Datasheet CAP1206 Datasheet

6-Channel Capacitive Touch Sensor
SMBus
Protocol
VDD
GND
Capacitive Touch Sensing Algorithm
CS1CS2CS3CS4CS5
SMCLK
SMDATA
ALERT#
CS6
CAP1206
PRODUCT FEATURES
General Description
The CAP1206 which incorporates RightTouch® technology, is a multiple channel capacitive touch sensor. It contains six (6) individual capacitive touch sensor inputs with programmable sensitivity for use in touch sensor applications. Each sensor input is calibrated to compensate for system parasitic capacitance and automatically recalibrated to compensate for gradual environmental changes.
The CAP1206 includes Multiple Pattern Touch recognition that allows the user to select a specific set of buttons to be touched simultaneously. If this pattern is detected, a status bit is set and an interrupt is generated.
The CAP1206 has Active and Standby states, each with its own sensor input configuration controls. Power consumption in the Standby state is dependent on the number of sensor inputs enabled as well as averaging, sampling time, and cycle time. Deep Sleep is the lowest power state available, drawing 5µA (typical) of current. In this state, no sensor inputs are active, and communications will wake the device.
Datasheet
Applications
Desktop and Notebook PCsLCD MonitorsConsumer ElectronicsAppliances
Features
Six (6) Capacitive Touch Sensor Inputs
— Programmable sensitivity — Automatic recalibration — Calibrates for parasitic capacitance — Individual thresholds for each button
Mu ltiple Button Pattern DetectionPower Button SupportPress and Hold Feature for Volume-like Applications3.3V or 5V SupplyAnalog Filtering for System Noise SourcesRF Detection and Avoidance FiltersDigital EMI Blocker8kV ESD Rating on All Pins (HBM)Low Power Operation
— 5µA quiescent current in Deep Sleep — 50µA quiescent current in Standby (1 sensor input
monitored)
— Samples one or more channels in Standby
SMBus / IAvailable in a 10-pin 3mm x 3mm DFN RoHS compliant
package
2
C Compliant Communication Interface
2013 Microchip Technology Inc. DS01567A-page 1
Block Diagram
6-Channel Capacitive Touch Sensor
Ordering Information:
ORDERING
NUMBER PACKAGE FEATURES
Datasheet
CAP1206-1-AIA-TR 10-pin DFN 3mm x 3mm
(RoHS compliant)
Reel size is 4,000 pieces for 10-pin DFN
This product meets the halogen maximum concentration values per IEC 61249-2-21
Six capacitive touch sensor inputs, SMBus interface, SMBus address 0101_000(r/w).
DS01567A-page 2  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
Table of Contents
Chapter 1 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 3 Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Communications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 System Management Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 SMBus Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 SMBus Address and RD / WR
3.2.3 SMBus Data Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 SMBus ACK and NACK Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.5 SMBus Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.6 SMBus Timeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.7 SMBus and I
3.3 SMBus Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 SMBus Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 SMBus Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 SMBus Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 SMBus Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 I
2
C Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Block Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Block Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2
C Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chapter 4 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Capacitive Touch Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Capacitive Touch Sensing Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1.1 Active State Sensing Settings........................................................................................20
4.3.1.2 Standby State Sensing Settings .......................................... ... .... ... ................................20
4.3.2 Sensing Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Sensor Input Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1 Automatic Recalibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Negative Delta Count Recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 Delayed Recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Power Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Multiple Touch Pattern Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Noise Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7.1 Low Frequency Noise Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7.2 RF Noise Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7.3 Noise Status and Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8.1 ALERT# Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8.2 Capacitive Sensor Input Interrupt Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8.3 Interrupts for the Power Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8.4 Interrupts for Multiple Touch Pattern Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8.5 Interrupts for Sensor Input Calibration Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 Main Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2013 Microchip Technology Inc. DS01567A-page 3
6-Channel Capacitive Touch Sensor
Datasheet
5.2 Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 General Status - 02h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Sensor Input Status - 03h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Noise Flag Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Sensor Input Delta Count Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Sensitivity Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6.1 Configuration - 20h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6.2 Configuration 2 - 44h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 Sensor Input Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 Sensor Input Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.9 Sensor Input Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.10 Averaging and Sampling Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.11 Calibration Activate and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.12 Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.13 Repeat Rate Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.14 Multiple Touch Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.15 Multiple Touch Pattern Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.16 Multiple Touch Pattern Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.17 Base Count Out of Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.18 Recalibration Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.19 Sensor Input Threshold Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.20 Sensor Input Noise Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.21 Standby Channel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.22 Standby Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.23 Standby Sensitivity Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.24 Standby Threshold Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.25 Sensor Input Base Count Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.26 Power Button Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.27 Power Button Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.28 Sensor Input Calibration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.29 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.30 Manufacturer ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.31 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Chapter 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 CAP1206 Package Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Appendix ADevice Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.1 Delta from CAP1106-1 to CAP1206-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
DS01567A-page 4  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
List of Figures
Figure 1.1 CAP1206-1 Pin Diagram (10-Pin 3 x 3 mm DFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3.1 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4.1 System Diagram for CAP1206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4.2 POR and PORR With Slow Rising V
Figure 4.3 Sensor Interrupt Behavior - Repeat Rate Enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4.4 Sensor Interrupt Behavior - No Repeat Rate Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6.1 CAP1206 Package Drawing - 10-Pin DFN 3mm x 3mm . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 6.2 CAP1206 Package Dimensions - 10-Pin DFN 3mm x 3mm. . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 6.3 CAP1206 PCB Land Pattern and Stencil - 10-Pin DFN 3mm x 3mm. . . . . . . . . . . . . . . . . 57
Figure 6.4 CAP1206 PCB Detail A - 10-Pin DFN 3mm x 3mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 6.5 CAP1206 PCB Detail B - 10-Pin DFN 3mm x 3mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 6.6 CAP1206 Land Dimensions - 10-Pin DFN 3mm x 3mm. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 6.7 CAP1206-1 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
and BOR with Falling V
DD
DD . . . . . . . . . . . . . . . . . . . . . . . 19
2013 Microchip Technology Inc. DS01567A-page 5
6-Channel Capacitive Touch Sensor
Datasheet
List of Tables
Table 1.1 Pin Description for CAP1206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 1.2 Pin Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3.2 Write Byte Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3.3 Read Byte Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3.4 Send Byte Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3.5 Receive Byte Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3.6 Block Read Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 3.7 Block Write Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4.1 Ideal Base Counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 5.2 Main Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 5.3 Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 5.4 Noise Flag Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 5.5 Sensor Input Delta Count Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 5.6 Sensitivity Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5.7 DELTA_SENSE Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 5.8 BASE_SHIFT Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 5.9 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 5.10 Sensor Input Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 5.11 Sensor Input Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 5.12 MAX_DUR Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 5.13 RPT_RATE Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 5.14 Sensor Input Configuration 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 5.15 M_PRESS Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 5.16 Averaging and Sampling Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 5.17 AVG Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 5.18 SAMP_TIME Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 5.19 CYCLE_TIME Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 5.20 Calibration Activate and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 5.21 Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 5.22 Repeat Rate Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 5.23 Multiple Touch Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 5.24 B_MULT_T Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 5.25 Multiple Touch Pattern Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 5.26 MTP_TH Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 5.27 Multiple Touch Pattern Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 5.28 Base Count Out of Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 5.29 Recalibration Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 5.30 NEG_DELTA_CNT Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 5.31 CAL_CFG Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 5.32 Sensor Input Threshold Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 5.33 Sensor Input Noise Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 5.34 CSx_BN_TH Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 5.35 Standby Channel Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 5.36 Standby Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 5.37 STBY_AVG Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 5.38 STBY_SAMP_TIME Bit Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 5.39 STBY_CY_TIME Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 5.40 Standby Sensitivity Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
DS01567A-page 6  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
Table 5.41 STBY_SENSE Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 5.42 Standby Threshold Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 5.43 Sensor Input Base Count Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 5.44 Power Button Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 5.45 PWR_BTN Bit Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 5.46 Power Button Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 5.47 Power Button Time Bits Decode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 5.48 Sensor Input Calibration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 5.49 Product ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 5.50 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 5.51 Revision Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table A.1 Register Delta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 6.1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2013 Microchip Technology Inc. DS01567A-page 7

Chapter 1 Pin Description

CS3
CS2
1 2 3 4 5
CS4
CS1
ALERT#
SMDATA
VDD
SMCLK CS5
CS6
GND
10
9 8 7 6

Figure 1.1 CAP1206-1 Pin Diag ram (10-Pin 3 x 3 mm DFN)

6-Channel Capacitive Touch Sensor
Datasheet

Table 1.1 Pin Description for CAP1206

PIN # PIN NAME PIN FUNCTION PIN TYPE
1 CS1 Capacitive Touch Sensor Input 1 AIO
2ALERT#
3SMDATA
4SMCLK
5 VDD Positive Power supply Power n/a
6 CS6 Capacitive Touch Sensor Input 6 AIO
7 CS5 Capacitive Touch Sensor Input 5 AIO
8 CS4 Capacitive Touch Sensor Input 4 AIO
9 CS3 Capacitive Touch Sensor Input 3 AIO
ALERT# - Active low alert / interrupt output for
SMBus alert - requires pull-up resistor (default)
SMDATA - Bi-directional, open-dra in SMBus or
2
C data - requires pull-up resistor
I
2
SMCLK - SMBus or I
C clock input - requires
pull-up resistor
OD
DIOD n/a
DI n/a
CONNECTION
Connect to
Connect to
Connect to
Connect to
Connect to
Connect to
UNUSED
Ground
Ground
Ground
Ground
Ground
Ground
10 CS2 Capacitive Touch Sensor Input 2 AIO
Bottom
Pad
APPLICATION NOTE: All digital pins are 5V tolerant pins.
DS01567A-page 8  2013 Microchip Technology Inc.
GND Ground Power n/a
Connect to
Ground
6-Channel Capacitive Touch Sensor
Datasheet
The pin types are described in Table1.2.

