Datasheet CPU165MF Datasheet (International Rectifier)

Page 1
PD - 5.028
6,7
Next Data SheetIndex
Previous Datasheet
To Order
CPU165MF
IGBT SIP MODULE
Features
Fast IGBT
1,2
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
• Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve
Product Summary
Q1
4 5
Q2
9
D1
D2
Output Current in a Typical 5.0 kHz Motor Drive
14 A
with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
RMS
11,12
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.
IMS-1
Absolute Maximum Ratings
Parameter Max. Units
V
CES
IC @ TC = 25°C Continuous Collector Current, each IGBT 42 IC @ TC = 100°C Continuous Collector Current, each IGBT 23 I
CM
I
LM
IF @ TC = 100°C Diode Continuous Forward Current 15 I
FM
V
GE
V
ISOL
PD @ TC = 25°C Maximum Power Dissipation, each IGBT 83 W PD @ TC = 100°C Maximum Power Dissipation, each IGBT 33 T
J
T
STG
Collector-to-Emitter Voltage 600 V
Pulsed Collector Current 120 A Clamped Inductive Load Current 120
Diode Maximum Forward Current 120 Gate-to-Emitter Voltage ±20 V Isolation Voltage, any terminal to case, 1 min. 2500 V
Operating Junction and -40 to +150 Storage Temperature Range °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting torque, 6-32 or M3 screw. 5-7 lbf•in (0.55-0.8 N•m)
RMS
Thermal Resistance
R
(IGBT) Junction-to-Case, each IGBT, one IGBT in conduction 1.5
θJC
R
(DIODE) Junction-to-Case, each diode, one diode in conduction 2.0 °C/W
R
(MODULE) Case-to-Sink, flat, greased surface 0.1
θCS
Wt Weight of module 20 (0.7) g (oz)
Parameter Typ. Max. Units
Revision 1
C-133
Page 2
CPU165MF
Next Data SheetIndex
Previous Datasheet
To Order
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
V
(BR)CES
V
CE(on)
V
GE(th)
V
GE(th)
g
fe
I
CES
V
FM
I
GES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
Q
g
Q
ge
Q
gc
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
t
d(on)
t
r
t
d(off)
t
f
E
ts
C
ies
C
oes
C
res
t
rr
I
rr
Q
rr
di
(rec)M
Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA
/T
Temp. Coeff. of Breakdown Voltage 0.62 V/°C VGE = 0V, IC = 1.0mA
J
Collector-to-Emitter Saturation Voltage 1.3 1.5 IC = 23A VGE = 15V
1.7 V IC = 42A See Fig. 2, 5 — 1.4 IC = 23A, TJ = 150°C
Gate Threshold Voltage 3.0 5.5 VCE = VGE, IC = 250µA
/TJTemp. Coeff. of Threshold Voltage -14 — mV/°C VCE = VGE, IC = 250µA
Forward Transconductance 21 30 S VCE = 100V, IC = 39A Zero Gate Voltage Collector Current 250 µA VGE = 0V, VCE = 600V
— 6500 VGE = 0V, VCE = 600V, TJ = 150°C
Diode Forward Voltage Drop 1.3 1.7 V IC = 25A See Fig. 13
1.2 1.5 IC = 25A, TJ = 150°C
Gate-to-Emitter Leakage Current ±500 nA VGE = ±20V
Total Gate Charge (turn-on) 84 100 IC = 39A Gate - Emitter Charge (turn-on) 20 25 nC VCC = 400V Gate - Collector Charge (turn-on) 51 67 See Fig. 8 Turn-On Delay Time 24 TJ = 25°C Rise Time 50 ns IC = 39A, VCC = 480V Turn-Off Delay Time 270 540 VGE = 15V, RG = 5.0 Fall Time 210 360 Energy losses include "tail" and Turn-On Switching Loss 1.1 diode reverse recovery Turn-Off Switching Loss 2.1 mJ See Fig. 9, 10, 11, 18 Total Switching Loss 3.2 5.4 Turn-On Delay Time 25 TJ = 150°C, See Fig. 9, 10, 11, 18 Rise Time 49 ns IC = 39A, VCC = 480V Turn-Off Delay Time 440 VGE = 15V, RG = 5.0 Fall Time 410 Energy losses include "tail" and Total Switching Loss 5.8 mJ diode reverse recovery Input Capacitance — 3000 — VGE = 0V Output Capacitance 340 pF VCC = 30V See Fig. 7 Reverse Transfer Capacitance 40 ƒ = 1.0MHz Diode Reverse Recovery Time 50 75 ns TJ = 25°C See Fig.
