with programmable polarity.
21. GPIF asynchronous RDY
22. IFCLK must not exceed 48 MHz.
IFCLK Period RDYX to Clock Set-up Time 2.9 ns Clock to RDYX 3.7 ns GPIF Data to Clock Set-up Time 3.2 ns GPIF Data Hold Time 4.5 ns Clock to GPIF Address Propagation Delay 11.5 ns Clock to GPIF Data Output Propagation Delay 15 ns Clock to CTLX Output Propagation Delay 10.7 ns
signals have a minimum Set-up time of 50 ns when using internal 48-MHz IFCLK.
x
[22]
20.83 200 ns
Document #: 38-08032 Rev. *K Page 42 of 60
Page 43
A A
10.7 Slave FIFO S y nchronous R ead
t
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
IFCLK
IFCLK
SLRD
FLAGS
DATA
SLOE
t
OEon
N
Figure 10-7. Slave FIFO Synchronou s Read Timing Diagram
T able 10-6. Slave FIFO Synchronous Read Param eters with Internal ly Sourced IFCLK
t
SRD
t
RDH
t
XFLG
t
XFD
N+1
t
OEoff
[20]
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SRD
t
RDH
t
OEon
t
OEoff
t
XFLG
t
XFD
IFCLK Period 20.83 ns SLRD to Clock Set-up Time 18.7 ns Clock to SLRD Hold Time 0 ns SLOE Turn-on to FIFO Data Valid 10.5 ns SLOE Turn-off to FIFO Data Hold 10.5 ns Clock to FLAGS Output Propagati on Delay 9.5 ns Clock to FIFO Data Output Propagation Delay 11 ns
Table 10-7. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SRD
t
RDH
t
OEon
t
OEoff
t
XFLG
t
XFD
IFCLK Period 20.83 200 ns SLRD to Clock Set-up Time 12.7 ns Clock to SLRD Hold Time 3.7 ns SLOE Turn-on to FIFO Data Valid 10.5 ns SLOE Turn-off to FIFO Data Hold 10.5 ns Clock to FLAGS Output Propagati on Delay 13.5 ns Clock to FIFO Data Output Propagation Delay 15 ns
Document #: 38-08032 Rev. *K Page 43 of 60
Page 44
A A
10.8 Slave FI FO Asynchr onous Read
t
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
RDpwh
SLRD
FLAGS
DATA
SLOE
t
OEon
N
Figure 10-8. Slave FIFO Asynchronous Read Timing Diagram
T able 10-8. Slave FIFO Asynchronous Read Parameters
t
RDpwl
t
XFD
[23]
t
XFLG
N+1
t
OEoff
[20]
Parameter Description Min. Max. Unit
t
RDpwl
t
RDpwh
t
XFLG
t
XFD
t
OEon
t
OEoff
Note:
23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.
SLRD Pulse Width LOW 50 ns SLRD Pulse Width HIGH 50 ns SLRD to FLAGS Output Propagation Delay 70 ns SLRD to FIFO Data Output Propagation Delay 15 ns SLOE Turn-on to FIFO Data Valid 10.5 ns SLOE Turn-off to FIFO Data Hold 10.5 ns
Document #: 38-08032 Rev. *K Page 44 of 60
Page 45
A A
10.9 Slave FIFO S y nchronous Writ e
t
IFCLK
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
IFCLK
SLWR
DATA
FLAGS
t
Figure 10-9. Slave FIFO Synchronous Write Timing Diagra m
Table 10-9. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK
SWR
t
SFDtFDH
t
WRH
N
t
XFLG
ZZ
[20]
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SWR
t
WRH
t
SFD
t
FDH
t
XFLG
Table 10-10. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK
IFCLK Period 20.83 ns SLWR to Clock Set-up Time 18.1 ns Clock to SLWR Hold Time 0 ns FIFO Data to Clo c k S e t- up Time 9.2 ns Clock to FIFO Da ta H o ld Time 0 ns Clock to FLAGS Output Propagati on Time 9.5 ns
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SWR
t
WRH
t
SFD
t
FDH
t
XFLG
IFCLK Period 20.83 200 ns SLWR to Clock Set-up Time 12.1 ns Clock to SLWR Hold Time 3.6 ns FIFO Data to Clo c k S e t- up Time 3.2 ns Clock to FIFO Da ta H o ld Time 4.5 ns Clock to FLAGS Output Propag ati on Time 13.5 ns