Table 1.2 Pin Types

PIN TYPE DESCRIPTION
Power This pin is used to supply power or ground to th e device.
DI Digital Input - This pin is used as a digital input. This pin is 5V tolerant.
AIO Analog Input / Output - This pin is used as an I/O for analog signals.
DIOD
OD
Digital Input / Open Drain Output - This pin is used as a digital I/O. When it is used as an output, it is open drain and requires a pull-up resistor. This pin is 5V tolerant.
Open Drain Digital Output - This pin is used as a digital output. It is open drain and requires a pull-up resistor. This pin is 5V tolerant.
2013 Microchip Technology Inc. DS01567A-page 9
6-Channel Capacitive Touch Sensor

Chapter 2 Electrical Specifications

Table 2.1 Absolute Maximum Ratings

Voltage on VDD pin -0.3 to 6.5 V Voltage on CS pins to GND -0.3 to 4.0 V
Datasheet
Voltage on 5V tolerant pins (V Voltage on 5V tolerant pins (|V Input current to any pin except VDD +
) -0.3 to 5.5 V
5VT_PIN
- VDD|) (see Note 2.2)0 to 3.6 V
5VT_PIN
10 mA Output short circuit current Continuous N/A Package Power Dissipation up to TA = 85°C for 10-pin DFN
0.5 W
(see Note 2.3) Junction to Ambient (θ
) (see Note 2.4)78 °C/W
JA
Operating Ambient Temperature Range -40 to 125 °C Storage Temperature Range -55 to 150 °C ESD Rating, All Pins, HBM 8000 V
Note 2.1 Stresses above those listed could cause permanent damage to the device. This is a stress
rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied.
Note 2.2 For the 5V tolerant pins that have a pull-up resistor, the voltage difference between
V
and VDD must never exceed 3.6V.
5VT_PIN
Note 2.3 The Package Power Dissipation specification assumes a recommended thermal via design
consisting of a 2x3 matrix of 0.3mm (12mil) vias at 0.9mm pitch conn ected to the ground plane with a 1.6 x 2.3mm thermal landing.
Note 2.4 Junction to Ambient (θ
) is dependent on the design of the thermal vias. Without thermal
JA
vias and a thermal landing, the θJA will be higher.
DS01567A-page 10  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
Table 2.2 Electrical Specifications
VDD = 3V to 5.5V, TA = 0°C to 85°C, all Typical values at TA = 25°C unless otherwise noted.
CHARACTERISTIC SYMBOL MIN TYP MAX UNIT CONDITIONS
DC POWER
Supply Voltage V
Supply Current
Maximum Base
Capacitance
Minimum Detectable
Capacitive Shift
DD
I
STBY_DEF
I
STBY_LP
I
DSLEEP_3V
I
DSLEEP_5V
I
DD
C
BASE
ΔC
TOUCH
3.0 5.5 V Standby state active
120 170 µA
1 sensor input monitored
Default conditions (8 avg, 70ms
cycle time)
Standby state active
50 µA
1 sensor input monitored
1 avg, 140ms cycle time
Deep Sleep state active
5TBA
No communications
T
< 40°C
A
3.135 < V
< 3.465V
DD
Deep Sleep state active
TBD TBD µA
No communications
T
< 40°C
A
V
= 5V
DD
500 750 µA Capacitive Sensing Active
CAPACITIVE TOUCH SENSOR INPUTS
50 pF Pad untouched
20 fF Pad touched - default conditions
Recommended Cap
Shift
ΔC
TOUCH
0.1 2 pF Pad touched - Not tested
Untouched Current Counts
Power Supply
Rejection
PSR ±3 ±10
counts
/ V
Base Capacitance 5pF - 50pF
Negative Delta Counts disabled
Maximum sensitivity
All other parameters default
POWER-ON AND BROWN-OUT RESET (SEE Section 4.2, "Reset")
Power-On Reset
Voltage
Power-On Reset Release Voltage
Brown-Out Reset V
V
V
PORR
POR
BOR
1 1.3 V Pin States Defined
2.85 V
Rising V
Ensured by design
2.8 V Falling V
DD
DD
VDD Rise Rate
(ensures internal
POR signal)
2013 Microchip Technology Inc. DS01567A-page 11
SV
DD
0.05 V/ms 0 to 3V in 60ms
6-Channel Capacitive Touch Sensor
Table 2.2 Electrical Specifications (continued)
V
= 3V to 5.5V, TA = 0°C to 85°C, all Typical values at TA = 25°C unless otherwise noted.
DD
CHARACTERISTIC SYMBOL MIN TYP MAX UNIT CONDITIONS
Datasheet
Power-Up Timer
Period
Brown-Out Reset
Voltage Delay
t
t
BORDC
Time to
Communications
Ready
Time to First
Conversion Ready
t
COMM_DLY
t
CONV_DLY
Output Low Voltage V
Output High Voltage V
Input High Voltage V
Input Low Voltage V
Leakage Current I
PWRT
OL
OH
IH
IL
LEAK
10 ms
sV
DD
= V
BOR
- 1
TIMING
15 ms
170 200 ms
I/O PINS
VDD -
0.4
0.4 V I
VI
SOURCE_IO
SINK_IO
= 8mA
= 8mA
2.0 V
0.8 V powered or unpowered
T
< 85°C
±5 µA
pull-up voltage <
A
3.6V if
unpowered
Input Capacitance C
Clock Frequency f
Spike Suppression t
Bus Free Time Stop
to Start
Start Setup Time t
Sta rt Ho ld Ti me t
Stop Setup Time t
Data Hold Time t Data Hold Time t
Data Setup Time t
Clock Low Period t
Clock High Period t
Clock / Data Fall
Time
IN
SMB
SP
t
BUF
SU:STA
HD:STA
SU:STO
HD:DAT
HD:DAT
SU:DAT
LOW
HIGH
t
FALL
SMBUS TIMING
5pF
10 400 kHz
50 ns
1.3 µs
0.6 µs
0.6 µs
0.6 µs 0 µs When transmitting to the master
0.3 µs When receiving from the master
0.6 µs
1.3 µs
0.6 µs
300 ns Min = 20+0.1C
LOAD
ns
DS01567A-page 12  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
Table 2.2 Electrical Specifications (continued)
V
= 3V to 5.5V, TA = 0°C to 85°C, all Typical values at TA = 25°C unless otherwise noted.
DD
CHARACTERISTIC SYMBOL MIN TYP MAX UNIT CONDITIONS
Clock / Data Rise
Time
Capacitive Load C
t
RISE
LOAD
300 ns Min = 20+0.1C
LOAD
400 pF per bus line
ns
2013 Microchip Technology Inc. DS01567A-page 13

Chapter 3 Communications

SMDATA
SMCLK
T
BUF
P
S
S - Start Condition
P - Stop Condition
PS
T
HIGH
T
LOW
T
HD:STA
T
SU:STO
T
HD:STA
T
HD:DAT
T
SU:DAT
T
SU:STA
T
FALL
T
RISE

3.1 Communications

The CAP1206 communicates using the SMBus or I2C protocol.

3.2 System Management Bus

The CAP1206 communicates with a host controller, such as an MCHP SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 3.1. Stretching of the SMCLK signal is supported; however, the CAP1206 will not stretch the clock signal.
6-Channel Capacitive Touch Sensor
Datasheet

Figure 3.1 SMBus Timing Diagram

3.2.1 SMBus Start Bit

The SMBus Start bit is defined as a transition of the SMBus Data line from a logic ‘1’ state to a logic ‘0’ state while the SMBus Clock line is in a logic ‘1’ state.

3.2.2 SMBus Address and RD / WR Bit

The SMBus Address Byte consists of the 7-bit client address followed by the RD / WR indicator bit. If this RD / WR bit is a logic ‘0’, then the SMBus Host is writing data to the client device. If this RD / WR bit is a logic ‘1’, then the SMBus Host is reading data from the client device.
The CAP1206 responds to SMBus address 0101_000(r/w).

3.2.3 SMBus Data Bytes

All SMBus Data bytes are sent most significant bit first and composed of 8-bits of information.

3.2.4 SMBus ACK and NACK Bits

The SMBus client will acknowledge all data bytes that it receives. This is done by the cl ient device
DS01567A-page 14  2013 Microchip Technology Inc.
pulling the SMBus Data line low after the 8th bit of each byte that is transmitted. This applies to both the Write Byte and Block Write protocols.
The Host will NACK (not acknowledge) the last data byte to be received from the client by holding the SMBus data line high after the 8th data bit has been sent. For the Block Read protocol, the Host will ACK each data byte that it receives except the last data byte.
6-Channel Capacitive Touch Sensor
Datasheet

3.2.5 SMBus Stop Bit

The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic ‘0’ state to a logic ‘1’ state while the SMBus clock line is in a logic ‘1’ state. When the CAP1206 detects an SMBus Stop bit and it has been communicating with the SMBus protocol, it will reset its client interface and prepare to receive further communications.

3.2.6 SMBus Timeout

The CAP1206 includes an SMBus timeout feature. Following a 30ms period of inactivity on the SMBus where the SMCLK pin is held low, the device will timeout and reset the SMBus interface.
The timeout function defaults to disabled. It can be enabled by setting the TIMEOUT bit in the Configuration register (see Section 5.6, "Configuration Registers").

3.2.7 SMBus and I2C Compatibility

The major differences between SMBus and I2C devices are highlighted here. For more information, refer to the SMBus 2.0 specification.
1. CAP1206 supports I
2. Minimum frequency for SMBus communications is 10kHz.
2
C fast mode at 400kHz. This covers the SMBus max time of 100kHz.
3. The SMBus client protocol will reset if the clock is held low longer than 30ms (timeout condition). This can be enabled in the CAP1206 by setting the TIMEOUT bit in the Configuration register. I2C does not have a timeout.
4. The SMBus client protocol will reset if both the clock and the data line are high for longer than 200us (idle condition). This can be enabled in the CAP1206 by setting the TIMEOUT bit in the Configuration register. I
2
5. I
C devices do not support the Alert Response Address functionality (which is op tional for SMBus).
2
C devices support block read and write differently. I2C protocol allows for unlimited number of
6. I bytes to be sent in either direction. The SMBus protocol requires that an additional data byte indicating number of bytes to read / write is transmitted. The CAP1206 supports I
2
C does not have an idle condition.

3.3 SMBus Protocols

The CAP1206 is SMBus 2.0 compatible and supports Write Byte, Read Byte, Send Byte, and Receive Byte as valid protocols as shown below.
All of the below protocols use the convention in Table 3.1.
DATA SENT
TO DEVICE
Data sent Data sent

Table 3.1 Protocol Format

DATA SENT TO
THE HOST
2
C formatting only .
2013 Microchip Technology Inc. DS01567A-page 15

3.3.1 SMBus Write Byte

The Write Byte is used to write one byte of data to a specific register as shown in Table 3.2.
6-Channel Capacitive Touch Sensor
Datasheet
Table 3.2 Write Byte Protocol
START
SLAVE
ADDRESS WR
ACK
REGISTER
ADDRESS ACK
REGISTER
DATA ACK STOP
1 ->0 0101 _000 0 0 XXh 0 XXh 0 0 -> 1

3.3.2 SMBus Read Byte

The Read Byte protocol is used to read one byte of data from the registers as show n in Table 3.3.
Table 3.3 Read Byte Protocol
START SLAVE
ADDRESS
WR ACK REGISTER
ADDRESS
ACK START CLIENT
ADDRESS
RD ACK REGISTER
DATA
NACK STOP
1->0 0101_000 0 0 XXh 0 1 ->0 0101 _000 1 0 XXh 1 0 -> 1

3.3.3 SMBus Send Byte

The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol as shown in Table 3.4.
APPLICATION NOTE: The Send Byte protocol is not functional in Deep Sleep (i.e., DSLEEP bit is set).
Table 3.4 Send Byte Protocol
START
SLAVE
ADDRESS WR ACK
REGISTER
ADDRESS ACK STOP
1 -> 0 0101_000 0 0 XXh 0 0 -> 1

3.3.4 SMBus Receive Byte

The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 3.5.
APPLICATION NOTE: The Receive Byte protocol is not functional in Deep Sleep (i.e., DSLEEP bit is set).
Table 3.5 Receive Byte Protocol
SLAVE
START
1 -> 0 0101_000 1 0 XXh 1 0 -> 1
DS01567A-page 16  2013 Microchip Technology Inc.
ADDRESS RD
ACK REGISTER DATA NACK STOP
6-Channel Capacitive Touch Sensor
Datasheet

3.4 I2C Protocols

The CAP1206 supports I2C Block Read and Block Write. The protocols listed below use the convention in Table 3.1.

