Page 1
CPV363MM
Next Data Sheet Index
Previous Datasheet
Short Circuit Rated Fast IGBT IGBT SIP MODULE
Features
• Short Circuit Rated - 10µs @ 125°C, VGE = 15V •
Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
Q1
3
• Optimized for medium operating frequency (1 to
10kHz) See Fig. 1 for Current vs. Frequency curve
Q2
6
Product Summary
Output Current in a Typical 5.0 kHz Motor Drive
7.65 A
per phase (2.4 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
RMS
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS
(Insulated Metal Substrate) Power Modules. These modules are more efficient
than comparable bipolar transistor modules, while at the same time having the
simpler gate-drive requirements of the familiar power MOSFET. This superior
technology has now been coupled to a state of the art materials system that
maximizes power throughput with low thermal resistance. This package is highly
suited to power applications and where space is at a premium.
D1 D3 D5
D2 D4 D6
7 13 19
1
Q3
9
Q4
12
Q5
15
10 16 4
Q6
18
These new short circuit rated devices are especially suited for motor control and
other totem-pole applications requiring short circuit withstand capability.
IMS-2
Absolute Maximum Ratings
Parameter Max. Units
V
CES
IC @ TC = 25°C Continuous Collector Current, each IGBT 13
IC @ TC = 100°C Continuous Collector Current, each IGBT 7.0
I
CM
I
LM
IF @ TC = 100°C Diode Continuous Forward Current 6.1
I
FM
t
sc
V
GE
V
ISOL
PD @ TC = 25°C Maximum Power Dissipation, each IGBT 36 W
PD @ TC = 100°C Maximum Power Dissipation, each IGBT 14
T
J
T
STG
Collector-to-Emitter Voltage 600 V
Pulsed Collector Current 26 A
Clamped Inductive Load Current 26
Diode Maximum Forward Current 26
Short Circuit Withstand Time 10 µs
Gate-to-Emitter Voltage ± 20 V
Isolation Voltage, any terminal to case, 1 min. 2500 V
Operating Junction and -40 to +150
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting torque, 6-32 or M3 screw. 5-7 lbf•in (0.55 - 0.8 N•m)
Thermal Resistance
Parameter Typ. Max. Units
R
(IGBT) Junction-to-Case, each IGBT, one IGBT in conduction — 3.5
θJC
R
(DIODE) Junction-to-Case, each diode, one diode in conduction — 5.5 °C/W
θJC
R
(MODULE) Case-to-Sink, flat, greased surface 0.1 —
θCS
Wt Weight of module 20 (0.7) — g (oz)
RMS
C-417
Revision 2
Page 2
CPV363MM
Next Data Sheet Index
Previous Datasheet
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
∆V
(BR)CES
V
CE(on)
V
GE(th)
∆ V
GE(th)
g
fe
I
CES
V
FM
I
GES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
Q
g
Q
ge
Q
gc
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
t
sc
t
d(on)
t
r
t
d(off)
t
f
E
ts
C
ies
C
oes
C
res
t
rr
I
rr
Q
rr
di
(rec)M
Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 250µA
/∆ T
Temperature Coeff. of Breakdown Voltage — 0.68 — V/°C VGE = 0V, IC = 1.0mA
J
Collector-to-Emitter Saturation Voltage — 1.6 2.4 IC = 7.0A VGE = 15V
— 2.0 — V IC = 13A See Fig. 2, 5
— 1.7 — IC = 7.0A, TJ = 150°C
Gate Threshold Voltage 3.0 — 5.5 VCE = VGE, IC = 250µA
/∆ TJTemperature Coeff. of Threshold Voltage — -13 — mV/°C VCE = VGE, IC = 250µA
Forward Transconductance 3.2 6.3 — S VCE = 100V, IC = 14A
Zero Gate Voltage Collector Current — — 250 µA VGE = 0V, VCE = 600V
— — 2500 VGE = 0V, VCE = 600V, TJ = 150°C
Diode Forward Voltage Drop — 1.4 1.7 V IC = 12A See Fig. 13
— 1.3 1.6 IC = 12A, TJ = 150°C
Gate-to-Emitter Leakage Current — — ±500 nA VGE = ±20V
Total Gate Charge (turn-on) — 32 49 IC = 14A
Gate - Emitter Charge (turn-on) — 6.7 10 nC VCC = 400V
Gate - Collector Charge (turn-on) — 13 21 See Fig. 8
Turn-On Delay Time — 64 — TJ = 25°C
Rise Time — 29 — ns IC = 7.0A, VCC = 480V
Turn-Off Delay Time — 340 500 VGE = 15V, RG = 23Ω
Fall Time — 240 350 Energy losses include "tail" and
Turn-On Switching Loss — 0.28 — diode reverse recovery.