Document #: 38-08032 Rev. *K Page 45 of 60
Page 46
A A
10.10 Slave FIFO Asyn chr onous Write
t
SLWR
SLWR/SLCS#
DATA
FLAGS
t
WRpwl
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
WRpwh
t
t
FDH
SFD
t
XFD
Figure 10-10. Slave FIFO Asynchronous Write Timing Diagram
T able 10-1 1. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK
[20]
[23]
Parameter Description Min. Max. Unit
t
WRpwl
t
WRpwh
t
SFD
t
FDH
t
XFD
SLWR Pul se LOW 50 ns SLWR Pul se HIGH 70 ns SLWR to FIFO DATA Set-up Time 10 ns FIFO DATA to SLWR Hold Time 10 ns SLWR to FLAGS Output Pr opagation Delay 70 ns
10.11 Slave FI FO Sync hro nous Pa cket End Strobe
IFCLK
t
PEH
PKTEND
FLAGS
Figure 10-11. Slave FIFO Synchronou s Packet End Strobe Timing Diagra m
Table 10-12. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK
Parameter Description Min. Max. Unit
t
IFCLK
t
SPE
t
PEH
t
XFLG
IFCLK Period 20.83 ns PKTEND to Clock Set-up Time 14.6 ns Clock to PKTEND Hold Time 0 ns Clock to FLAGS Output Propagati on Delay 9.5 ns
t
SPE
t
XFLG
[20]
[21]
T able 10-13. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SPE
t
PEH
t
XFLG
There is no specific timing requirement that needs to be met for asserting PKTEND pin with regards to asserting SLWR. PKTEND can be asserted with t he last da ta val ue cl ocked into the FIFOs or thereafter. The only consideration is the set-up time t
and the hold time t
SPE
IFCLK Period 20.83 200 ns PKTEND to Clock Set-up Time 8.6 ns Clock to PKTEND Hold Time 2.5 ns Clock to FLAGS Output Propagati on Delay 13.5 ns
Although there are no specific timing requirements for the PKTEND assertion, there is a specific corner case condition that needs at tenti on whil e using t he PKTEND to commi t a one byte/word packet. There is an additional timing requirement
must be met.
PEH
that need to be met when the FIFO is configured to operate in
Document #: 38-08032 Rev. *K Page 46 of 60
Page 47
A A
t
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
auto mode and it is desired to send t wo packets back to back: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte/word packet committed manually using the PKTEND pin. In this particular scenario, user must make sure to assert PKTEND at leas t one clock cycle aft er the r ising edge that caus ed the last byt e/word to be clocked into the previous auto committed packet. Figure 10-12 below shows this scenario. X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode.
t
IFCLK
IFCLK
t
SFA
FIFOADR
>= t
SWR
SLWR
DATA
t
t
SFD
X-4
FDH
t
SFD
X-3
t
t
FDH
SFD
Figure 10-12 shows a scenario where two packets are being committed. The first packet gets committed automatically when the numb er of bytes in the FIFO reaches X (value set in AUTOINLEN register) and the second one byte/word short packet being committed manually using PKTEND. Note that there is at lea st one IF CLK cyc le ti ming betwe en the asse rt ion of PKTEND and clocking of the last byte of the previous pac ket (causing the packet to be commit ted automaticall y). Failing to adhere to this timing, will result in the FX2 failing to send the one byte/word short packet.