3.4.1 Block Read

The Block Read is used to read multiple data bytes from a group of contiguous registers as sh own in
Table 3.6.
APPLICATION NOTE: When using the Block Read protocol, the internal address pointer will be automatically
incremented after every data byte is received. It will wrap from FFh to 00h.
Table 3.6 Block Read Protocol
START SLAVE
ADDRESS
WR ACK REGISTER
ADDRESS
ACK START SLAVE
ADDRESS
RD ACK REGISTER
DATA
1->0 0101_000 0 0 XXh 0 1 ->0 0101_000 1 0 XXh
ACK REGISTER
DATA
ACK REGISTER
DATA
ACK REGISTER
DATA
ACK . . . REGISTER
DATA
NACK STOP
0 XXh 0 XXh 0 XXh 0 . . . XXh 1 0 -> 1

3.4.2 Block Write

The Block Write is used to write multiple data bytes to a group of contiguous registers as shown in
Table 3.7.
APPLICATION NOTE: When using the Block Write protocol, the internal address pointer will be automatically
incremented after every data byte is received. It will wrap from FFh to 00h.
Table 3.7 Block Write Protocol
REGISTER
ADDRESS ACK
START
SLAVE
ADDRESS WR
ACK
1 ->0 0101_000 0 0 XXh 0 XXh 0
REGISTER
DATA
ACK
REGISTER
DATA ACK . . .
REGISTER
DATA ACK STOP
REGISTER
DATA ACK
XXh 0 XXh 0 . . . XXh 0 0 -> 1
2013 Microchip Technology Inc. DS01567A-page 17

Chapter 4 General Description

CAP1206
CS4
SMDATA
SMCLK
Embedded
Controller
3.0V to 5.5V
ALERT#
CS5
CS6
CS3
CS2
CS1
Touch
Button
Touch
Button
Touch
Button
Touch
Button
Touch
Button
Touch
Button
VDD
3.0V to 5.5V
GND
1.0uF0.1uF
10kOhm resistors
The CAP1206 is a multiple channel capacitive touch sensor. It contains six (6) individual capacitive touch sensor inputs with programmable sensitivity for use in touch sensor applications. Each sensor input is calibrated to compensate for system parasitic capacitance and automatically recalibrated to compensate for gradual environmental changes.
The CAP1206 includes Multiple Pattern Touch recognition that allows the user to select a specific set of buttons to be touched simultaneously. If this pattern is detected, a status bit is set and an interrupt is generated.
The CAP1206 has Active and Standby states, each with its own sensor input configuration controls. Power consumption in the Standby state is dependent on the number of sensor inputs enabled as well as averaging, sampling time, and cycle time. Deep Sleep is the lowest power state available, drawing 5µA (typical) of current. In this state, no sensor inputs are active, and communications will wake the device.
The device communicates with a host controller using SMBus / I device for updated information at any time or it may configure the device to flag an in terrupt whenever a touch is detected on any sensor pad.
A typical system diagram is shown in Figure 4.1.
6-Channel Capacitive Touch Sensor
Datasheet
2
C. The host controller may poll the
DS01567A-page 18  2013 Microchip Technology Inc.

Figure 4.1 System Diagram for CAP1206

6-Channel Capacitive Touch Sensor
V
DD
V
BOR
T
PWRT
GND
Undefined
SYSRST
V
POR
V
PORR
T
BORDCTPWRT
Datasheet

4.1 Power States

The CAP1206 has 3 power states depending on the status of the STBY and DSLEEP bits (see Section
5.1, "Main Control Register"). When the device transitions between power states, previously detected
touches (for channels that are being de-activated) are cleared and the sensor input status bits are reset.
1. Active - The normal mode of operation. The device is monitoring capacitive sensor inputs enabled in the Active state (see Section 5.7, "Sensor Input Enable Register").
2. Standby - When the STBY bit is set, the device is monitoring the capacitive sensor in puts enabled in the Standby state (see Section 5.21, "Standby Channel Register"). Interrupts can still be generated based on the enabled channels. The device will still respond to communications normally and can be returned to the Active state of operation by clearing the STBY bit. Power consumption in this state is dependent on the number of sensor inputs enabled as well as averaging, sampling time, and cycle time.
3. Deep Sleep - When the DSLEEP bit is set, the device is in its lowest power state. It is not monitoring any capacitive sensor inputs. While in Deep Sleep, the CAP1206 can be awakened by SMBus communications targeting the device. This will not cause the DSLEEP to be cleared so the device will return to Deep Sleep once all communications have stopped. The device can be returned to the Active state of operation by clearing the DSLEEP bit.

4.2 Reset

The Power-On Reset (POR) circuit holds the device in reset until VDD has reached an acceptable level, Power-on Reset Release Voltage (V used to extend the start-up period until all device operation conditions have been met. Th e power-up timer starts after V
The Brown-Out Reset (BOR) circuit holds the device in reset when V for longer than the BOR reset delay (t up timer is started again and must finish before reset is released, as shown in Figure 4.2.
Figure 4.2 POR and PORR With Slow Rising V
reaches V
DD
), for minimum operation. The power-up timer (PWRT) is
PORR
. POR and PORR with slow rising VDD is shown in Figure 4.2.
PORR
falls to a minimum level, V
). After a BOR, when VDD rises above V
BORDC
and BOR with Falling V
DD
DD
PORR
DD
, the power-
BOR

4.3 Capacitive Touch Sensing

The CAP1206 contains six (6) independent capacitive touch sensor inputs. Each sensor input has dynamic range to detect a change of capacitance due to a touch. Additionally, each sensor input can be configured to be automatically and routinely recalibrated.
2013 Microchip Technology Inc. DS01567A-page 19

4.3.1 Capacitive Touch Sensing Settings

Controls for managing capacitive touch sensor inp uts are determined by the power state.
4.3.1.1 Active State Sensing Settings
The Active state is used for normal operation. Sensor inputs being monitored are determined by the Sensor Input Enable Register (see Section 5.7, "Sensor Input Enable Register"). Sensitivity is controlled by the Sensitivity Control Register (see Section 5.5, "Sensitivity Control Register"). Averaging, sample time, and cycle time are controlled by the Averaging and Sampling Configuration Register (see Section 5.10, "Averaging and Sampling Configuration Register"). Each channel can have a separate touch detection threshold, as defined in the Sensor Input Threshold registers (see Section
5.19, "Sensor Input Threshold Registers").
4.3.1.2 Standby State Sensing Settings
The Standby state is used for standby operation. In general, fewer sensor inputs are enabled, and they are programmed to have more sensitivity. Sensor inputs being monitored are determined by the Standby Channel Register (see Section 5.21, "Standby Channel Register"). Sensitivity is controlled by the Standby Sensitivity Register (see Section 5.23, "Standby Sensitivity Register"). Averaging, sample time, and cycle time are controlled by the Averaging and Sampling Configuration Register (see Section
5.22, "Standby Configuration Register"). There is one touch detection threshold, which applies to all
sensors enabled in Standby, as defined in the Standby Threshold Register (see Section 5.24, "Standby
Threshold Register").
6-Channel Capacitive Touch Sensor
Datasheet

4.3.2 Sensing Cycle

Except when in Deep Sleep, the device automatically initiates a sensing cycle and repeats the cycle every time it finishes. The cycle polls through each enabled sensor input starting with CS1 and extending through CS6. As each capacitive touch sensor i nput is polled, its measurement is compared against a baseline “not touched” measurement. If the delta measurement is large enou gh to exceed the applicable threshold, a touch is detected and an interrupt can be generated (see Section 4.8.2,
"Capacitive Sensor Input Interrupt Behavior").
The sensing cycle time is programmable (see Section 5.10, "Averaging and Sampling Configuration
Register" and Section 5.22, "Standby Configuration Register"). If all enabled inputs can be sampled in
less than the cycle time, the device is placed into a lower power state for the remainder of the sensi ng cycle. If the number of active sensor inputs cannot be sampled within the specified cycle time, the cycle time is extended and the device is not placed in a lower power state.

4.4 Sensor Input Calibration

Calibration sets the Base Count Registers (Section 5.25, "Sensor Input Base Count Registers") which contain the “not touched” values used for touch detection comparisons. Calibration automatically occurs after a power-on reset (POR), when sample time is changed, and whenever a sensor input is newly enabled (for example, when transitioning from a power state in which it was disabled to a po wer state in which it is enabled). During calibration, the analog sensing circuits are tuned to the capacitance of the untouched pad. Then, samples are taken from each sensor input so that a base count can be established. After calibration, the untouched delta counts are zero.
APPLICATION NOTE: During the calibration routine, the sensor inputs will not detect a press for up to 200ms and
the Sensor Base Count Register values will be invalid. In addition, any press on the corresponding sensor pads will invalidate the calibration.
The host controller can force a calibration for selected sensor inputs at any time using the Calibrati on Activate and Status Register (Section 5.11, "Calibration Activate and Status Register"). When a bit is set, the corresponding capacitive touch sensor input will be calibrated (both analog and digital). The bit is automatically cleared once the calibration routine has successfully finished.
DS01567A-page 20  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
If analog calibration fails for a sensor input, the corresponding bit is not cleared in the Calibration Activate and Status Register, and the ACAL_FAIL bit is set in the General Status Register (Section 5.2,
"Status Registers"). An interrupt can be generated. Analog calibration will fail if a noise bit is set or if
the calibration value is at the maximum or minimum value. If digital calibrati on fails to generate base counts for a sensor input in the operating range, which is +
Table 4.1), indicating the base capacitance is out of range, the corresponding BC_OUTx bit is set in
the Base Count Out of Limit Register (Section 5.17, "Base Count Out of Limit Register"), and the BC_OUT bit is set in the General Status Register (Section 5.2, "Status Registers"). An interrupt can be generated. By default, when a base count is out of limit, analog calibration is repeated for the sensor input; alternatively, the sensor input can be sampled using the out of limit base count (Section
5.6, "Configuration Registers").
12.5% from the ideal base count (see

Table 4.1 Ideal Base Counts

IDEAL BASE COUNT SAMPLE TIME
3,200 320us
6,400 640us 12,800 1.28ms 25,600 2.56ms
During normal operation there are various options for reca librating the capacitive touch sensor inputs. Recalibration is a digital adjustment of the base counts so that the untouched delta count is zero. After a recalibration, if a sensor input’s base count has shifted + calibration will be performed on the sensor input.
12.5% from the ideal base count, a full

4.4.1 Automatic Recalibration

Each sensor input is regularly recalibrated at a programmable rate (see CAL_CFG[2:0] in Section 5.18,
"Recalibration Configuration Register"). By default, the recalibration routine stores the average 64
previous measurements and periodically updates the base “not touched” setting for the capacitive touch sensor input.
APPLICATION NOTE: Automatic recalibration only works when the delta count is below the active sensor input
threshold. It is disabled when a touch is detected.