105 160 TJ = 125°C 14 IF = 25A
Diode Peak Reverse Recovery Current 4.5 10 A TJ = 25°C See Fig.
8.0 15 TJ = 125°C 15 VR = 200V
Diode Reverse Recovery Charge 112 375 nC TJ = 25°C See Fig.
420 1200 TJ = 125°C 16 di/dt = 200A/µs
/dt Diode Peak Rate of Fall of Recovery 250 A/µs TJ = 25°C See Fig.
During t
b
160 TJ = 125°C 17
Notes:
Repetitive rating; VGE=20V, pulse width
limited by max. junction temperature. ( See fig. 20 )
VCC=80%(V
), VGE=20V, L=10µH,
CES
RG= 5.0, ( See fig. 19 )
Pulse width 80µs; duty factor 0.1%.
C-134
Pulse width 5.0µs,
single shot.
Page 3
CPU165MF
f, Frequency (kH z)
Load Current (A)
Total Output Power (kW )
CE
C
I , Collector-to-Emitter Current (A)
, Collector-to-Em
er Voltage (V)
C
I , Collector-to-Emitter Current (A)
,
GE
To Order
Next Data SheetIndex
Previous Datasheet
30
20
10
T = 90°C
C
T = 125°C
J
Power Factor = 0.8 Modulation Depth = 0.8 V = 60% of Rated Voltage
CC
0
0.1 1 10 100
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
1000
T = 25°C
J
1000
T = 2 5°C
J
9.3
6.2
3.1
0
T = 1 50°C
J
S
100
10
1
0.1 1 1 0
V
Fig. 2 - Typical Output Characteristics
T = 1 50°C
J
V = 15 V
G E
20µs P UL SE W IDTH
itt
C-135
100
10
V = 100V
CC
1
5 10 15 20
V
Gate-to-Em itter Voltage (V)
5µs PULS E W IDTH
Fig. 3 - Typical Transfer Characteristics
Page 4
CPU165MF
Maximum DC Collector Current (A)
, Case Temperature (°C)
C
, Case Temperature (°C)
C
CE
V , Collector-to-Emitter Voltage (V)
t , Recta ngula r Pulse Duratio n (se c)
1
thJC
Thermal Response (Z )
To Order
Next Data SheetIndex
Previous Datasheet
70
60
50
40
30
20
10
0
25 50 75 100 12 5 150
V = 15V
G E
T
Fig. 4 - Maximum Collector Current vs.
Case Temperature
1
3.0
V = 1 5V
G E
80 µs PUL SE WIDTH
I = 78A
2.5
2.0
1.5
1.0
-6 0 -4 0 -2 0 0 20 40 60 80 100 120 140 160
C
I = 39A
C
I = 20A
C
T
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
D = 0.50
0.1
0.01
0.0 0 0 0 1 0.00 0 1 0.001 0.01 0.1 1 1 0
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
0.2 0
0.1 0
0.05
0.0 2
0.0 1
SINGLE PULSE (THERM AL RESPO N SE)
C-136
P
DM
t
1
Note s:
1. Duty fac tor D = t / t
2. Peak T = P x Z + T
J
DM
2
1
th JC
C
t
2
Page 5
CPU165MF
CE
C, Capacitance (pF)
, Collector-to-Em
er Voltag e (V)
GE
V , Gate-to-Emitter Voltage (V)
, Total Gate Charge (nC)
g
Total Switching Losses (m J)
W
, Case Temperature (°C)
Total Switching Losses (m J)
To Order
Next Data SheetIndex
Previous Datasheet
7000
6000
5000
4000
3000
2000
1000
0
1 10 100
V = 0V, f = 1MHz
GE
C = C + C , C SHORTED
ies ge gc ce
C = C
res gc
C = C + C
oes ce gc
C
ies
C
oes
C
res
V
itt
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
7.5
V = 4 80V
CC
V = 15V
G E
T = 25°C
C
I = 39A
C
7.0
20
V = 4 80V
CE
I = 39A
C
16
12
8
4
0
0 30 60 90 120
Q
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
R = 2.0
G
V = 1 5V
GE
V = 48 0V
CC