t
FAH
>= t
WRH
X-2
t
FDH
t
SFD
X-1
t
FDH
t
t
SFD
FDH
X
t
t
FDH
SFD
1
At least one IFCLK cycle
PKTEND
Figure 10-12. Slave FIFO Synchronous Write Sequence and Ti ming Diagram
[20]
10.12 Slave FI FO Asynchr ono us Packe t End Strobe
PEpwh
PKTEND
FLAGS
Figure 10-13. Slave FIFO Asynchr onous Packet End Strobe Timing Diagram
Table 10-14. Slave FIFO Asynchronous Packet End Strobe Parameters
Parameter Description Min. Max. Unit
t
PEpwl
t
PWpwh
t
XFLG
PKTEND Pulse Width LOW 50 ns PKTEND Pulse Width HIGH 50 ns PKTEND to FLAGS Output Propagation Del ay 115 ns
t
PEpwl
t
XFLG
[23]
[20]
t
SPE
t
PEH
Document #: 38-08032 Rev. *K Page 47 of 60
Page 48
A A
10.13 Slave FI FO Outpu t Enable
SLOE
DATA
t
OEon
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
t
OEoff
Figure 10-14. Slave FIFO Output Enable Timing Diagram
[20]
Table 10-15. Slave FIFO Output Enable Parameters
Parameter Description Min. Max. Unit
t
OEon
t
OEoff
SLOE Assert to FIFO DA TA Output 10.5 ns SLOE Deassert to FIFO DATA Hold 10.5 ns
10.14 Slave FIFO Address to Flags/Data
FIFOADR [1.0]
t
XFLG
FLAGS
t
XFD
DATA
Figure 10-15. Slave FIFO Address to Flags/Data Timing Diagram
Table 10-16. Slave FIFO Address to Flags/Data Parameters
Parameter Description Min. Max. Unit
t
XFLG
t
XFD
FIFOADR[1:0] to FLAGS Output Propagation Delay 10.7 ns FIFOADR[1:0] to FIFODATA Output Propagation Delay 14.3 ns
NN+1
[20]
Document #: 38-08032 Rev. *K Page 48 of 60
Page 49
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
10.15 Slave FIFO Sync hro nous Add ress
IFCLK
SLCS/FIFOADR [1:0]
t
SFAtFAH
Figure 10-16. Slave FIFO Synchr onous Address Timing Diagram
Table 10-17. Slave FIFO Synchronous Address Parameters
[21]
Parameter Description Min. Max. Unit
t
IFCLK
t
SFA
t
FAH
Interface Clock Period 20.83 200 ns FIFOADR[1:0] to Clock Set-up Time 25 ns Clock to FIFOADR[1:0] Hold Time 10 ns
10.16 Slave FIFO Asyn chr onous Address
SLCS/FIFOADR [1:0]
t
FAH
SLRD/SLWR/PKTEND
t
SFA
[20]
Figure 10-17. Slave FIFO Asynchro nous Address Timing Diagram
Slave FIFO Asynchronous Address Par am eter s
[23]
[20]
Parameter Description Min. Max. Unit
t
SFA
t
FAH
FIFOADR[1:0] to SLRD/SLWR/PKTEND Set-up T ime 10 ns RD/WR/PKTEND to FIFOADR[1:0] Hold Time 10 ns
Document #: 38-08032 Rev. *K Page 49 of 60
Page 50
A A
10.17 Sequence Diagram
10.17.1 Single and Burst Synchronous Read Example
t
IFCLK
IFCLK
t
FIFOADR
SLRD
SLCS
FLAGS
SFA
t=0
t
SRD
t=2
t
FAH
t
RDH
t=3
t
XFLG
t
T=0
SFA
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
t
FAH
T=2
>= t
SRD
>= t
RDH
T=3
t
XFD
DATA
SLOE
t
t=1
Data Driven: N
OEon
t
N+1
OEoff
t=4
Figure 10-18. Slave FIFO Synchronous Read Sequence and Timing Diagram
FIFO POINTER
FIFO DATA BUS
IFCLK
NNN+1 N+2
SLOE
Not Driven Driven: N
IFCLK IFCLK IFCLK IFCLK
SLRD
SLOE SLRD
N+1 N+2
Not Driven
Figure 10-19. Slave FIFO Synchr onous Sequence of Events Diagram
Figure 10-18 shows the timing r elationshi p of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.
• At t = 0 the FI FO address is stable and the signal SLCS is asserted (SLCS may be tied low in some applications). Note: t is running a t 48 MHz, t he FIFO ad dress set- up time i s more
has a minimum of 25 ns. This means when IFCLK
SFA
than one IFCLK cycle.
• At t = 1, SLOE is asser ted. SLOE is an ou tput enable onl y, whose sole function is to drive the data bus. The data that is driven on the bu s is the data t hat the internal FI FO pointer is currently poin ti ng to. In this example it is the first data value in the FIFO. Note : the data is pre-fetched and is driven on the bus when SLOE is asserted.
• At t = 2, SLRD i s asserted. SLRD must meet t he set-up time of t
(time from asserting the SLRD signal to the rising
SRD
edge of the IFCLK) and maintain a minimum hold time of t
(time from the IFCLK edge to the deassertion of the
RDH
SLRD signal). If the SLCS signal is us ed, it must be asse rted
N+1
t
OEon
SLOE
T=1
N+1
N+1
N+1
t
XFD
SLRD
N+2
t
N+3
N+3
XFD
IFCLK
N+4
N+4
N+3
SLRD
t
XFD
N+4
t
OEoff
T=4
[20]
IFCLK IFCLKIFCLK IFCLK
N+4
SLOE
N+4
before SLRD is asserted (i. e., the SLCS and SLRD signals must both be asserted to start a vali d read condition).