4.4.2 Negative Delta Count Recalibration

It is possible that the device loses sensitivity to a touch. This may happen as a result of a noisy environment, recalibration when the pad is touched but delta counts do not exceed the threshold, or other environmental changes. When this occurs, the base untouched sensor input may generate negative delta count values. The NEG_DELTA_CNT[1:0] bits (see Section 5.18, "Recalibration
Configuration Register") can be set to force a recalibration after a specified number of consecutive
negative delta readings. After a delayed recalibration (see Section 4.4.3, "Delayed Recalibration") the negative delta count recalibration can correct after the touch is released.
APPLICATION NOTE: During this recalibration, the device will not respond to touches.

4.4.3 Delayed Recalibration

It is possible that a “stuck button” occurs when some thing is placed on a butto n which causes a touch to be detected for a long period. By setting the MAX_DUR_EN bit (see Section 5.6, "Configuration
Registers"), a recalibration can be forced when a touch is held on a button for longer than the duration
specified in the MAX_DUR[3:0] bits (see Section 5.8, "Sensor Input Configuration Register").
2013 Microchip Technology Inc. DS01567A-page 21
Note 4.1 Delayed recalibration only works when the delta count is above the active sensor input
threshold. If enabled, it is invoked when a sensor pad touch is held longer than the MAX_DUR bit settings.
Note 4.2 For the power button, which requires that the button be held longer than a reg ular button,
the time specified by the MAX_DUR[3:0] bits is added to the time required to trigger the qualifying event. This will prevent the power butto n from being recalibrated during the time it is supposed to be held.

4.5 Power Button

The CAP1206 has a “power button” feature. In general, buttons are set for quick response to a touch, especially when buttons are used for number keypads. However, there are cases where a quick response is not desired, such as when accidentally brushing the power button causes a device to turn off or on unexpectedly.
The power button feature allows a sensor input to be designated as the “po wer button” (see Section
5.26, "Power Button Register"). The power button is configured so that a touch must be held on the
button for a designated period of time before an interrupt is generated; different times can be sel ected for the Standby and the Active states (see Section 5.27, "Power Button Configuration Register"). The feature can also be enabled / disabled for both states separately.
6-Channel Capacitive Touch Sensor
Datasheet
APPLICATION NOTE: For the power button feature to work in the Standby and/or Active states, the sensor input
must be enabled in the applicable state.
After the designated power button has been held for the designated time, an interrupt is generated and the PWR bit is set in the General Status Register (see Section 5.2, "Status Registers").

4.6 Multiple Touch Pattern Detection

The multiple touch pattern (MTP) detection circuitry can be used to detect lid closure or oth er similar events. An event can be flagged based on either a minimum number of sensor i nputs or on specific sensor inputs simultaneously exceeding an MTP threshold or having their Noise Fla g Status Register bits set. An interrupt can also be generated. During an MTP event, all touches are blocked (see
Section 5.15, "Multiple Touch Pattern Configuration Register").

4.7 Noise Controls

4.7.1 Low Frequency Noise Detection

Each sensor input has a low frequency noise detector that will sense if low freque ncy noise is injected onto the input with sufficient power to corrupt the readings. By default, if this occurs, the device will reject the corrupted sample (see DIS_ANA_NOISE bit in Section 5.6.1, "Configuration - 20h") and the corresponding bit is set to a logic ‘1’ in the Noise Flag Status register (see SHOW_RF_NOISE bit in
Section 5.6.2, "Configuration 2 - 44h").

4.7.2 RF Noise Detection

Each sensor input contains an integrated RF noise detector. This block will detect injected RF noise on the CS pin. The detector threshold is dependent upon the noise frequency. By default, if RF noise is detected on a CS line, that sample is removed and not compared against the threshold (see DIS_RF_NOISE bit in Section 5.6.2, "Configuration 2 - 44h").

4.7.3 Noise Status and Configuration

The Noise Flag Status (see Section 5.3, "Noise Flag Status Registers") bits can be used to indicate RF and/or other noise. If the SHOW_RF_NOISE bit in the Configuration Register (see Section 5.6,
DS01567A-page 22  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
"Configuration Registers") is set to 0, the Noise Flag Status bit for the capacitive sensor input is set if
any analog noise is detected. If the SHOW_RF_NOISE bit is set to 1, the Noise Flag Status bits will only be set if RF noise is detected.
The CAP1206 offers optional noise filtering controls for both analog an d digital noise. For analog noise, there are options for whether the data should be considered invalid. By default, the
DIS_ANA_NOISE bit (see Section 5.6.1, "Configuration - 20h") will block a touch on a sensor input if low frequency analog noise is detected; the sample is discarded. By default, the DIS_RF_NOISE bit (see Section 5.6.2, "Configuration 2 - 44h") will block a touch o n a sensor input if RF noise is detected; the sample is discarded.
For digital noise, sensor input noise thresholds can be set (see Section 5.20, "Sensor Input Noise
Threshold Register"). If a capacitive touch sensor input exceeds the Sensor Noise Threshold but does
not exceed the touch threshold (Sensor Threshold (see Section 5.19, "Sensor Input Threshold
Registers") in the Active state or Sensor Standby Threshold in the Standby state (Section 5.24, "Standby Threshold Register")), it is determined to be caused by a noise spike. The DIS_DIG_NOISE
bit (see Section 5.6.1, "Configuration - 20h") can be set to discard samples that indicate a noise spike so they are not used in the automatic recalibration routine (see Section 4.4.1, "Automatic
Recalibration").

4.8 Interrupts

Interrupts are indicated by the setting of the INT bit in the Main Control Register (see Section 5.1,
"Main Control Register") and by assertion of the ALERT# pin. The ALERT# pin is cleared when the
INT bit is cleared by the user. When the INT bit is cleared by the user, status bits may be cleared (see
Section 5.2, "Status Registers").

4.8.1 ALERT# Pin

The ALERT# pin is an active low output that is driven when an interrupt event is de tected.

4.8.2 Capacitive Sensor Input Interrupt Behavior

Each sensor input can be programmed to enable / disable interrupts (see Section 5.12, "Interrupt
Enable Register").
When enabled for a sensor input and the sensor input is not the designated power button, interrupts are generated in one of two ways:
1. An interrupt is generated when a touch is detected and, as a user selectable option, when a release is detected (by default - see INT_REL_n in Section 5.6.2, "Configuratio n 2 - 44h"). See Figure 4.4.
2. If the repeat rate is enabled then, so long as the touch is held, another interrupt will be generated based on the programmed repeat rate (see Figure 4.3).
When the repeat rate is enabled for a sensor inpu t (see Section 5.13, "Repeat Rate Enable Register"), the device uses an additional control called MPRESS that determines whether a touch is flagged as a simple “touch” or a “press and hold” (see Section 5.9, "Sensor Input Configuration 2 Register"). The MPRESS[3:0] bits set a minimum press timer. When the button is touched, the timer begins. If the sensor pad is released before the minimum press timer expires, it is flagged as a touch and an interrupt (if enabled) is generated upon release. If the sensor input detects a touch for longer than this timer value, it is flagged as a “press and hold” event. So long as the touch is held, interrupts will be generated at the programmed repeat rate (see Section 5.8, "Sensor Input Configuration Register") and upon release (if enabled).
If a sensor input is the designated power button, an interrupt is not generated as soon as a touch is detected and repeat rate is not applicable. See Section 4.8.3, "Inte rrupts for the Power Button".
2013 Microchip Technology Inc. DS01567A-page 23
6-Channel Capacitive Touch Sensor
Touch Detected
INT bit
Button Status
Write to INT bit
Sensing Cycle
(35ms)
Min Press Setting
(280ms)
Interrupt on
Touch
Button Repeat Rate
(175ms)
Button Repeat Rate
(175ms)
Interrupt on
Release
(optional)
ALERT# pin
Touch Detected
INT bit
Button Status
Write to INT bit
Sensing Cycle
(35ms)
Interrupt on
Touch
Interrupt on
Release
(optional)
ALERT# pin
Datasheet
APPLICATION NOTE: Figure 4.3 and Figure 4.4 show default operation which is to generate an interrupt upon
sensor pad release.
APPLICATION NOTE: The host may need to poll the device twice to dete rmine that a release has been detected.
Figure 4.3 Sensor Interrupt Behavior - Repeat Rate Enabled

4.8.3 Interrupts for the Power Button

Interrupts are automatically enabled for the power button when the featu re is enabled (see Se ction 4 .5,
"Power Button"). A touch must be held on the power button for the designated period of time before
Figure 4.4 Sensor Interrupt Behavior - No Repeat Rate Enabled
an interrupt is generated.
DS01567A-page 24  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

4.8.4 Interrupts for Multiple Touch Pattern Detectio n

An interrupt can be generated when the MTP pattern is matched (see Section 5.15, "Mul tiple Touch
Pattern Configuration Register").

4.8.5 Interrupts for Sensor Input Calibration Failures

An interrupt can be generated when the ACAL_FAIL bit is set, indicating the failure to complete analog calibration of one or more sensor inputs (see Section 5.2, "Status Registers"). This interrupt can be enabled by setting the ACAL_FAIL_INT bit (see Section 5.6, "Configuration Registers").
An interrupt can be generated when the BC_OUT bit is set, indicating the base count is o ut of limit for one or more sensor inputs (see Section 5.2, "Status Registers"). This interrupt can be enabled by setting the BC_OUT_INT bit (see Section 5.6, "Configuration Registers").
2013 Microchip Technology Inc. DS01567A-page 25

Chapter 5 Register Description

The registers shown in Table 5.1 are accessible through the communications protocol. An entry of ‘-’ indicates that the bit is not used and will always read ‘0’.