Turn-Off Switching Loss — 0.70 — mJ See Fig. 9, 10, 11, 18
Total Switching Loss — 0.98 1.5
Short Circuit Withstand Time 10 — — µs VCC = 360V, TJ = 125°C
VGE = 15V, RG = 23Ω , V
Turn-On Delay Time — 62 — TJ = 150°C, See Fig. 9, 10, 11, 18
Rise Time — 28 — ns IC = 7.0A, VCC = 480V
Turn-Off Delay Time — 620 — VGE = 15V, RG = 23Ω
Fall Time — 420 — Energy losses include "tail" and
Total Switching Loss — 1.8 — mJ diode reverse recovery.
Input Capacitance — 750 — VGE = 0V
Output Capacitance — 100 — pF VCC = 30V See Fig. 7
Reverse Transfer Capacitance — 9.3 — ƒ = 1.0MHz
Diode Reverse Recovery Time — 42 60 ns TJ = 25°C See Fig.
— 80 120 TJ = 125°C 14 IF = 12A
Diode Peak Reverse Recovery Current — 3.5 6.0 A TJ = 25°C See Fig.
— 5.6 10 TJ = 125°C 15 VR = 200V
Diode Reverse Recovery Charge — 80 180 nC TJ = 25°C See Fig.
— 220 600 TJ = 125°C 16 di/dt = 200A/µs
/dt Diode Peak Rate of Fall of Recovery — 180 — A/µs TJ = 25°C See Fig.
During t
b
— 120 — TJ = 125°C 17
CPK
< 500V
Notes:
Repetitive rating; VGE=20V, pulse width limited
by max. junction temperature. ( See fig. 20)
VCC=80%(V
), VGE=20V, L=10µH,
CES
RG= 23Ω , ( See fig. 19 )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-418
Pulse width 5.0µs,
single shot.
Page 3
CPV363MM
Next Data Sheet Index
Previous Datasheet
10
8
6
4
Load Current (A)
T = 90°C
C
T = 125°C
2
J
Power Factor = 0.8
Modulation Depth = 0.8
V = 60% of Rated Voltage
CC
0
0.1 1 10 100
f, Frequency (kHz)
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
100
100
3.1
1.2
0
2.5
1.9
0.6
Total Output Power (kW)
10
1
C
I , Collector-to-Emitter Current (A)
0.1
0.1 1 10
V , Collector-to-Emitter Voltage (V)
CE
Fig. 2 - Typical Output Characteristics
T = 25°C
J
T = 150°C
J
V = 15V
GE
20µs PULSE WIDTH
C-419
T = 150°C
J
10
C
I , Collector-to-Emitter Current (A)
1
5 10 15 20
V , Gate-to-Emitter Voltage (V)
GE
T = 25°C
J
V = 100V
CC
5µs PULSE WIDTH
Fig. 3 - Typical Transfer Characteristics
Page 4
CPV363MM
t , Rectangular Pulse Duration (sec)
1
thJC
Next Data Sheet Index
Previous Datasheet
15
12
9
6
3
V = 15V
GE
Maximum DC Collector Current (A)
0
25 50 75 100 125 150
T , Case Temperature (°C)
C
Fig. 4 - Maximum Collector Current vs.