• The FIFO point er is updated on the r ising edge of t he IFCLK, while SLRD is asserte d. This st arts the prop agation of data from the newly addressed location to the data bus. After a propagation delay of t of IFCLK) the new data value is present. N is the first data
(measured from the rising edge
XFD
value read from the FIFO. In order to hav e data on the FIFO data bus, SLOE MUST also be asserted.
The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5. Note: For the burst mode, the SLRD and SLOE are left asserted during the ent ir e duration of the read. In t he burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. Dur ing the first read cycle, on the rising edge of the clock the FIFO pointer is updated and increments to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIF O pointer is incre­mented and the next data value is placed on the data bus.
N+4
Not Driven
Document #: 38-08032 Rev. *K Page 50 of 60
Page 51
A A
10.17.2 Single and Burst Synchronous Write
t
IFCLK
IFCLK
t
SFA
FIFOADR
t=0
SLWR
SLCS
FLAGS
DATA
PKTEND
t
t
SWR
WRH
t=2
t=3
t
XFLG
t
t
FDH
SFD
N
t=1
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
t
T=0
SFA
>= t
SWR
T=2 T=5
FDH
T=3
t
SFD
N+2
t
FDH
t
T=4
T=1
t
t
SFD
N+1
SFD
N+3
t
SPE
>= t
t
XFLG
t
FDH
t
FAH
WRH
t
PEH
t
FAH
Figure 10-20. Slave FIFO Synchronous Write Sequence and Ti ming Diagram
The Figure 10-20 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst wri te of 3 bytes an d com mitting al l 4 bytes as a short packet using the PKTEND pin.
• At t = 0 the FI FO address is stable and the signal SLCS is asserted. (SLCS may be tied low in some applications) Note: t is running a t 48 MHz, t he FIFO ad dress set- up time i s more
has a min imum of 25 ns. This means when IFCLK
SFA
than one IFCLK cycle.
• At t = 1, the external master/peripheral must outputs the data value onto the da ta b us wit h a minimum set u p ti me of t
before the rising edge of IFCLK.
SFD
• At t = 2, SLWR is asser ted. The SLWR must meet the set- up time of t rising edge of IFCLK) an d maintain a mi nimum hold time of t
WRH
SL WR si gnal). If SLCS signal is used , it mu st be asserted
(time from asserting the SL WR si gnal to the
SWR
(time from the IFCLK edge to the deas sertion of the
with SL WR or before SL WR is asserted. (i.e., the SLCS and SL WR si gnals must both be asserted to start a valid write condition).
• While th e SL WR is asserted, data is writ ten to the FIFO an d on the rising edge of the IFCL K, the FIFO pointer is incre­mented. The FI FO flag wi ll also be updated af ter a de lay of t
from the rising edge of th e clock.
XFLG
The same sequen ce o f event s ar e a lso sho wn f or a bu rst wr ite and are marked with the time indicators of T = 0 through 5. Note: For the burst mode, SLWR and SLCS are left asserted for the entire d urati on of wri ting all the r equired data va lu es. In this burst write mod e, once the SL WR is asser ted, the dat a on the FIFO data bus is written to the FIFO on every rising edge
[20]
of IFCLK. The FIF O po int er is updated on each rising edge of IFCLK. In Figure 10-20, once the four bytes are written to the FIFO, SLW R is deasserted. The short 4-byte packet can be committed to the host by asserting the PKTEND signal.
There is no specific timing requirement that needs to be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or ther eafter . The only require ment is that the set-u p time t
and the hold time t
SPE
Figure 10-20, the number of data values committed includes
must be met. In the scenario of
PEH
the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subse­quent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion.
Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner case condition that needs at tenti on whil e using t he PKTEND to commi t a one byte/word packet. Additional timing requirements exi sts when the FIFO is configur ed to operate in auto mode and it is desi red to send two packets: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte/word p acket com mitt ed manua lly using the PKTEND pin. In this case, the exter nal master must make sur e to asser t the PKTEND pin at least one clock cycle aft er the ris ing edge that caused the last byte/wor d t o be clocked into the prev ious aut o committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 10-12 for further details on this timing.