Table 5.1 Register Set in Hexadecimal Order

6-Channel Capacitive Touch Sensor
Datasheet
REGISTER
ADDRESS R/W REGISTER NAME FUNCTION
00h R/W Main Con trol
02h R/W General Status Stores general status bits 00h Page 30
03h R Sensor Input Status
0Ah R Noise Flag Status
10h R
11h R
12h R
13h R
14h R
15h R
Sensor Input 1 Delta
Count
Sensor Input 2 Delta
Count
Sensor Input 3 Delta
Count
Sensor Input 4 Delta
Count
Sensor Input 5 Delta
Count
Sensor Input 6 Delta
Count
Controls power states and indicates
an interrupt
Returns the state of the sampled
capacitive touch sensor inputs
Stores the noise flags for sensor
inputs
Stores the delta count for CS1 00h Page 31
Stores the delta count for CS2 00h Page 31
Stores the delta count for CS3 00h Page 31
Stores the delta count for CS4 00h Page 31
Stores the delta count for CS5 00h Page 31
Stores the delta count for CS6 00h Page 31
DEFAULT
VALUE PAGE
00h Page 29
00h Page 30
00h Page 31
Controls the sensitivity of the
1Fh R/W Se nsitivity Control
20h R/W Configuration Controls general function ality 20h Page 34
21h R/W Sensor Input Enable
22h R/W
23h R/W
24h R/W
26h R/W
DS01567A-page 26  2013 Microchip Technology Inc.
Sensor Input Configuration
Sensor Input
Configuration 2
Averaging and
Sampling Config
Calibration Activate
and Status
threshold and delta counts and data
scaling of the base counts
Controls which sensor inputs are
monitored in Active
Controls max duration and auto-
repeat delay
Controls the MPRESS (“press and
hold”) setting
Controls averaging and sampling
window for Active
Forces calibration for capacitive
touch sensor inputs and indicates
calibration failure
2Fh Page 32
3Fh Page 35
A4h Page 36
07h Page 38
39h Page 39
00h Page 40
6-Channel Capacitive Touch Sensor
Datasheet
Table 5.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS R/W REGISTER NAME FUNCTION
27h R/W Interrupt Enab le
28h R/W Repeat Rate Enable
2Ah R/W
2Bh R/W
Multiple Touch
Configuration
Multiple T ouch Pattern
Configuration
Determines which capacitive sensor
inputs can generate interrupts
Enables repeat rate for specific
sensor inputs
Determines the number of
simultaneous touches to flag a
multiple touch condition
Determines the multiple touch
pattern (MTP) configuration
Determines the pattern or number of
2Dh R/W Multiple Touch Pattern
sensor inputs used by the MTP
circuitry
2Eh R
2Fh R/W
30h R/W
31h R/W
Base Count Out of
Limit
Recalibration Configuration
Sensor Input 1
Threshold
Sensor Input 2
Threshold
Indicates whether sensor inputs
have a base count out of limit
Determines recalibration timing and
sampling window
Stores the touch detection threshold
for Active for CS1
Stores the touch detection threshold
for Active for CS2
DEFAULT
VALUE PAGE
3Fh Page 41
3Fh Page 42
80h Page 42
00h Page 43
3Fh Page 44
00h Page 45
8Ah Page 46
40h Page 47
40h Page 47
32h R/W
33h R/W
34h R/W
35h R/W
38h R/W
Sensor Input 3
Threshold
Sensor Input 4
Threshold
Sensor Input 5
Threshold
Sensor Input 6
Threshold
Sensor Input Noise
Threshold
Standby Configuration Registers
40h R/W Standby Channel
41h R/W Standby Configuration
42h R/W Standby Sensitivity
43h R/W Standby Threshold
44h R/W Configuration 2
Stores the touch detection threshold
for Active for CS3
Stores the touch detection threshold
for Active for CS4
Stores the touch detection threshold
for Active for CS5
Stores the touch detection threshold
for Active for CS6
Stores controls for selecting the
noise threshold for all sensor inputs
Controls which sensor inputs are
enabled for Standby
Controls averaging and sensing
cycle time for Standby
Controls sensitivity settings used for
Standby
Stores the touch detection threshold
for Standby
Stores additional configuration
controls for the device
40h Page 47
40h Page 47
40h Page 47
40h Page 47
01h Page 48
00h Page 48
39h Page 49
02h Page 51
40h Page 51
40h Page 34
2013 Microchip Technology Inc. DS01567A-page 27
6-Channel Capacitive Touch Sensor
Table 5.1 Register Set in Hexadecimal Order (continued)
Datasheet
REGISTER
ADDRESS R/W REGISTER NAME FUNCTION
DEFAULT
VALUE PAGE
Base Count Registers
50h R
51h R
52h R
53h R
54h R
55h R
Sensor Input 1 Base
Count
Sensor Input 2 Base
Count
Sensor Input 3 Base
Count
Sensor Input 4 Base
Count
Sensor Input 5 Base
Count
Sensor Input 6 Base
Count
Stores the reference count value for
sensor input 1
Stores the reference count value for
sensor input 2
Stores the reference count value for
sensor input 3
Stores the reference count value for
sensor input 4
Stores the reference count value for
sensor input 5
Stores the reference count value for
sensor input 6
C8h Page 52
C8h Page 52
C8h Page 52
C8h Page 52
C8h Page 52
C8h Page 52
Power Button Registers
60h R/W Powe r Button Specifies the power button 00h Page 52
61h R/W
Power Button
Configuration
Configures the power button feature 22h Page 53
B1h
B2h
B3h
B4h
B5h
B6h
B9h
BAh
R Sensor Input 1
Calibration
R Sensor Input 2
Calibration
R Sensor Input 3
Calibration
R Sensor Input 4
Calibration
R Sensor Input 5
Calibration
R Sensor Input 6
Calibration
R Sensor Input
Calibration LSB 1
R Sensor Input
Calibration LSB 2
FDh R Product ID
Calibration Registers
Stores the upper 8-bit calibration
value for CS1
Stores the upper 8-bit calibration
value for CS2
Stores the upper 8-bit calibration
value for CS3
Stores the upper 8-bit calibration
value for CS4
Stores the upper 8-bit calibration
value for CS5
Stores the upper 8-bit calibration
value for CS6
Stores the 2 LSBs of the calibration
value for CS1 - CS4
Stores the 2 LSBs of the calibration
value for CS5 - CS6
ID Registers
Stores a fixed value that identifies
the CAP1206-1
00h Page 54
00h Page 54
00h Page 54
00h Page 54
00h Page 54
00h Page 54
00h
Page 54
00h Page 54
67h Page 55
DS01567A-page 28  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
Table 5.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS R/W REGISTER NAME FUNCTION
FEh R Manufacturer ID
FFh R Revision
Stores a fixed value that identifies
MCHP
Stores a fixed value that represents
the revision number
DEFAULT
VALUE PAGE
5Dh Page 55
00h Page 55
During power-on reset (POR), the default values are stored in the registers. A POR is i nitiated when power is first applied to the part and the voltage on the VDD supply surpasses the POR level as specified in the electrical characteristics.
When a bit is “set”, this means it’s at a logic ‘1’. When a bit is “cleared”, this means it’s at a logic ‘0’.

5.1 Main Control Register

Ta b le 5.2 Main Control Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
00h R/W Main Control - - STBY DSLEEP - - - INT 00h
The Main Control register controls the primary power state of the device (see Section 4.1, "Power
States").
Bit 5 - STBY - Enables Standby.
‘0’ (default) - The device is not in the Standby state. ‘1’ - The device is in the Standby state. Capacitive touch sensor input scanning is limited to the
sensor inputs set in the Standby Channel register (see Section 5.21, "Standby Channel Register"). The status registers will not be cleared until read. Sensor inputs that are no longer sampled will flag a release and then remain in a non-touched state.
Bit 4 - DSLEEP - Enables Deep Sleep.
‘0’ (default) - The device is not in the Deep Sleep state.‘1’ - The device is in the Deep Sleep state. All sensor input scanning is disabled. Th e status
registers are automatically cleared and the INT bit is cleared. When this bit is set, the STBY bit has no effect.
Bit 0 - INT - Indicates that there is an interrupt (see Section 4.8, "Interrupts"). When this bit is set, it asserts the ALERT# pin. If a channel detects a touch but interrupts are not enabled for that channel (see Section 5.12, "Interrupt Enable Register"), no a ction is taken. This bit is cleared by writing a logic ‘0’ to it. When this bit is cleared, the ALERT# pin will be deasserted, and all status registers will be cleared if the condition has been removed.
‘0’ - No interrupt pending.‘1’ - An interrupt condition occurred, and the ALERT# pin has be en asserted.
2013 Microchip Technology Inc. DS01567A-page 29

5.2 Status Registers

6-Channel Capacitive Touch Sensor
Datasheet

Table 5.3 Status Registers

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0
02h R Genera l Status -
03h R
Sensor Input
Status
BC_
OUT
- - CS6 CS5 CS4 CS3 CS2 CS1 00h
ACAL _FAIL
PWR - MULT MTP TOUCH 00h
All status bits are cleared when the device enters Deep Sleep (DSLEEP = ‘1’ - see Section 5.1, "Main
Control Register").

5.2.1 General Status - 02h

Bit 6 - BC_OUT - Indicates that the base count is out of limit for one or more enabled sensor inputs (see Section 4.4, "Sensor Input Calibration"). Thi s bit will not be cleared until all enabled sensor inpu ts have base counts within the limit.
‘0’ - All enabled sensor inputs have base counts in the operating range.‘1’ - One or more enabled sensor inputs has the base count out of limit. A status bit is set in the
Base Count Out of Limit Register (see Section 5.17, "Base Count Out of Limit Register").
Bit 5 - ACAL_FAIL - Indicates analog calibration failure for one or more enabled sensor inputs (see
Section 4.4, "Sensor Input Calibration"). This bit will not be cleared unti l all enabled sensor inputs have
successfully completed analog calibration.
‘0’ - All enabled sensor inputs were successfully calibrated.‘1’ - One or more enabled sensor inputs failed analog calibration. A status bit is set in the
Calibration Active Register (see Section 5.11, "Calibration Activate and Status Register").
DEFAULT
Bit 4 - PWR - Indicates that the designated power button has been held for the de signated time (see
Section 4.5, "Power Button"). This bit will cause the INT bit to be set. This bit is cleare d when the INT
bit is cleared if there is no longer a touch on the power button.
‘0’ - The power button has not been held for the required time or is not enabled.‘1’ - The power button has been held for the required time.
Bit 2 - MULT - Indicates that the device is blocking detected touches due to the Multiple Touch detection circuitry (see Section 5.14, "Multiple Touch Configuration Register"). This bit will not cause the INT bit to be set and hence will not cause an interrupt.
Bit 1 - MTP - Indicates that the device has detected a number of sensor inputs that exceed the MTP threshold either via the pattern recognition or via the number of sensor inputs (see Section 5.15,
"Multiple Touch Pattern Configuration Register"). This bit will cause the INT bit to be set if the
MTP_ALERT bit is also set. This bit is cleared when the INT bit is cleared if the condition that caused it to be set has been removed.
Bit 0 - TOUCH - Indicates that a touch was detected. This bit is set if any bit in the Sensor Input Status register is set.