I = 7 8A
C
6.5
6.0
5.5 0 1 0 20 30 40 50
Fig. 9 - Typical Switching Losses vs. Gate
R , Gate Resistance ( )
G
Resistance
I = 39A
10
1
-6 0 -40 -20 0 20 4 0 60 80 100 120 140 1 60
T
C
C
I = 20A
C
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-137
Page 6
CPU165MF
Total Switching Losses (m J)
, Collector-to-Em
er Current (A)
C
CE
,
I , Collector-to-E m itter C urren t (A)
To Order
Next Data SheetIndex
Previous Datasheet
25
R = 2 .0
G
T = 150°C
C
V = 480V
CC
20
V = 15 V
GE
15
10
5
0
0 20 40 60 80
I
C
itt
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
1000
V = 20V
G E
GE
T = 125°C
J
100
10
1
1 10 100 1000
V
S AFE OP ERATING ARE A
C olle ctor-to-E m itter V oltage (V )
Fig. 12 - Turn-Off SOA
F
T = 150°C
J
T = 125°C
J
10
T = 25°C
J
Instantaneous Forward Current - I (A)
1
0.6 1.0 1.4 1.8 2.2 2.6
Forward Voltage Drop - V (V)
FM
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-138
Page 7
CPU165MF
To Order
Next Data SheetIndex
Previous Datasheet
140
V = 200V
R
T = 125°C
J
T = 25°C
120
100
I = 50A
80
rr
t - (ns)
F
I = 25A
F
I = 10A
F
60
40
20
100 1000
di /dt - (A/µs)
f
J
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1500
V = 200V
R
T = 125°C
J
T = 25°C
J
1200
100
V = 200V
R
T = 125°C
J
T = 25°C
J
I = 50A
F
I = 25A
F
10
IRRM
I - (A)
1
100 1000
di /dt - (A/µs)
f
I = 10A
F
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
V = 200V
R
T = 125°C
J
T = 25°C
J
900
RR
Q - (nC)
600
I = 25A
F
300
0
100 1000
Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di
I = 50A
F
di /dt - ( A/µs)
I = 10A
1000
F
di(rec)M/dt - (A/µs)
I = 25A
F
I = 10A
F
100
f
100 1000
I = 50A
F
di /dt - ( A/µs)
f
/dt vs. dif/dt
(rec)M
C-139
Page 8
CPU165MF
To Order
Next Data SheetIndex
Previous Datasheet
90% Vge
+Vge
Same type device as D.U.T.
80% of Vce
430µF
D.U.T.
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, E
10% +Vg
10% Ic
Vcc
td(on)
off(diode)
Vce
t1
, trr, Qrr, Irr, t
90% Ic
5% Vce
tr
, tr, t
d(on)
GATE VOLTAGE D.U.T.
+Vg
d(off)
DUT VOLTAGE AND CURRENT
Ipk
Eon =
t1
t2
Vce
90% Ic
Ic
5% Ic
tf
Eoff =
t2
, t
10% Vce
Ic
td(off)
f
t1
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
E
, t
, t
off
d(off)
f
Ic
t2
Vce ie dt
Ic
tx
10% Vcc
Vpk
DIODE REVERSE RECOVERY ENERG Y
Irr
trr
t3
Qrr =
10% Irr
DIODE RECOVERY WAVEFORMS
Erec =
t4
t1
Vd id dt
t3
t1+5µS
Vce ic dt
trr
id dt
tx
t4
Vcc
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Refer to Section D for the following: Appendix D: Section D - page D-6
Package Outline 4 - IMS-1 Package (10 pins) Section D - page D-13
Defining Eon, t
Fig. 18e - Macro Waveforms for Test Circuit Fig. 18a Fig. 19 - Clamped Inductive Load Test Circuit Fig. 20 - Pulsed Collector Current Test Circuit
d(on)
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
, t
r
Defining E
, trr, Qrr, I
rec
rr
C-140
Loading...