Document #: 38-08032 Rev. *K Page 51 of 60
Page 52
A A
n
10.17.3 Sequence Diagram of a Single and Burst Asynchr onous Read
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
FIFOADR
SLRD
SLCS
FLAGS
DATA
SLOE
FIFO POINTER
t
SFA
t=0
t=1
Data (X )
Driven
t
OEon
t
t=2
RDpwl
t
FAH
t
RDpwh
t=3
t
XFLG
t
XFD
N
t
OEoff
t=4
t
SFA
t
T=0
T=2 T=3
N
t
OEon
T=1 T=7
RDpwl
t
XFD
t
RDpwh
N+1
T=4
t
RDpwl
t
RDpwh
T=5
t
XFD
T=6
N+2
Figure 10-21. Slave FIFO Asynchronous Read Seque nce and Timing Diagr am
SLOE SLRD
NN
SLRD
N
N+1
SLOE
SLOE
N+1
N+1
SLRD
N+1
SLRD
N+2
t
RDpwl
SLRD
t
FAH
t
RDpwh
t
XFLG
t
XFD
N+3
t
OEoff
[20]
SLOE
N+3
N+2
SLRD
N+3
FIFO DATA BUS Not Driven Driven: X
N Not Drive
N
Not Driven
Figure 10-22. Slave FIFO Asynch ronous Read Sequence of Events Diagram
Figure 10-21 diagrams the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read.
• At t = 0 the FI FO address is stable and the SLCS signal is asserted.
• At t = 1, SL OE is asserted. This results i n the data bus being driven. The data that i s driven on to the bus is previous data, it data that was in the FIFO from a prior read cycle.
• At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of t pulse widt h of t asserted befo re SLRD is asserted (i. e., the SLCS and SLRD
. If SLCS is us ed t hen, SLCS must be
RDpwh
and minimum de-active
RDpwl
signals must both be asserted to start a valid read condition.)
N
N+1
N+1
N+2
N+2
• The data that will be dri ven, after assert ing SLRD, is the updated data fr om the FIFO. This data is valid af ter a propa­gation delay of t Figure 10-21, data N is the first valid data read fr om the
from the activating edge of SLRD. In
XFD
FIFO. For data to appear on the data bus during the read cycle (i.e.,SLRD is asserted), SLOE MUST be in an asserted state. SLRD and SLOE can also be tied together.
The same sequence of events is also shown for a burst read marked with T = 0 throu gh 5. Note: In burst r ead mode, durin g SLOE is asse rtion, the data bus i s in a dri ven stat e and output s the previous data. Once SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented.
Document #: 38-08032 Rev. *K Page 52 of 60
Page 53
A A
10.17.4 Sequence Diagram of a Single and Burst Asynchr onous Write
T=0
t
SFA
T=1
t
WRpwl
T=2
t
WRpwh
T=3
t
t
SFD
FDH
N+1
T=4
t
WRpwl
T=5
t
FIFOADR
SLWR
SLCS
FLAGS
DATA
PKTEND
t=0
t
SFA
t
WRpwl
t =1 t=3
t
SFD
t=2
t
WRpwh
t
FDH
N
t
FAH
t
XFLG
SFD
T=6
t
WRpwh
t
FDH
N+2
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
t
FAH
t
t
WRpwl
WRpwh
T=7
T=9
t
XFLG
t
t
SFD
FDH
N+3
T=8
t
PEpwl
t
PEpwh
Figure 10-23. Slave FIFO Asynchronous Write Sequ ence and Timing Diagram
Figure 10-23 diagrams the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write foll owed by a burst wri te of 3 bytes and com mitting the 4-byte-short packet using PKTEND.
• At t = 0 the FIFO address is appli ed, insuring that it meets the set-up time of t asserted (SLCS may be tied low in some applications).
. If SLCS is use d , it m u s t als o be
SFA
• At t = 1 SLW R is asserted. SLWR must meet the mini mum active pulse of t of t SLWR or before SLWR is asserted.
. If the SLCS is used, it must be in ass ert ed with
WRpwh
• At t = 2, data must be pr esent on the bus t deasserting edge of SLWR.
and minimum de-activ e pulse width
WRpwl
SFD
before the
• At t = 3, deass erting SL W R will cause the da ta to be writt en from the dat a bus to t he FIFO and then increments the FIFO
[20]
pointer. The FIFO flag is also updated after t deasserting edge of SLWR.
XFLG
from the
The same sequence of event s are shown f or a burst write an d is indicated by the timing marks of T = 0 through 5. Note: In the burst write mode, once SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incre­mented.