5.2.2 Sensor Input Status - 03h

The Sensor Input Status Register stores status bits that indicate a touch has been detected. A value of ‘0’ in any bit indicates that no touch has been detecte d. A value of ‘1’ in any bit indicates that a touch has been detected.
DS01567A-page 30  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
All bits are cleared when the INT bit is cleared and if a touch on the respe ctive capaciti ve touch sensor input is no longer present. If a touch is still detected, the bits will not be cleared (but this will not cause the interrupt to be asserted).
Bit 5 - CS6 - Indicates that a touch was detected on Sensor Input 6. Bit 4 - CS5 - Indicates that a touch was detected on Sensor Input 5. Bit 3 - CS4 - Indicates that a touch was detected on Sensor Input 4. Bit 2 - CS3 - Indicates that a touch was detected on Sensor Input 3. Bit 1 - CS2 - Indicates that a touch was detected on Sensor Input 2. Bit 0 - CS1 - Indicates that a touch was detected on Sensor Input 1.

5.3 Noise Flag Status Registers

Table 5.4 Noise Flag Status Registers

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
0Ah R
APPLICATION NOTE: If the MTP detection circuitry is enabled, these bits count as sensor inputs above the MTP
APPLICATION NOTE: Regardless of the state of the Noise Status bits, if low frequency noise is detected on a
Noise Flag
Status
The Noise Flag Status registers store status bits that can be used to indicate that the analog block detected noise above the operating region of the analog d etector or th e R F noise de tector (see Section
4.7.3, "Noise Status and Configuration"). These bits indicate that the most recently received data from
the sensor input is invalid and should not be used for touch detection. So long as the bit is set for a particular channel, the delta count value is reset to 00h and thus no touch is detected.
These bits are not sticky and will be cleared automatically if the analog block does not report a noise error.
threshold (see Section 4.6, "Multiple Touch Pattern Detection") even if the corresponding delta count is not. If the corresponding delta count also exceeds the MTP threshold, it is not counted twice.
sensor input, that sample will be discarded unless the DIS_ANA_NOISE bit is set. As well, if RF noise is detected on a sensor input, that sample will be discarded unless the DIS_RF_NOISE bit is set.
--CS6_ NOISE
CS5_
NOISE
CS4_
NOISE
CS3_
NOISE
CS2_
NOISE

5.4 Sensor Input Delta Count Registers

Table 5.5 Sensor Input Delta Count Registers
CS1_
NOISE
00h
ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
10h R
11h R
2013 Microchip Technology Inc. DS01567A-page 31
Sensor Input 1
Delta Count
Sensor Input 2
Delta Count
Sign 64 32 16 8 4 2 1 00h
Sign 64 32 16 8 4 2 1 00h
6-Channel Capacitive Touch Sensor
Datasheet
Table 5.5 Sensor Input Delta Count Registers (continued)
ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
12h R
13h R
14h R
15h R
Sensor Input 3
Delta Count
Sensor Input 4
Delta Count
Sensor Input 5
Delta Count
Sensor Input 6
Delta Count
The Sensor Input Delta Count registers store the delta count that is compared against the threshold used to determine if a touch has been detected. The count value represents a change in input due to the capacitance associated with a touch on one of the sensor inputs and is referenced to a calibrated base “not touched” count value. The delta is an instantaneous change and is updated once per sensor input per sensing cycle (see Section 4.3.2, "Sensing Cycle").
The value presented is a standard 2’s complement number. In addition, the value is capped at a value of 7Fh. A reading of 7Fh indicates that the sensitivity settings are too high and should be adjusted accordingly (see Section 5.5).
The value is also capped at a negative value of 80h for negative d elta counts which may result upon a release.
Sign 64 32 16 8 4 2 1 00h
Sign 64 32 16 8 4 2 1 00h
Sign 64 32 16 8 4 2 1 00h
Sign 64 32 16 8 4 2 1 00h

5.5 Sensitivity Control Register

Ta b le 5.6 Sensitivity Control Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
1Fh R/W Sensitivity Control - DELTA_SENSE[2:0] BASE_SHIFT[3:0] 2Fh
The Sensitivity Control register controls the sensitivity of a touch detecti on. Bits 6-4 DELTA_SENSE[2:0] - Controls the sensitivity of a touch detection for sensor inputs enabled
in the Active state. The sensitivity settings act to scale the relative delta count value higher or lower based on the system parameters. A setting of 000b is the most sensitive while a setting of 111b is the least sensitive. At the more sensitive settings, touches are detected for a smaller delta capacitance corresponding to a “lighter” touch. These settings are more sensitive to noise, h owever, and a noisy environment may flag more false touches with higher sensitivity levels.
APPLICATION NOTE: A value of 128x is the most sensitive setting available. At the most sensitive setti ngs, the
MSB of the Delta Count register represents 64 out of ~25,000 which co rresponds to a touch of approximately 0.25% of the base capacitance (or a capacitance). Conversely, a value of 1x is the least sensitive setting available. At these settings, the MSB of the Delta Count register corresponds to a delta count of 8192 counts out of ~25,000 which corresponds to a touch of approximately 33% of the base capacitance
ΔC of 3.33pF from a 10pF base capacitance).
(or a
ΔC of 25fF from a 10pF base
DS01567A-page 32  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
0 0 0 128x (most sensitive) 001 64x 0 1 0 32x (default) 011 16x 100 8x 101 4x 110 2x 1 1 1 1x - (least sensitive)

Table 5.7 DELTA_SENSE Bit Decode

DELTA_SENSE[2:0]
SENSITIVITY MULTIPLIER210
Bits 3 - 0 - BASE_SHIFT[3:0] - Controls the scaling and data presentation of the Base Count registers. The higher the value of these bits, the larger the range and the lower the resolution of the data presented. The scale factor represents the multiplier to the bit-weighting presented in these register descriptions.
APPLICATION NOTE: The BASE_SHIFT[3:0] bits normally do not need to be updated. These settings will not affect
touch detection or sensitivity. These bits are sometimes helpful in analyzing the Cap Sensing board performance and stability.

Table 5.8 BASE_SHIFT Bit Decode

BASE_SHIFT[3:0]
DATA SCALING
FACTOR32 1 0
00 0 0 1x 00 0 1 2x 00 1 0 4x 00 1 1 8x 01 0 0 16x 01 0 1 32x 01 1 0 64x 0 1 1 1 128x 1 0 0 0 256x
All others
2013 Microchip Technology Inc. DS01567A-page 33
256x
(default = 1111b)

5.6 Configuration Registers

Table 5.9 Configuration Registers

6-Channel Capacitive Touch Sensor
Datasheet
ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0
20h R/W Configuration
44h R/W
Configuration
2
TIME
OUT
-
-
BC_
OUT_
RECAL
DIS_ DIG_
NOISE
BLK_
PWR_
CTRL
DIS_
ANA_
NOISE
BC_
OUT_
INT
MAX_
DUR_EN
SHOW_
RF_
NOISE
- - - 20h
DIS_
RF_
NOISE
ACAL _FAIL
_INT
INT_
REL_
n
The Configuration registers control general glo bal functionality that affects the entire device.

5.6.1 Configuration - 20h

Bit 7 - TIMEOUT - Enables the timeout and idle functionality of the SMBus protocol.
‘0’ (default) - The SMBus timeout and idle functionality are disable d. The SMBus interface will not
time out if the clock line is held low. Likewise, it will not reset if both the data and clock lines are held high for longer than 200us.
‘1’ - The SMBus timeout and idle functionality are enabled. The SMBus interface will reset if the
clock line is held low for longer than 30ms. Likewise, it will reset if both the data and clock lines are held high for longer than 200us.
Bit 5 - DIS_DIG_NOISE - Determines whether the digital noise threshold (see Section 5.20 , "Sensor
Input Noise Threshold Register") is used by the device. Setting this b it disables the feature.
‘0’ - The digital noise threshold is used. If a delta count value exceeds the noise threshold but do es
not exceed the touch threshold, the sample is discarded and not used for the automatic recalibration routine.
‘1’ (default) - The noise threshold is disabled. Any delta count that is less than the touch threshold
is used for the automatic recalibrati on routine.
DEFAULT
40h
Bit 4 - DIS_ANA_NOISE - Determines whether the analog noise filter is enabled. Setting this bit disables the feature.
‘0’ (default) - If low frequency noise is detected by the analog block, the delta count on the
corresponding channel is set to 0. Note that this does not require that Noise Status bits be set.
‘1’ - A touch is not blocked even if low frequency noise is detected.
Bit 3 - MAX_DUR_EN - Determines whether the maximum duration recalibration is enabled.
‘0’ (default) - The maximum duration recalibration functionality is d isabled. A touch may be held
indefinitely and no recalibration will be performed on any sensor input.
‘1’ - The maximum duration recalibration functionality is enabled. If a touch is held for longer than
the MAX_DUR bit settings (see Section 5.8), the recalibrati on routine will be re started (see Section
4.4.3, "Delayed Recalibration").

5.6.2 Configuration 2 - 44h

Bit 6 - BC_OUT_RECAL - Controls whether to retry analog calibration when the base count is out of limit for one or more sensor inputs.
‘0’ - When the BC_OUTx bit is set for a sensor input, the out of li mit base count will be used for
the sensor input.
DS01567A-page 34  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
‘1’ (default) - When the BC_OUTx bit is set for a sensor input (see Section 5.17, "Base Count Out
of Limit Register"), analog calibration will be repeated on the sensor input.
Bit 5 - BLK_PWR_CTRL - Determines whether the device will redu ce power consumption while waiting between conversion time completion and the end of the sensing cycle.
‘0’ (default) - The device will reduce power consumption during the ti me between the end of the
last conversion and the end of the sensing cycle.
‘1’ - The device will not reduce power consumption during the time between the end of the last
conversion and the end of the sensing cycle.
Bit 4 - BC_OUT_INT - Controls the interrupt behavior when the base count is out of limit for one or more sensor inputs.
‘0’ (default) - An interrupt is not generated when the BC_OUT bit is set (see Section 5.2 , "Status
Registers").
‘1’ - An interrupt is generated when the BC_OUT bit is set.
Bit 3 - SHOW_RF_NOISE - Determines whether the Noise Status bits will show RF Noise as the only input source.
‘0’ (default) - The Noise Status registers will show both RF noise and low frequency noise if either
is detected on a capacitive touch sensor input.
‘1’ - The Noise Status registers will only show RF noise if it is detected on a capacitive touch sensor
input. Low frequency noise will still be detected and touches will be blocked normally; however, the status bits will not be updated.
Bit 2 - DIS_RF_NOISE - Determines whether the RF noise filter is enabled. Se tting this bit disables the feature.
‘0’ (default) - If RF noise is detected by the analog block, the delta count o n the corresponding
channel is set to 0. Note that this does not require that Noi se Status bits be set.
‘1’ - A touch is not blocked even if RF noise is detected.
Bit 1 - ACAL_FAIL_INT - Controls the interrupt behavior when analog calibration fails for one or more sensor inputs (see Section 4.4, "Sensor Input Calibration").
‘0’ (default) - An interrupt is not generated when the ACAL_FAIL bit is set (see Section 5.2, "Status
Registers").
‘1’ - An interrupt is generated when the ACAL_FAIL bit is set
Bit 0 - INT_REL_n - Controls the interrupt behavior when a release is detected on a button (see
Section 4.8.2, "Capacitive Sensor Input Interrupt Behavior").
‘0’ (default) - An interrupt is generated when a press is detected an d again when a release is
detected and at the repeat rate (if enabled - see Section 5.13).
‘1’ - An interrupt is generated when a press is detected and at the repeat rate but not when a
release is detected.

