Datasheet CMF10120D Datasheet (Cree)

Page 1
CMF10120D-Silicon Carbide Power MOSFET
Z-FeT
TM
MOSFET
N-Channel Enhancement Mode
VDS = 1200 V
I
R
= 24 A
D(MAX)
= 160m
DS(on)
Package
• High Speed Switching with Low Capacitances
• High Blocking Voltage with Low R
DS(on)
• Easy to Parallel and Simple to Drive
• Avalanche Ruggedness
• Resistant to Latch-Up
• Halogen Free, RoHS Compliant
Benets
TO-247-3
• Higher System Efciency
• Reduced Cooling Requirements
• Increased System Switching Frequency
Applications
• Solar Inverters
• High Voltage DC/DC Converters
• Motor Drives
• Switch Mode Power Supplies
Maximum Ratings (T
Symbol Parameter Value Unit Test Conditions Note
= 25˚C unless otherwise specied)
C
Part Number Package
CMF10120D TO-247-3
I
D
I
Dpulse
E
AS
E
AR
I
AR
V
GS
P
tot
TJ , T
T
M
Continuous Drain Current
Pulsed Drain Current 49 A
Single Pulse Avalanche Energy 1.2 J
Repetitive Avalanche Energy 0.8 J
Repetitive Avalanche Current 10 A
Gate Source Voltage -5/+25 V
Power Dissipation 134 W TC=25˚C Fig. 9
Operating Junction and Storage Temperature
stg
Solder Temperature 260 ˚C 1.6mm (0.063”) from case for 10s
L
Mounting Torque
d
24
13
-55 to +135
1
8.8
lbf-in
VGS@20V, TC = 25˚C
A
VGS@20V, TC = 100˚C
Pulse width tP limited by T
TC = 25˚C
ID = 10A, VDD = 50 V, L = 20 mH
tAR limited by T
ID = 10A, VDD = 50 V, L = 15 mH
tAR limited by T
˚C
Nm
M3 or 6-32 screw
jmax
jmax
jmax
Fig. 10
Fig. 15
1 CMF10120D Rev. A
Page 2
Electrical Characteristics (T
= 25˚C unless otherwise specied)
C
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V
(BR)DSS
V
I
I
R
C
C
E
GS(th)
DSS
GSS
DS(on)
g
C
Drain-Source Breakdown Voltage 1200 V V
Gate Threshold Voltage
Zero Gate Voltage Drain Current
2.4 3.5
3.1 4.1 VDS = VGS, ID = 1.0 mA
1.8
2.3
0.5 50
5 150 VDS = 1200V, VGS = 0V, TJ = 135ºC
V
V
V
μA
= 0V, ID = 50μA
GS
VDS = VGS, ID = 0.5 mA
VDS = VGS, ID = 0.5 mA, TJ = 135ºC
VDS = VGS, ID = 1.0 mA, TJ = 135ºC
VDS = 1200V, VGS = 0V
Gate-Source Leakage Current 0.25 μA VGS = 20V, VDS = 0V
Drain-Source On-State Resistance
Transconductance
fs
Input Capacitance 928
iss
Output Capacitance 63
oss
Reverse Transfer Capacitance 7.5
rss
C
oss
Stored Energy 32 μJ Fig 14
oss
160 200
190 240 VGS = 20V, ID = 10A, TJ = 135ºC
4.2
3.9 VDS= 20V, IDS= 10A, TJ = 135ºC
VGS = 20V, ID = 10A
m
VDS= 20V, IDS= 10A
S
VGS = 0V
pF
VDS = 800V
f = 1MHz
AC
V
= 25mV
Fig. 11
Fig. 3
Fig. 6
Fig. 13
t
d(on)v
t
d(off)V
R
t
t
Turn-On Delay Time 8.8
Fall Time 21
fv
Turn-Off Delay Time 38
Rise Time 34
rV
Internal Gate Resistance 13.6 Ω f = 1MHz, V
G
ns
VDD = 800V, VGS = 0/20V
ID = 10A
R
= 2.5Ω, RL = 40Ω
G(ext)
Timing relative to V
AC
= 25mV
DS
g. 17
Built-in SiC Body Diode Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
V
t
I
rrm
Diode Forward Voltage
SD
Reverse Recovery Time 138 ns
rr
Reverse Recovery Charge 94 nC
rr
Peak Reverse Recovery Current 1.57 A
3.5
3.1 VGS = -2V, I
VGS = -5V, I
V
VGS = -5V, I VR = 800V, diF/dt= 100A/μs
=
5A, TJ = 25ºC
F
=
5A, TJ = 25ºC
F
=
10A, TJ = 25ºC
F
Fig. 22Q
Thermal Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
R
θJC
R
θCS
R
θJA
Thermal Resistance from Junction to Case 0.66 0.82
