Datasheet CS4121ENF16, CS4121EDWFR20, CS4121EDWF20 Datasheet (Cherry Semiconductor)

Page 1
1
Features
Direct Sensor Input
High Torque Output
Low Pointer Flutter
High Input Impedance
Overvoltage Protection
Accurate to 8V
Functional to 6.5V (typ)
Package Options
16 Lead PDIP
(internally fused leads)
20 Lead SOIC
(internally fused leads)
CS4121
Low Voltage Precision Air-Core
Tach/Speedo Driver
1
CP+
2
3
4
5
6
7
8
SQ
OUT
FREQ
IN
Gnd
Gnd
COS+
COS-
V
CC
16
15
14
13
12
11
10
9
CP-
F/V
OUT
V
REG
Gnd
Gnd
SINE+
SINE-
BIAS
1
CP+
2
3
4
5
6
7
8
SQ
OUT
FREQ
IN
Gnd
Gnd
Gnd
Gnd
COS+
16
15
14
13
12
11
10
CP-
F/V
OUT
V
REG
Gnd
Gnd
Gnd
Gnd
SIN+
9
COS- SIN-
17
18
V
CC
BIAS
19
20
CS4121
Description
The CS4121 is specifically designed for use with air-core meter move­ments. The IC provides all the func­tions necessary for an analog tachometer or speedometer. The CS4121 takes a speed sensor input and generates sine and cosine relat­ed output signals to differentially drive an air-core meter.
Many enhancements have been added over industry standard tachometer drivers such as the CS289 or LM1819. The output uti­lizes differential drivers which elim-
inates the need for a zener reference and offers more torque. The device withstands 60V transients which decreases the protection circuitry required. The device is also more precise than existing devices allow­ing for fewer trims and for use in a speedometer.
The CS4121 is compatible with the CS8190, and provides higher accu­racy at a lower supply voltage (8.0V min. as opposed to 8.5V). It is func­tionally operational to 6.5V.
Block Diagram
Absolute Maximum Ratings
Supply Voltage (<100ms pulse transient)..........................................VCC= 60V
(continuous)..............................................................VCC= 24V
Operating Temperature .............................................................Ð40¡C to +105¡C
Storage Temperature..................................................................Ð40¡C to +165¡C
Junction Temperature .................................................................Ð40¡C to+150¡C
ESD (Human Body Model) .............................................................................4kV
Lead Temperature Soldering
Wave Solder (through hole styles only)............10 sec. max, 260¡C peak
Reflow (SMD styles only).............60 sec. max above 183¡C, 230¡C peak
Cherry Semiconductor Corporation
2000 South County Trail, East Greenwich, RI 02818
Tel: (401)885-3600 Fax: (401)885-5786
Email: info@cherry-semi.com
Web Site: www.cherry-semi.com
A Company
¨
Rev 12/4/96
Voltage
Regulator
V
REG
7.0V
+
Ð
Ð
+
Output
+
Ð
SINE
CP-
V
REG
Gnd
Gnd
SINE+
SINE-
OUT
BIAS
SQ
FREQ
COS
COS
CP+
OUT
Gnd
Gnd
V
IN
+
CC
-
Charge Pump
Input
Comp.
+
Ð
Ð
+
COS
Output
+
Ð
Func.
Gen.
High Voltage
Protection
Page 2
2
Electrical Characteristics: -40¡C ² TA² 85¡C, 8.0V ² VCC² 16V unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CS4121
Supply Voltage Section
ICCSupply Current VCC= 16V, -40¡C, No Load 50 125 mA VCCNormal Operation Range
8.0 13.1 16.0 V
Input Comparator Section
Positive Input Threshold 1.0 2.0 3.0 V Input Hysteresis 200 500 mV Input Bias Current * 0V ² VIN² 8V -10 -80 µA Input Frequency Range 0 20 kHz Input Voltage Range in series with 1k½ -1 V
CC
V
Output V
SAT
ICC= 10mA 0.15 0.40 V Output Leakage VCC= 7V 10 µA Logic 0 Input Voltage 1 V
*Note: Input is clamped by an internal 12V Zener.