Case Temperature
10
3.0
V = 15V
GE
80µs PULSE WIDTH
2.6
2.2
1.8
1.4
CE
V , Collector-to-Emitter Voltage (V)
1.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Case Temperature (°C)
C
I = 14A
C
I = 7.0A
C
I = 3.5A
C
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
D = 0.50
1
0.1
0.01
0.0 0 001 0.0001 0.0 0 1 0.01 0.1 1 10
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
0.2 0
0.1 0
0.05
0.0 2
0.0 1
S INGLE PULS E
(THERM AL RESPONSE)
C-420
P
DM
Note s :
1. Duty facto r D = t / t
2. Peak T = P x Z + T
J
DM
2
1
thJC
C
t
1
t
2
Page 5
CPV363MM
Next Data Sheet Index
Previous Datasheet
1400
1200
1000
800
600
C, Capacitance (pF)
400
200
0
1 10 100
V = 0V, f = 1MHz
GE
C = C + C , C SHORTED
ies ge gc ce
C = C
res gc
C = C + C
oes ce gc
C
ies
C
oes
C
res
V , Collector-to-Emitter Voltage (V)
CE
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1.01
V = 480V
CC
V = 15V
GE
1.00
T = 25°C
C
I = 7.0A
C
0.99
20
V = 400V
CE
I = 16A
C
16
12
8
4
GE
V , Gate-to-Emitter Voltage (V)
0
0 10 20 30 40
Q , Total Gate Charge (nC)
g
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
10
R = 23
V = 15V
V = 480V
G
GE
CC
Ω
I = 14A
C
0.98
0.97
0.96
0.95
0.94
Total Switching Losses (mJ)
0.93
0.92
0 10 20 30 40 50 60
Fig. 9 - Typical Switching Losses vs. Gate
R , Gate Resistance (Ω)
G
Resistance
A
C-421
I = 7.0A
C
1
I = 3.5A
C
Total Switching Losses (mJ)
0.1
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Case Temperature (°C)
C
Fig. 10 - Typical Switching Losses vs.
Case Temperature
Page 6
CPV363MM
Next Data Sheet Index
Previous Datasheet
4.0
R = 23Ω
G
T = 150°C
C
V = 480V
CC
V = 15V
GE
3.0
2.0
1.0
Total Switching Losses (mJ)
0.0
0 3 6 9 12 15
I , Collector-to-Emitter Current (A)
C
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
100
V = 20V
GE
T = 125°C
J
SAFE OPERATING AREA
10
C
I , Collector-to-Emitter Current (A)
1
1 10 100
V , Collector-to-Emitter Voltage (V)
CE
Fig. 12 - Turn-Off SOA
F
T = 150°C
J
T = 125°C
10
J
T = 25°C
J
Instantaneous Forward Current - I (A)
1
0.4 0.8 1.2 1.6 2.0 2.4
Forward Voltage Drop - V (V)
FM
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-422
Page 7
CPV363MM
Next Data Sheet Index
Previous Datasheet
160
V = 200V
R
T = 125°C
J
T = 25°C
J
120
I = 24A
F
I = 12A
F
80
rr
t - (ns)
40
0
100 1000
di /dt - (A/µs)
f
I = 6.0A
F
Fig. 14 - Typical Reverse Recovery vs. dif/dt
600
V = 200V
R
T = 125°C
J
T = 25°C
J
100
V = 200V
R
T = 125°C
J
T = 25°C
J
I = 24A
F
I = 12A
10
IRRM
I - (A)
I = 6.0A
F
1
100 1000
F
di /dt - (A/µs)
f
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
V = 200V
R
T = 125°C
J
T = 25°C
J
400
RR
Q - (nC)
200
0
100 1000
Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di
I = 6.0A
F
I = 12A
F
di /dt - (A/µs)
f
I = 24A
F
C-423
1000
100
di(rec)M/dt - (A/µs)
10
100 1000
I = 6.0A
F
I = 24A
F
di /dt - (A/µs)
f
(rec)M
I = 12A
F
/dt vs. dif/dt
Page 8
CPV363MM
Next Data Sheet Index
Previous Datasheet
Same typ e
device as
D.U.T .
90% Vge
+Vge
Vce
80%
of Vce
430µF
D.U.T.
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, E
off(diode)
, trr, Qrr, Irr, t
d(on)
, tr, t
d(off)
, t
f
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
GATE VOLTAGE D.U.T.
Vcc
10% +Vg
10% Ic
td(on)
Vce
tr
t1
90% Ic
5% Vce
+Vg
DUT VOLTAGE
AND CURRENT
Ipk
Ic
t2
Vce ie dt
Eon =
∫
t1
t2
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, t
d(on)
, t
r
Refer to Section D for the following:
Appendix D: Section D - page D-6
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
10% Vce
Ic
td(off)
t1
E
Ic
tx
10% Vcc
Vpk
DIODE REVERSE
RECOVERY ENERGY
Irr
, t
off
d(off)
t3
90% Ic
Ic
5% Ic
tf
t1+5µS
Vce ic dt
Eoff =
∫
t1
t2
, t
f
trr
10% Irr
DIODE RECOVERY
WAVEFORMS
Erec =
t4
Qrr =
∫
∫
t4
Vd id dt
t3
trr
id dt
tx
Vcc
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining E
, trr, Qrr, I
rec
rr
Package Outline 5 - IMS-2 Package (13 pins) Section D - page D-14
C-424