5.7 Sensor Input En able Register

Table 5.10 Sensor Input Enable Register

ADDRR/WREGISTERB7 B6B5B4B3B2B1B0DEFAULT
21h R/W
2013 Microchip Technology Inc. DS01567A-page 35
Sensor Input
Enable
- - CS6_EN CS5_EN CS4_EN CS3_EN CS2_EN CS1_EN 3Fh
The Sensor Input Enable register determines whether a capacitive touch sensor input is incl uded in the sensing cycle in the Active state.
For all bits in this register:
‘0’ - The specified input is not included in the sensing cycle in the Active state.‘1’ (default) - The specified input is included in the sensing cycle in the Active state.
Bit 5 - CS6_EN - Determines whether the CS6 input is monitored in the Active state. Bit 4 - CS5_EN - Determines whether the CS5 input is monitored in the Active state. Bit 3 - CS4_EN - Determines whether the CS4 input is monitored in the Active state. Bit 2 - CS3_EN - Determines whether the CS3 input is monitored in the Active state. Bit 1 - CS2_EN - Determines whether the CS2 input is monitored in the Active state. Bit 0 - CS1_EN - Determines whether the CS1 input is monitored in the Active state.

5.8 Sensor Input Configuration Register

Table 5.11 Sensor Input Configuration Register

6-Channel Capacitive Touch Sensor
Datasheet
ADDRR/W REGISTER B7 B6 B5B4B3B2B1B0DEFAULT
22h R/W
Sensor Input
Configuration
MAX_DUR[3:0] RPT_RATE[3:0] A4h
The Sensor Input Configuration Register controls timings associated with the capacitive sensor inputs. Bits 7 - 4 - MAX_DUR[3:0] - (default 1010b) - Determines the maximum time that a sensor pad is
allowed to be touched until the capacitive touch sensor input is recalibrated (see Section 4.4.3,
"Delayed Recalibration"), as shown in Table 5.12.
Table 5.12 MAX_DUR Bit Decode
MAX_DUR[3:0]
TIME BEFORE RECALIBRATION32 1 0
0 0 0 0 560ms 0 0 0 1 840ms 0 0 1 0 1120ms 0 0 1 1 1400ms 0 1 0 0 1680ms 0 1 0 1 2240ms 0 1 1 0 2800ms 0 1 1 1 3360ms
DS01567A-page 36  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
MAX_DUR[3:0]
1 0 0 0 3920ms 1 0 0 1 4480ms 1 0 1 0 5600ms (default) 1 0 1 1 6720ms 1 1 0 0 7840ms 1 1 0 1 8906ms 1 1 1 0 10080ms 1 1 1 1 11200ms
Bits 3 - 0 - RPT_RATE[3:0] - (default 0100b) Determines the time duration between interrupt assertions when auto repeat is enabled (see Section 4.8.2, "Capacitive Sensor Input Interrupt Behavior"). The resolution is 35ms and the range is from 35ms to 560ms as shown in Table 5.13.
Table 5.12 MAX_DUR Bit Decode (continued)
TIME BEFORE RECALIBRATION32 1 0

Table 5.13 RPT_RATE Bit Decode

RPT_RATE[3:0]
INTERRUPT REPEAT RATE3210
0000 35ms 0001 70ms 0 0 1 0 105ms 0 0 1 1 140ms 0 1 0 0 175ms (default) 0 1 0 1 210ms 0 1 1 0 245ms 0 1 1 1 280ms 1 0 0 0 315ms 1 0 0 1 350ms 1 0 1 0 385ms 1 0 1 1 420ms 1 1 0 0 455ms 1 1 0 1 490ms 1 1 1 0 525ms 1 1 1 1 560ms
2013 Microchip Technology Inc. DS01567A-page 37
6-Channel Capacitive Touch Sensor
Datasheet

5.9 Sensor Input Configuration 2 Register

Table 5.14 Sensor Input Configuration 2 Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
23h R/W
0000 35ms 0001 70ms 0 0 1 0 105ms 0 0 1 1 140ms 0 1 0 0 175ms
Sensor Input
Configuration 2
- - - - M_PRESS[3:0] 07h
Bits 3 - 0 - M_PRESS[3:0] - (default 0111b) - Determines the minimum amount of time that sensor inputs configured to use auto repeat must detect a sensor pad touch to detect a “press and hold” event (see Section 4.8.2, "Capacitive Sensor Input Interrupt Behavi or"). If the sensor input detects a touch for longer than the M_PRESS[3:0] settings, a “press and hold” event is detected. If a sensor input detects a touch for less than or equal to the M_PRESS[3:0] settings, a touch event is detected.
The resolution is 35ms and the range is from 35ms to 560ms as shown in Table 5.15.

Table 5.15 M_PRESS Bit Decode

M_PRESS[3:0]
M_PRESS SETTINGS3210
0 1 0 1 210ms 0 1 1 0 245ms 0 1 1 1 280ms (default) 1 0 0 0 315ms 1 0 0 1 350ms 1 0 1 0 385ms 1 0 1 1 420ms 1 1 0 0 455ms 1 1 0 1 490ms 1 1 1 0 525ms 1 1 1 1 560ms
DS01567A-page 38  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

5.10 Averaging and Sampling Configuration Register

Table 5.16 Averaging and Sampling Configuration Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
24h R/W
Averaging and
Sampling
Config
- AVG[2:0] SAMP_TIME[1:0]
CYCLE_TIME
[1:0]
39h
The Averaging and Sampling Configuration register controls the number of samples taken and the target sensing cycle time for sensor inputs enabled in the Active state.
Bits 6 - 4 - AVG[2:0] - Determines the number of samples that are taken for all channels enabled in the Active state during the sensing cycle as shown in Table 5.17. All samples are taken consecutively on the same channel before the next channel is sampled and the result is ave raged over the number of samples measured before updating the measured results.
For example, if CS1, CS2, and CS3 are sampled during the sensing cycle, and the AVG[2:0] bits are set to take 4 samples per channel, then the full sensing cycle will be: CS1, CS1, CS1, CS1, CS2, CS2, CS2, CS2, CS3, CS3, CS3, CS3.

Table 5.17 AVG Bit Decode

AVG[2:0]
NUMBER OF SAMPLES TAKEN
PER MEASUREMENT210
000 1 001 2 010 4 0 1 1 8 (default) 100 16 101 32 110 64 1 1 1 128
Bits 3 - 2 - SAMP_TIME[1:0] - Determines the time to take a single sample as shown in Table 5.18. Sample time affects the magnitude of the base counts, as shown in Table4.1, "Ideal Base Counts".
Table 5.18 SAMP_TIME Bit Decode
SAMP_TIME[1:0]
SAMPLE TIME10
0 0 320us 0 1 640us
2013 Microchip Technology Inc. DS01567A-page 39
6-Channel Capacitive Touch Sensor
Datasheet
Table 5.18 SAMP_TIME Bit Decode (continued)
SAMP_TIME[1:0]
SAMPLE TIME10
1 0 1.28ms (default) 1 1 2.56ms
Bits 1 - 0 - CYCLE_TIME[1:0] - Determines the desired sensing cycle time for channels enabled in the Active state, as shown in Table 5.19. All enabled channel s are sampl ed at the beginnin g of the sensing cycle. If additional time is remaining, the device is placed into a lower power state for the remainder of the sensing cycle.

Table 5.19 CYCLE_TIME Bit Decode

CYCLE_TIME[1:0]
PROGRAMMED SENSING CYCLE
TIME10
00 35ms 0 1 70ms (default) 1 0 105ms 1 1 140ms
APPLICATION NOTE: The programmed sensing cycle time (CYCLE_TIME[1:0]) is only maintained if the actual time
to take the samples is less than the programmed cycle time. The AVG[2:0] bits will take priority, so the sensing cycle time will be extended as necessary to accommodate the number of samples to be measured.

5.11 Calibration Activate and Status Register

Table 5.20 Calibration Activate and Status Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
26h R/W
Calibration
Activate
--
and Status
The Calibration Activate and Status Register serves a dual function:
1. It forces the selected sensor inputs to be calibrated, affecting both the analog and digital blocks (see Section 4.4, "Senso r Input Calibration"). When one or more bits are set, the device performs the calibration routine on the correspond ing sensor inputs. When the analog calibration routine is finished, the CALX[9:0] bits are updated (see Section 5.28, "Sensor Input Calibration Registers"). If the analog calibration routine completed successfully for a sensor input, the corresponding bit is automatically cleared.
CS6_
CAL
CS5_
CAL
CS4_
CAL
CS3_
CAL
CS2_
CAL
CS1_
CAL
00h
APPLICATION NOTE: In the case above, bits can be set by host or are automatically set by the d evice whenever
a sensor input is newly enabled (such as coming out of Deep Sleep, after power-on reset,
DS01567A-page 40  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
when a bit is set in the Sensor Enable Channel Enable register (21h) and the device is in the Active state, or when a bit is set in the Standby Channel Enable Register (40h) and the device is in the Standby state).
2. It serves as an indicator of an analog calibration failure. If any of the bits could not be cleared, the ACAL_FAIL bit is set (see Section 5.2, "Status Registers"). A bit will fail to clear if a noise bit is set or if the calibration value is at the maximum or minimum value.
APPLICATION NOTE: In the case above, do not check the Calibration Activate and Status bits for failures unless
the ACAL_FAIL bit is set. In addition, if a sensor input is newly enabled, do not check the Calibration Activate and Status bits until time has elapsed to complete calibration on the sensor input. Otherwise, the ACAL_FAIL bit may be set for one sensor input, but the newly enabled sensor input may still be set to ‘1’ in the Calibration Activate and Status, not because it failed, but because it has not been calibrated yet.
For all bits in this register:
‘0’ - No action needed.‘1’ - Writing a ‘1’, forces a calibration on the corresponding sensor input. If the ACAL_FAIL flag is
set and this bit is set (see application note above), the sensor input cou ld not complete analog
calibration. Bit 5 - CS6_CAL - Bit for CS6 input. Bit 4 - CS5_CAL - Bit for CS5 input. Bit 3 - CS4_CAL - Bit for CS4 input. Bit 2 - CS3_CAL - Bit for CS3 input. Bit 1 - CS2_CAL - Bit for CS2 input. Bit 0 - CS1_CAL - Bit for CS1 input.
APPLICATION NOTE: Writing a ‘0’ to clear a ‘1’ may cause a planned calibrati on to be skipped, if the calibration
routine had not reached the sensor input yet.