Voltage Regulator Section
Output Voltage 6.25 7.00 7.50 V Output Load Current 10 mA Output Load Regulation 0 to 10 mA 10 50 mV Output Line Regulation 8.0V ² VCC² 16V 20 150 mV Power Supply Rejection VCC= 13.1V, 1VP/P1kHz 34 46 dB
Charge Pump Section
Inverting Input Voltage 1.5 2.0 2.5 V Input Bias Current 40 150 nA Vbias Input Voltage 1.5 2.0 2.5 V Non Invert. Input Voltage IIN= 1mA 0.7 1.1 V Linearity* @ 0, 87.5, 175, 262.5, + 350Hz -0.10 0.28 +0.70 % F/V
OUT
Gain @ 350Hz, CT = 0.0033µF, RT = 243k½ 7 10 13 mV/Hz Norton Gain, Positive IIN= 15µA 0.9 1.0 1.1 I/I Norton Gain, Negative IIN= 15µA 0.9 1.0 1.1 I/I
*Note: Applies to % of full scale (270¡).
Function Generator Section: -40¡C ² T
A
² 85¡C, VCC= 13.1V unless otherwise noted.
Differential Drive Voltage 8.0V ² VCC² 16V 5.5 6.5 7.5 V
(V
COS
+ - V
COS
-) Q = 0¡
Differential Drive Voltage 8.0V ² VCC² 16V 5.5 6.5 7.5 V
(V
SIN
+ - V
SIN
-) Q = 90¡
Differential Drive Voltage 8.0V ² VCC² 16V -7.5 -6.5 -5.5 V
(V
COS
+ - V
COS
-) Q = 180¡
Differential Drive Voltage 8.0V ² VCC² 16V -7.5 -6.5 -5.5 V
(V
SIN
+ - V
SIN
-) Q = 270¡ Differential Drive Current 8.0V ² VCC² 16V, TA=25¡C 33 42 mA Zero Hertz Output Angle -1.5 0.0 1.5 deg Function Generator Error * VCC= 13.1V, TA=25¡C -2 0 +2 deg
Reference Figures 1,2,3,4 Q = 0¡ to 305¡
*Note: Deviation from nominal per Table 1 after calibration at 0¡ and 270¡.
Page 3
3
PACKAGE LEAD # LEAD SYMBOL FUNCTION
CS4121
Electrical Characteristics: continued
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Package Lead Description
Typical Performance Characteristics
0 45 90 135 180 225 270 315
Output Voltage (V)
Degrees of Deflection (°)
7
6
5
4
3 2
1
0
-1
-2
-3
-4
-5
-6
-7
COS
SIN
045
90
135 180 225 270 315
F/V Output (V)
Frequency/Output Angle (°)
7
6
5
4
3
2
1
0
Figure 2: Charge Pump Output Voltage vs Output Angle
Figure 1: Function Generator Output Voltage
vs Degrees of Deflection
F/V
OUT
= 2.0V + 2 FREQ ´ CT´ RT´ (V
REG
- 0.7)
Function Generator Section: continued
Function Generator Error 13.1V ² V
CC
² 16V, TA=25¡C -2.5 0 +2.5 deg
Function Generator Error 13.1V ² V
CC
² 11V, TA=25¡C -1 0 +1 deg
Function Generator Error 13.1V ² V
CC
² 8V, TA=25¡C -3 0 +3 deg
Function Generator Error 25¡C ² T
A
² 85¡C -3 0 +3 deg
Function Generator Error 25¡C ² T
A
² 105¡C -5.5 0 +5.5 deg
Function Generator Error Ð40¡C ² T
A
² 25¡C -3 0 +3 deg
Function Generator Gain T
A
= 25¡C Q vs F/V
OUT
60 77 95 ¡/V
16L PDIP* 20L SO*
1 1 CP+ Positive input to charge pump.
22SQ
OUT
Buffered square wave output signal.
3 3 FREQ
IN
Speed or rpm input signal.
4, 5, 12, 13 4-7, 14-17 Gnd Ground Connections.