In Figure10-23 once the four bytes are written to t he FIFO and SLWR is deasserted, the short 4-byte packet can be committed to the host usi ng the PKTEND. The extern al device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines are to be held constant during the PKTEND assertion.
Document #: 38-08032 Rev. *K Page 53 of 60
Page 54
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
11.0 Ordering Information
Table 11-1. Ordering Information
Ordering Code Package Type RAM Size # Prog I/Os
Ideal for battery powered applications
CY7C68014A-128AXC 128 TQFP – Lead-Free 16K 40 16/8 bit CY7C68014A-100AXC 100 TQFP – Lead-Free 16K 40 – CY7C68014A-56PVXC 56 SSOP – Lead-Free 16K 24 – CY7C68014A-56LFXC 56 QFN – Lead-Free 16K 24 – CY7C68014A-56BAXC 56 VFBGA – Lead-Free 16K 24 – CY7C68016A-56LFXC 56 QFN – Lead-Free 16K 26
Ideal for non-battery powered applications
CY7C68013A-128AXC 128 TQFP – Lead-Free 16K 40 16/8 bit CY7C68013A-128AXI 128 TQFP – Lead-Fr ee (Industrial ) 16K 40 16/ 8 bit CY7C68013A-100AXC 100 TQFP – Lead-Free 16K 40 – CY7C68013A-100AXI 100 TQFP – Lead-Free (Industr ial) 16K 40 – CY7C68013A-56PVXC 56 SSOP – Lead-Free 16K 24 – CY7C68013A-56PVXI 56 SSOP – Lead-Free (Industrial) 16K 24 – CY7C68013A-56LFXC 56 QFN – Lead-Free 16K 24 – CY7C68013A-56LFXI 56 QFN – Lead-Free (Industrial) 16K 24 – CY7C68015A-56LFXC 56 QFN – Lead-Free 16K 26 – CY7C68013A-56BAXC 56 VFBGA – Lead-Free 16K 24
8051 Address
/Data Busses
Development Tool Kit
CY3684 EZ-USB FX2LP Development Kit
Reference Design Kit
CY4611B USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP
Document #: 38-08032 Rev. *K Page 54 of 60
Page 55
A A
12.0 Package Diagrams
The FX2LP is available in five packages:
• 56-pin SSOP
• 56-pin QFN
• 100-pin TQFP
• 128-pin TQFP
• 56-ball VFBGA
Package Diagrams
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
0.80[0.031]
Figure 12-1. 56-lead Shrunk Small Outline Package O56
TOP VIEW
A
1
2
DIA.
7.90[0.311]
8.10[0.319]
7.70[0.303]
7.80[0.307]
N
7.80[0.307]
7.70[0.303]
1.00[0.039] MAX.
0.80[0.031] MAX.
8.10[0.319]
7.90[0.311]
SIDE VIEW
0°-12°
C
0.08[0.003]
0.05[0.002] MAX.
0.20[0.008] REF.
0.30[0.012]
0.50[0.020]
SEATING PLANE
C
BOTTOM VIEW
E-PAD
(PAD SIZE VARY BY DEVICE TYPE)
6.45[0.254]
6.55[0.258]
0.18[0.007]
0.28[0.011]
0.50[0.020]
PIN1 ID
N
0.20[0.008] R.
1
2
0.45[0.018]
0.24[0.009]
0.60[0.024]
51-85062-*C
6.55[0.258]
6.45[0.254]
(4X)
51-85144-*D
Figure 12-2. 56-Lea d QFN 8 x 8 mm LF56A
Document #: 38-08032 Rev. *K Page 55 of 60
Page 56
A A
Package Diagrams (continued)
16.00±0.20
14.00±0.10
100
1
20.00±0.10
22.00±0.20
30
31 50
R 0.08 MIN.
0.20 MAX.
0.25
0°-7°
0.60±0.15
1.00 REF.
0° MIN.
R 0.08 MIN.
0.20 MAX.
0.20 MIN.
A
DETAIL
Figure 12-3. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA
81
80
0.30±0.08
0.65 TYP.
51
STAND-OFF
0.05 MIN.
0.15 MAX.
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
1.40±0.05
12°±1°
(8X)
SEATING PLANE
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS
SEE DETAIL
0.20 MAX.
1.60 MAX.
0.10
A
51-85050-*B
Document #: 38-08032 Rev. *K Page 56 of 60
Page 57
A A
Package Diagrams (continued)
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
R 0.08 MIN.