Case to Sink, w/ Thermal Compound 0.25
Thermal Resistance From Junction to Ambient 40
K/W Fig. 7
Gate Charge Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
Q
Q
Q
2 CMF10120D Rev. A
Gate to Source Charge 11.8
gs
Gate to Drain Charge 21.5
gd
Gate Charge Total 47.1
g
VDD = 800V, VGS = 0/20V
nC
ID =10A Per JEDEC24 pg 27
Fig.12
Page 3
0
50
100
150
200
250
300
350
0 5 10 15 20 25 30 35 40 45 50
R
DS(on)
(mΩ)
ID(A)
VGS= 20 V
135oC
25
o
C
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0 25 50 75 100 125 150
Normalized R
DS(on)
TJ(oC)
VGS= 20 V
0
5
10
15
20
25
30
35
40
45
50
0 1 2 3 4 5 6 7 8 9 10 11 12
I
D
(A)
VDS(V)
0
5
10
15
20
25
30
35
40
45
50
0 1 2 3 4 5 6 7 8 9 10 11 12
I
D
(A)
VDS(V)
Typical Performance
0
100
200
300
400
500
600
700
800
10 12 14 16 18 20
R
DS(on)
(mΩ)
VGS(V)
ID= 10 A
T
J
= 25oC
T
J
= 135oC
0
5
10
15
20
25
30
0 2 4 6 8 10 12 14 16 18 20
I
D
(A)
VGS(V)
25oC
135oC
VD= 20 V
Figure 1. Typical Output Characteristics TJ = 25ºC
Figure 3.
Normalized On-Resistance vs. Temperature
Figure 2. Typical Output Characteristics TJ = 135ºC
Figure 4. On-Resistance vs. Drain Current
3 CMF10120D Rev. A
Figure 5. On-Resistance vs. Gate Voltage
Figure 6. Typical Transfer Characteristics
Page 4
Typical Performance
100E-6
1E-3
10E-3
100E-3
1
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Z
thJC
(
o
C/W)
tp(s)
0.5
0.3
0.1
0.05
0.02
0.01
SinglePulse
DC:
0.1
1
10
100
1 10 100 1000
I
D
(A)
VDS(V)
Limited by R
DS(on)
DC
tp≤ 1 µs
tp= 10 µs
tp= 100 µs
tp= 1 ms
tp= 10 ms
0
20
40
60
80
100
120
140
160
0 25 50 75 100 125 150
P
D
(W)
TC(oC)
0
5
10
15
20
25
0 25 50 75 100 125 150
I
D
(A)
TC(oC)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
-75 -50 -25 0 25 50 75 100 125 150
V
GS(th)
(V)
TJ(oC)
ID= 0.5 mA
ID= 1 mA
-5
0
5
10
15
20
25
0 10 20 30 40 50
V
GS
(V)
Gate Charge (nC)
ID= 10 A VDD= 800 V
Figure 7. Transient Thermal Impedance (Junction - Case)
with Duty Cycle
Figure 9. Power Dissipation Derating Curve
Figure 8. Safe Operating Area
Figure 10. Continuous Current Derating Curve
Figure 11. Gate Threshold Voltage vs.
4 CMF10120D Rev. A
Temperature
Figure 12. Typical Gate Charge Characteristics
(25°C)
Page 5
Typical Performance
1
10
100
1000
10000
0 20 40 60 80 100 120 140 160 180 200
Capacitance (pF)
VDS(V)
C
iss
C
oss
C
rss
1
10
100
1000
10000
0 100 200 300 400 500 600 700 800
Capacitance (pF)
VDS(V)
C
iss
C
oss
C
rss
0
5
10
15
20
25
30
35
40
0 100 200 300 400 500 600 700 800
E
oss
(µJ)
VDS(V)
0
500
1000
1500
2000
2500
0
1
2
3
4
5
6
7
8
9
10
11
0 0.001 0.002 0.003 0.004 0.005 0.006
V
DS
(V)
I
D
(A)
Time (sec)
I
D
V
DS
VGS= 0/20V V
DD
= 50V L = 20 mH E
AS
= 1.2 J
0
10
20
30
40
50
60
70
80
0 5 10 15 20 25
Time (nsec)
Externa l Gate Res istor ( Ω)
t
D(on)v
t
fv
t
rv
t
D(off)v
VGS= 0/20V V
DD
= 400V
R
L
= 40
I
D
= 10 A
T
A
= 25oC
0
10
20
30
40
50
60
70
80
90
0 5 10 15 20 25
Time (nsec)
Externa l Gate Res istor ( Ω)
t
D(on)v
t
fv
t
rv
t
D(off)v
VGS= 0/20V V
DD
=800V
R
L
= 80
I
D
= 10 A
T
A
= 25oC
Figure 13A and 13B. Typical Capacitances vs. Drain Voltage at VGS = 0V and f = 1 MHz
Figure 14. Typical C
Figure 16. Resistive Switching Times vs.