6 8 COS+ Positive cosine output signal.
7 9 COS- Negative cosine output signal.
810VCCIgnition or battery supply voltage.
9 11 BIAS Test point or zero adjustment.
10 12 SIN- Negative sine output signal.
11 13 SIN+ Positive sine output signal.
14 18 V
REG
Voltage regulator output.
15 19 F/V
OUT
Output voltage proportional to input signal frequency.
16 20 CP- Negative input to charge pump.
*Internally Fused Leads
Page 4
4
00 1 1.09 2 2.19 3 3.29 4 4.38 5 5.47 6 6.56 7 7.64 8 8.72
9 9.78 10 10.84 11 11.90 12 12.94 13 13.97 14 14.99 15 16.00 16 17.00
17 17.98 18 18.96 19 19.92 20 20.86 21 21.79 22 22.71 23 23.61 24 24.50 25 25.37 26 26.23 27 27.07 28 27.79 29 28.73 30 29.56 31 30.39 32 31.24 33 32.12
34 33.04 35 34.00 36 35.00 37 36.04 38 37.11 39 38.21 40 39.32 41 40.45 42 41.59 43 42.73 44 43.88 45 45.00 50 50.68 55 56.00 60 60.44 65 64.63 70 69.14
75 74.00 80 79.16 85 84.53 90 90.00
95 95.47 100 100.84 105 106.00 110 110.86 115 115.37 120 119.56 125 124.00 130 129.32 135 135.00 140 140.68 145 146.00 150 150.44 155 154.63
160 159.14 165 164.00 170 169.16 175 174.33 180 180.00 185 185.47 190 190.84 195 196.00 200 200.86 205 205.37 210 209.56 215 214.00 220 219.32 225 225.00 230 230.58 235 236.00 240 240.44
245 244.63 250 249.14 255 254.00 260 259.16 265 264.53 270 270.00 275 275.47 280 280.84 285 286.00 290 290.86 295 295.37 300 299.21 305 303.02
Ideal Q Nominal Ideal Q Nominal Ideal Q Nominal Ideal Q Nominal Ideal Q Nominal Ideal Q Nominal
Degrees Q Degrees Degrees Q Degrees Degrees Q Degrees Degrees Q Degrees Degrees Q Degrees Degrees Q Degrees
Typical Performance Characteristics: continued
CS4121
Nominal Angle vs. Ideal Angle (After calibrating at 180¡)
+7V
Ð7V
(V
COS+
) - (V
COS-
)
7V
Angle
-7V
Q
(V
SINE+
) - (V
SINE-
)
]
V
SIN+
Ð V
SIN-
V
COS+
Ð V
COS-
Q = ARCTAN
[
-1.50
Deviation (°)
0 45 90 135 180 225 270 315
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
Theoretical Angle (°)
Figure 4: Nominal Output Deviation
Figure 3: Output Angle in Polar Form
Ideal Angle (Degrees)
Nominal Angle (Degrees)
0
5
10
15
20
25
30
35
40
45
1 5 9 13 17 21 25 29 33 37 41 45
Ideal Degrees
Nominal Degrees
Table 1: Function Generator Output Nominal Angle vs. Ideal Angle (After calibrating at 270¡)
Note: Temperature, voltage and nonlinearity not included.
Note: Temperature, voltage and nonlinearity not included.
Page 5
5
CS4121
The CS4121 is specifically designed for use with air-core meter movements. It includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conver­sion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the motor coils.