0.20 MAX.
0.25
0°-7°
0.60±0.15
1.00 REF.
20.00±0.10
22.00±0.20
0° MIN.
1
R 0.08 MIN.
0.20 MAX.
0.20 MIN.
DETAIL
16.00±0.20
14.00±0.10
128
0.22±0.05
12°±1°
(8X)
STAND-OFF
0.05 MIN.
0.15 MAX.
0.50 TYP.
SEATING PLANE
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS
1.40±0.05
0.20 MAX.
1.60 MAX.
0.08
SEE DETAIL
A
51-85101-*C
A
Figure 12-4. 128- Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128
Document #: 38-08032 Rev. *K Page 57 of 60
Page 58
A A
Package Diagrams (continued)
N
h
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
5.00±0.10
0.45
PIN A1 CORNER
13265486
A
B
C
D E F
G
H
SEATING PLANE
-C-
TOP VIEW
5.00±0.10
SIDE VIEW
BOTTOM VIEW
Ø0.05 M C
Ø0.15MCAB
Ø0.30±0.05(56X)
7856 2341
0.50
3.50
5.00±0.10
-B-
-A-
0.10(4X)
0.10 C
0.080 C
REFERENCE JEDEC: MO-195C
PACKAGE WEIGHT: 0.02 grams
0.50
3.50
5.00±0.10
A1 CORNER
A
B
C
D E F
G
H
0.21
1.0 max
0.160 ~0.260
001-03901-*B
Figure 12-5. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56
13.0 PCB Layout Recommendations
[24]
The following recommendations should be follow ed to ensure reliable high-performance operat ion.
• At least a four -l ayer impedance contr olled boards are re­quired to maintain signal quality.
• Specify impedance targets (ask your board vendor what they can achieve).
• T o control impedance, maintain trace wid ths and trace spac­ing.
• Minimize stubs to minimize refl ected signals.
• Connections between the USB connector shell and signal ground must be done near the USB connector.
• Bypass/flyback caps on VBus, near connector, are recom­mended.
• DPLUS and DMINUS trace lengt hs should be kept to within 2 mm of each other in length, with preferred length of 20–30 mm.
ote:
24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and Hig Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.
• Maintain a solid ground plane under the DPLUS and DMI­NUS traces. Do not allow the plane to be split under these traces.
• It is preferre d is to have no vias placed on the DPLUS or DMINUS trace routing.
• Isolate the DPL US and DMINUS traces f rom all other s ignal traces by no less t han 10 mm.
14.0 Quad F l at Packag e N o Le ad s (QFN) Package D esign No tes
Electrical co ntact of t he part to the Printe d Circuit Board (PCB) is made by soldering the leads on the bottom surface of the package to the PCB. Hence , special attention is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. A Copper (Cu) fill is to be designed into the PCB as a thermal pad under the package. Heat is transf er red from the FX2L P th rough t he devi ce’s met al paddle on the bottom side of the package. Heat from here, is conducted to the PCB at the thermal pad. It is then conducted
Document #: 38-08032 Rev. *K Page 58 of 60
Page 59
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
from the the rmal p ad t o the PCB inner ground pl ane by a 5 x 5 array of via. A via is a plated through hole in the PCB with a finished diameter of 13 mil. The QFN’ s me tal die paddle must be soldered to the PCB’s thermal pad. Solder mask is placed on the board top side over each via to resist solder flow into the via. The mask on the top side also minimizes outgassing during the solder reflow process.
For further information on this p ackage design please refer to the application note Surface Mount Assembly of AMKOR’s MicroLeadFrame ( MLF) Technology . This applica tion note ca n be downloaded from AMKOR’s website from the following URL http://www.amkor.com/products/notes_papers/MLF_AppNote _0902.pdf. The application note provides detail ed information on board moun ting guidel ines, solder ing f low, rework process, etc.
Solder Mask
Cu Fill
PCB Material
Via hole for thermally connecting the QFN to the circuit board ground plane.
Figure 14-1. Cross-section of the Area Underneath the QFN Package
Figure 14-1 below displ ays a cross- sec tiona l area underneat h the package. The cross section is of only one via. The solder paste template needs to be designed to allow at least 50% solder coverage. The thickness of the solder paste template should be 5 m il. It is recommended that “No Clean” type 3 solder paste is used for mounting the part. Nitrogen purge is recommended during ref low.