5 CMF10120D Rev. A
External RG at VDD = 400V, ID = 10A
Stored Energy
OSS
Figure 15. Typical Unclamped Inductive Switching
Waveforms Showing Avalanche Capability
Figure 17. Resistive Switching Times vs.
External RG at VDD = 800V, ID = 10A
Page 6
Typical Performance
0
50
100
150
200
250
300
350
4 5 6 7 8 9 10 11
Switching Energy (µJ)
Peak Drain Curren t (A)
E
TOT,SW
E
OFF
E
ON
VGS= 0/20V R
G
= 15 Tot
V
DD
= 800V L = 856 µH FWD: C4D05120A T
A
= 25oC
0
50
100
150
200
250
300
350
400
450
0 25 50 75 100 125 150
Switching Energy ( µJ)
TJ(oC)
E
TOT,SW
E
ON
E
OFF
VGS= 0/20V RG= 20 Tot VDD= 800V L = 856 µH FWD: C4D05120A ID= 10 A
90%
10%
V
DS
V
GS
t
on
t
off
t
fv
t
d(on)v
t
d(off)v
t
rv
Figure 18. Clamped Inductive Switching Energy vs.
Drain Current (Fig. 20)
+
800V
-
42.3μf
Figure 20. Clamped Inductive Switching Waveform Test
856μH
Circuit
Figure 19. Clamped Inductive Switching Energy vs.
Junction Temperature (Fig 20)
C4D05120A 5A, 1200V SiC Schottky
CMF10120D
6 CMF10120D Rev. A
Figure 21. Switching Test Waveforms for Transition times
Page 7
Test Circuit Diagrams and Waveforms
FOR OFFICIAL USE ONLY Not Cleared for Open Release
t
Ic
856μH
+
800V
-
42.3μf
CMF10120D
CMF10120D
tx
Vpk
Diode Reverse Recovery Energy
10% V
Irr
rr
cc
t1
10% Irr
Diode Recovery Waveforms
Erec=
t2
Qrr=
t1
t2
id dt
trr
id dt
tx
V
cc
Fig 22. Body Diode Recovery Test Fig 23. Body Diode Recovery Waveform
Fig 24. Unclamped Inductive Switching Test Circuit
ESD Ratings
ESD Test Total Devices Sampled Resulting Classication
ESD-HBM All Devices Passed 1000V 2 (>2000V)
ESD-MM All Devices Passed 400V C (>400V)
ESD-CDM All Devices Passed 1000V IV (>1000V)
7 CMF10120D Rev. A
EA = 1/2L x I
2
D
Fig 25. Unclamped Inductive Switching waveform
for Avalanche Energy
Page 8
Package Dimensions
Package TO-247-3
CC
POS
A .605 .635 15.367 16.130
B .800 .831 20.320 21.10
X
Z
W
Y
BB
AA
(2)
(1)
(3)
C .780 .800 19.810 20.320
D .095 .133 2.413 3.380
E .046 .052 1.168 1.321
F .060 .095 1.524 2.410
G .215 TYP 5.460 TYP
H .175 .205 4.450 5.210
J .075 .085 1.910 2.160
K 21˚ 21˚
L
M
N
P .090 .100 2.286 2.540
Q .020 .030 .508 .762 R 11˚ 11˚ S 11˚ 11˚ T U
V .137 .144 3.487 3.658
W .210 .248 5.334 6.300
X .502 .557 12.751 14.150
Y .637 .695 16.180 17.653
Z .038 .052 0.964 1.321
AA .110 .140 2.794 3.556
BB .030 .046 0.766 1.168
CC .161 .176 4.100 4.472
Inches Millimeters
Min Max Min Max
Recommended Solder Pad Layout
Part Number Package Marking
CMF10120D TO-247-3 CMF10120
TO-247-3
“The levels of environmentally sensitive, persistent biologically toxic (PBT), persistent organic pollutants (POP), or otherwise restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS), as amended through April 21, 2006.
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac debrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air trafc control systems, or weapons systems.
Copyright © 2010-2012 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.
8
8 CMF10120D Rev. A
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
Page 9
Loading...