From the simplified block diagram of Figure 5A, the input signal is applied to the FREQINlead, this is the input to a high impedance comparator with a typical pos­itive input threshold of 2.0V and typical hysteresis of
0.5V. The output of the comparator, SQ
OUT
, is applied to the charge pump input CP+ through an external capacitor CT. When the input signal changes state, CT is charged or discharged through R3 and R4. The charge accumulat­ed on CTis mirrored to C4 by the Norton Amplifier cir­cuit comprising of Q1, Q2 and Q3. The charge pump out­put voltage, F/V
OUT
, ranges from 2V to 6.3V depending on the input signal frequency and the gain of the charge pump according to the formula:
F/V
OUT
= 2.0V + 2 ´ FREQ ´ CT´ RT´ (V
REG
Ð 0.7V)
RTis a potentiometer used to adjust the gain of the F/V output stage and give the correct meter deflection. The F/V output voltage is applied to the function generator which generates the sine and cosine output voltages. The output voltage of the sine and cosine amplifiers are derived from the on-chip amplifier and function genera­tor circuitry. The various trip points for the circuit (i.e., 0¡, 90¡, 180¡, 270¡) are determined by an internal resistor divider and the bandgap voltage reference. The coils are differentially driven, allowing bidirectional current flow in the outputs, thus providing up to 305¡ range of meter deflection. Driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. The key advantage is a higher torque output for the pointer.
The output angle, Q, is equal to the F/V gain multiplied by the function generator gain:
Q = A
F/V
´ AFG,
where:
AFG= 77¡/V(typ) The relationship between input frequency and output
angle is:
Q = AFG´ 2 ´ FREQ ´ CR(V
REG
Ð 0.7V)
or, Q = 970 ´ FREQ ´ CT´ R
T
The ripple voltage at the F/V converterÕs output is deter­mined by the ratio of CTand C4 in the formula:
ÆV =
Ripple voltage on the F/V output causes pointer or nee­dle flutter especially at low input frequencies.
The response time of the F/V is determined by the time constant formed by RTand C4. Increasing the value of C4 will reduce the ripple on the F/V output but will also increase the response time. An increase in response time causes a very slow meter movement and may be unac­ceptable for many applications.
Design Example
Maximum meter Deflection = 270¡ Maximum Input Frequency = 350Hz
1. Select RTand C
T
Q = A
GEN
´ Æ
F/V
Æ
F/V
= 2 ´ FREQ ´ CT´ RT´ (V
REG
Ð 0.7V)
Q = 970 ´ FREQ ´ CR
T
Let CT= 0.0033µF, Find R
T
RT=
RT= 243k½
RTshould be a 250k½ potentiometer to trim out any inac­curacies due to IC tolerances or meter movement pointer placement.
2. Select R3 and R4
Resistor R3 sets the output current from the voltage regu­lator. The maximum output current from the voltage reg­ulator is 10mA R3 must ensure that the current does not exceed this limit.
Choose R3 = 3.3k½
The charge current for CTis
= 1.90mA
C1 must charge and discharge fully during each cycle of the input signal. Time for one cycle at maximum frequen­cy is 2.85ms. To ensure that CTis discharged, assume that the (R3 + R4) CTtime constant is less than 10% of the minimum input frequency pulse width.
T = 285µs
Choose R4 = 1k½.
Charge time: T = R3 ´ C
T
= 3.3k½ ´ 0.0033µF = 10.9µs
Discharge time:T = (R3 + R4)C
T
= 4.3k½ ´ 0.0033µF = 14.2µs
3. Determine C4
C4 is selected to satisfy both the maximum allowable rip­ple voltage and response time of the meter movement.
C4 =
With C4 = 0.47µF, the F/V ripple voltage is 44mV. Figure 7 shows how the CS4121 and the CS-8441 are used
to produce a Speedometer and Odometer circuit.