Figure 14-2 is a plot of the solder mask pattern and Figure 14-3 displays an X-Ray image of the asse mb ly (darker
areas indicate solder).
0.017” dia
Cu Fill
0.013” dia
This figure only shows the top three layers of the circuit board: Top Solder, PCB Dielectric, and the Ground Plane
PCB Material
Figure 14-2. Plot of the Solder Mask (White Area)
Figure 14-3. X-ray Imag e of the Assembly
Purchase of I
2
I
C Patent Rights to use these comp onents in an I2C system, provi ded that the s ystem conforms to the I2C Sta ndar d Sp eci fica tion
2
C components from Cypr ess, or o ne of its su blice nsed Asso ci ated Com pani es, c onvey s a lic ense unde r the Phi lip s
as defined by Philips. EZ-USB FX2LP, EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a register ed trademark, of Cypress Semicond uct or Corporati on. All product and comp any names ment ioned i n this docu ment are the trademark s of thei r respective holders.
Document #: 38-08032 Rev. *K Page 59 of 60
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Page 60
A A
CY7C68013A/CY7C68014 CY7C68015A/CY7C68016
Document History Page
Document Title: CY7C68013A EZ-USB FX2LP™ USB Microcont roller High-Speed USB Peripheral Controller Document Number: 38-08032
REV . ECN NO.
** 124316 03/17/03 VCS New data sheet
*A 128461 09/02/03 VCS Added PN CY7C68015A throughout data sheet
*B 130335 10/09/03 KKV Restored PRELIMINARY to header (had been removed in error from rev. *A) *C 131673 02/12/04 KKU Section 8.1 changed “certi fi ed” to “compliant”
*D 230713 See E CN KKU Changed Lead free Mar keting p art numbers in Table 11-1 as p er spec change in 28-00054. *E 242398 See ECN TMD Minor Change: data sheet posted to the web, *F 271169 See ECN MON Added USB-IF Test ID number
*G 316313 See ECN MON Removed CY7C68013A-56PVXCT part availability
*H 338901 See ECN MON Added information on the AUTOPTR1/AUTOPTR2 address timing with regards to data
*I 371097 See ECN MON Added timing for strobin g RD#/WR# signa ls when usi ng PortC s trobe fea ture (Sect ion 10.5 )
*J 397239 See ECN MON Removed XTALINSRC register from register summary.
*K 420505 See ECN MON Remove SLCS from figure in Section 10.10.
Issue
Date
Orig. of
Change Description of Change
Modified Figure 1-1 to add ECC block and fix errors Removed word “compatible” where associated with I Corrected grammar and fo rmatting in various locations Updated Sections 3.2.1, 3.9, 3.11, Table 3-9, Section 5.0 Added Sections 3.15, 3.18.4, 3.20 Modified Figure 3-5 for clari ty Updated Figure 12-2 to match current spec revision
Table 9-1 added parameter V Added Sequence diagrams Section 9.16 Updated Ordering information with lead-free parts Updated Registry Summar y Section 3.12.4:example changed to column 8 from column 9 Updated Figure 10-3 memory write timing Diagram Updated section 3.9 (reset) Updated section 3.15 ECC Generation
Added USB 2.0 logo Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x Changed VCC from + Changed E-Pad size to 4.3 mm x 5.0 mm Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in Table 10-14 from a max value of 70 ns to 115 ns
Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A Provided addition al timing restr ictions and req uirement reg arding the use of PKETEND pin to commit a short one byt e /word packet sub sequent to committing a packet automatically (when in auto mode). Added Min Vcc Ramp Up time (0 to 3.3v)
memory read/write timing diagram. Removed TBD for Min value of Clock to FIFO Data Output Propagatio n Delay (t Slave FIFO Synchronous Read Changed Table 11-1 to include part CY7C68016A- 56LFXC in the part listed for batt ery powered applications Added register GPCR2 in register summary
Changed Vcc margins to + Added 56-pin VFBGA Pin Package Diagram Added 56-pin VFBGA definiti on in pin listing Added RDK part number to the Ordering Information table
Removed indicati ons that SLRD can be asserted simultaneously with SLCS in Section
10.17.2 and Section 10.17.3 Added Absolute Maximum Temperature Rating for industrial packages in Section 6.0 Changed number of packages stated in the description in Section 4.0 to five. Added Table 8-1 on Thermal Coefficients for various packages
10% to + 5%
10%
IH_X
and V
IL_X
2
C
XFD
) for
Document #: 38-08032 Rev. *K Page 60 of 60
Loading...