CT(V
REG
Ð 0.7V)
V
RIPPLE(MAX)
V
REG
Ð 0.7V
3.3k½
270¡
970 ´ 350Hz ´ 0.0033µF
C
T(VREG
Ð 0.7V)
C4
Circuit Description and Application Notes
Page 6
6
CS4121
Circuit Description and Application Notes: continued
+
Ð
R
T
C4
CPÐ
+
Ð
F/V
OUT
F to V
2.0V
Q2
Q1
Q3
0.25V
CP+
R4C
T
VC(t)
R3
V
REG
SQ
OUT
Q
SQUARE
2.0V
FREQ
IN
Figure 5A: Partial Schematic of Input and Charge Pump
Figure 5B: Timing Diagram of FREQINand I
CP
T
PW T-PW
FREQ
IN
SQ
OUT
I
CP+
V
CP+
0
0
0
V
CC
V
REG
Page 7
7
Speedometer/Odometer or Tachometer Application
R1 - 3.9, 500mW R2 - 10k½ R3 - 3k½ R4 - 1k½ R
T
- Trim Resistor +/- 20 PPM/¡C 243k½
C1 - 0.1µF C3 - 0.1µF C4 - 0.47µF
C
T
- 0.0033µF, +/- 30 PPM/¡C
D1 - 1A, 600 PIV D2 - 50V, 500mW Zener
Note 1: For 58% Speed Input T
MAX
² 5/f
MAX
where
T
MAX
= CT(R3+R4)
f
MAX
= maximum speed input frequency
Note 1: The product of C
T
and RThave a direct effect on
gain and therefore directly affect temperature compensation
Note 2: C
T
Range; 20pF to .2µF
Note 3: R
T
Range; 100k½ to 500k½
Note 4: The IC must be protected from transients above 60V and
reverse battery conditions
Note 5: Additional filtering on FREQ
IN
lead may be required
1
CP+
2
3
4
5
6
7
8
SQ
OUT
FREQ
IN
Gnd
Gnd
COS+
COS-
V
CC
16
15
14
13
12
11
10
9
CP-
F/V
OUT
V
REG
Gnd
Gnd
SINE+
SINE-
BIAS
CS4121
C
T
R3
C3
C1D2
R1D1
+
C4
R
T
COSINE SINE
Air Core
Gauge
200W
Speedometer
Gnd
Battery
Speedo
Input
R2
R4
1
CS8441
C2
Air Core
Stepper Motor
200W
Odometer
CP+
1
CP+
2
3
4
5
6
7
8
SQ
OUT
FREQ
IN
Gnd
Gnd
COS+
COS-
V
CC
16
15
14
13
12
11
10
9
CP-
F/V
OUT
V
REG
Gnd
Gnd
SINE+
SINE-
BIAS
CS4121
C
T
R3
C3
C1D2
R1D1
+
C4
R
T
COSINE SINE
Air Core
Gauge
200W
Speedometer
Gnd
Battery
Speedo
Input
R2
R4
CP+
Figure 6
Figure 7
CS4121
Page 8
D
Lead Count Metric English
Max Min Max Min 16L PDIP* 19.69 18.67 .775 .735 20L SOIC* 13.00 12.60 .512 .496
8
Ordering Information
Rev. 12/4/96
Part Number Description
CS4121ENF16 16L PDIP (internally fused leads) CS4121EDWF20 20L SOIC (internally fused leads) CS4121EDWFR20 20L SOIC (internally fused leads)
(tape & reel)
Thermal Data 16L PDIP* 20L SOIC*
R
QJC
typ 15 9 ûC/W
R
QJA
typ 50 55 ûC/W
Package Specification
PACKAGE DIMENSIONS IN mm (INCHES)
PACKAGE THERMAL DATA
CS4121
© 1999 Cherry Semiconductor Corporation
Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.
1.27 (.050) BSC
7.60 (.299)
7.40 (.291)
10.65 (.419)
10.00 (.394)
D
0.32 (.013)
0.23 (.009)
1.27 (.050)
0.40 (.016)
REF: JEDEC MS-013
2.49 (.098)
2.24 (.088)
0.51 (.020)
0.33 (.013)
2.65 (.104)
2.35 (.093)
0.30 (.012)
0.10 (.004)
Surface Mount Wide Body (DW); 300 mil wide
Plastic DIP (N); 300 mil wide
0.39 (.015) MIN.
2.54 (.100) BSC
1.77 (.070)
1.14 (.045)
D
Some 8 and 16 lead packages may have 1/2 lead at the end of the package. All specs are the same.
.203 (.008)
.356 (.014)
REF: JEDEC MS-001
3.68 (.145)
2.92 (.115)
8.26 (.325)
7.62 (.300)
7.11 (.280)
6.10 (.240)
.356 (.014)
.558 (.022)
*Internally Fused Leads
Loading...