5.12 Interrupt Enable Register

Table 5.21 Interrupt Enable Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
27h R/W
Interrupt
Enable
--
CS6_
INT_EN
The Interrupt Enable register determines whether a sensor pad touch or release (if enabled) causes an interrupt (see Section 4.8, "Interrupts").
For all bits in this register:
‘0’ - The ALERT# pin will not be asserted if a touch is detected on the specified sensor input.‘1’ (default) - The ALERT# pin will be asserted if a touch is detected on the specified sensor input.
CS5_
INT_EN
CS4_
INT_EN
CS3_
INT_EN
CS2_
INT_EN
CS1_
INT_EN
3Fh
Bit 5 - CS6_INT_EN - Enables the ALERT# pin to be asserted if a touch is detected on CS6 (associated with the CS6 status bit).
Bit 4 - CS5_INT_EN - Enables the ALERT# pin to be asserted if a touch is detected on CS5 (associated with the CS5 status bit).
2013 Microchip Technology Inc. DS01567A-page 41
6-Channel Capacitive Touch Sensor
Datasheet
Bit 3 - CS4_INT_EN - Enables the ALERT# pin to be asserted if a touch is detected on CS4 (associated with the CS4 status bit).
Bit 2 - CS3_INT_EN - Enables the ALERT# pin to be asserted if a touch is detected on CS3 (associated with the CS3 status bit).
Bit 1 - CS2_INT_EN - Enables the ALERT# pin to be asserted if a touch is detected on CS2 (associated with the CS2 status bit).
Bit 0 - CS1_INT_EN - Enables the ALERT# pin to be asserted if a touch is detected on CS1 (associated with the CS1 status bit).

5.13 Repeat Rate Enable Register

Table 5.22 Repeat Rate Enable Register

ADDRR/WREGISTERB7B6B5B4B3B2B1B0DEFAULT
28h R/W
Repeat Rate
Enable
--
CS6_
RPT_EN
CS5_
RPT_EN
CS4_
RPT_EN
CS3_
RPT_EN
CS2_
RPT_EN
CS1_
RPT_EN
The Repeat Rate Enable register enables the repeat rate of the sensor inpu ts as described in Section
4.8.2, "Capacitive Sensor Input Interrupt Behavior".
For all bits in this register:
‘0’ - The repeat rate for the specified sensor input is disabled. It will only generate an interrupt when
a touch is detected and when a release is detected (if enabled) n o matter how long the touch is
held.
‘1’ (default) - The repeat rate for the speci fied sensor input is enabled. In the case of a “touch”
event, it will generate an interrupt when a touch is detected and a release is detected (as
determined by the INT_REL_n bit - see Section 5.6, "Configuration Registers"). In the case of a
“press and hold” event, it will generate a n interrupt when a tou ch is detected and at the repeat rate
so long as the touch is held. Bit 5 - CS6_RPT_EN - Enables the repeat rate for capacitive touch sensor input 6. Bit 4 - CS5_RPT_EN - Enables the repeat rate for capacitive touch sensor input 5. Bit 3 - CS4_RPT_EN - Enables the repeat rate for capacitive touch sensor input 4. Bit 2 - CS3_RPT_EN - Enables the repeat rate for capacitive touch sensor input 3. Bit 1 - CS2_RPT_EN - Enables the repeat rate for capacitive touch sensor input 2. Bit 0 - CS1_RPT_EN - Enables the repeat rate for capacitive touch sensor input 1.
3Fh

5.14 Multiple Touch Configuration Register

Table 5.23 Multiple Touch Configuration

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
2Ah R/W
DS01567A-page 42  2013 Microchip Technology Inc.
Multiple T ouc h
Config
MULT_
BLK_
EN
- - - B_MULT_T[1:0] - - 80h
6-Channel Capacitive Touch Sensor
Datasheet
The Multiple Touch Configuration register controls the settings for the multiple touch dete ction circuitry. These settings determine the number of simultaneous buttons that may be pressed be fore additional buttons are blocked and the MULT status bit is set.
Bit 7 - MULT_BLK_EN - Enables the multiple button blocking circuitry.
‘0’ - The multiple touch circuitry is disabled. The device will no t block multiple touches.‘1’ (default) - The multiple touch circuitry is enabled . The device will flag the number of touches
equal to programmed multiple touch threshold and block al l others. It will remember which sensor
inputs are valid and block all others until that sensor pad has been released. Once a sensor pad
has been released, the N detected touches (determined via the sensing cycle order of CS1 - CS6)
will be flagged and all others blocked. Bits 3 - 2 - B_MULT_T[1:0] - Determines the number of simultaneous touches on all sensor pads
before a Multiple Touch Event is detected and sen sor inputs are blocked. The bit decode is given by
Table 5.24.
B_MULT_T[1:0]

Table 5.24 B_MULT_T Bit Decode

NUMBER OF SIMULTANEOUS TOUCHES10
0 0 1 (default) 01 2 10 3 11 4

5.15 Multiple Touch Pattern Configuration Register

Table 5.25 Multiple Touch Pattern Configuration

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
2Bh R/W
Multiple T ouch Pattern Config
MTP_ EN - - - MTP_TH [1:0]
The Multiple Touch Pattern Configuration register controls the settings for the multiple touch pattern detection circuitry. This circuitry works like the multiple touch detection circuitry with the following differences:
1. The detection threshold is a percentage of the touch detection threshold as defined by the
MTP_TH[1:0] bits whereas the multiple touch circuitry uses the touch detection threshold.
2. The MTP detection circuitry either will detect a specific pattern of sensor inputs as determined by
the Multiple Touch Pattern register settings or it will use the Multiple Touch Pattern register settings to determine a minimum number of sensor inputs that will cause the MTP circuitry to flag an event (see Section 5.16, "Multiple Touch Pattern Register"). When using pattern recognition mode, if all of the sensor inputs set by the Multiple Touch Pattern register have a delta count greater than the MTP threshold or have their corresponding Noise Flag Status bits set, the MTP bit will be set. When using the absolute number mode, if the number of sensor inputs with thresholds above the MTP threshold or with Noise Flag Status bits set is equal to or greater than this number, the MTP bit will be set.
3. When an MTP event occurs, all touches are blocked and an interrupt is generated.
COMP_
PTRN
MTP_
ALERT
00h
2013 Microchip Technology Inc. DS01567A-page 43
6-Channel Capacitive Touch Sensor
Datasheet
4. All sensor inputs will remain blocked so long as the requisite number of sensor inputs are above
the MTP threshold or have Noise Flag Status bits set. Once this condition is removed, touch detection will be restored. Note that the MTP status bit is only cleared by writing a ‘0’ to the INT bit once the condition has been removed.
Bit 7 - MTP_EN - Enables the multiple touch pattern detection circuitry.
‘0’ (default) - The MTP detection circuitry is disabled.‘1’ - The MTP detection circuitry is enabled.
Bits 3 - 2 - MTP_TH[1:0] - Determine the MTP threshold, as shown in Table 5.26. This threshold is a percentage of sensor input threshold (see Section 5.19, "Sensor In put Threshold Registers") for inputs enabled in the Active state or of the standby threshold (see Section 5.24, "Standby Threshold
Register") for inputs enabled in the Standby state.

Table 5.26 MTP_TH Bit Decode

MTP_TH[1:0]
THRESHOLD DIVIDE SETTING10
0 0 12.5% (default) 0125% 1 0 37.5% 1 1 100%
Bit 1 - COMP_PTRN - Determines whether the MTP detection circuitry will use the Multiple Touch Pattern register as a specific pattern of sensor inputs or as an absolute number of sensor inputs.
‘0’ (default) - The MTP detection circuitry will use the Multiple Touch Pattern register bit settings as
an absolute minimum number of sensor inputs that must be above the threshold or have Noise
Flag Status bits set. The number will be equal to the number of bits set in the register.
‘1’ - The MTP detection circuitry will use pattern recognition. Each bit set in the Multiple Touch
Pattern register indicates a specific sensor input that must have a delta count greater than the MTP
threshold or have a Noise Flag Status bit set. If the criteria are met, the MTP status bit will be set. Bit 0 - MTP_ALERT - Enables an interrupt if an MTP event occurs. In either condition, the MTP status
bit will be set.
‘0’ (default) - If an MTP event occurs, the ALERT# pin is not asserted. ‘1’ - If an MTP event occurs, the ALERT# pin will be asserted.

5.16 Multiple Touch Pattern Register

Table 5.27 Multiple Touch Pattern Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
2Dh R/W
Multiple
Touch
Pattern
--
CS6_
PTRN
CS5_
PTRN
CS4_
PTRN
CS3_
PTRN
CS2_ PTRN
CS1_
PTRN
3Fh
The Multiple Touch Pattern register acts as a pattern to identify an expected sensor input profile for diagnostics or other significant events. There are two methods for how the Multiple Touch Pattern
DS01567A-page 44  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
register is used: as specific sensor inputs or number of sensor input that must exceed the MTP threshold or have Noise Flag Status bits set. Which method is used is based on the COMP_PTRN bit (see Section 5.15). The methods are described below.
1. Specific Sensor Inputs: If, during a single sensing cycle, the specific sensor inputs above the MTP
threshold or with Noise Flag Status bits set match those bits set in the Multiple Touch Pattern register, an MTP event is flagged.
2. Number of Sensor Inputs: If, during a single sensing cycle, the number of sensor inputs with a delta
count above the MTP threshold or with Noise Flag Status bits set is equal to or greater than the number of pattern bits set, an MTP event is flagged.
For all bits in this register:
‘0’ - The specified sensor input is not considered a part of the pattern.‘1’ - The specified sensor input is considered a part of the pattern, or the absolute number of sensor
inputs that must have a delta count greater than the MTP threshold or have the Noise Flag Status
bit set is increased by 1. Bit 5 - CS6_PTRN - Determines whether CS6 is considered as part of the Multiple Touch Pattern. Bit 4 - CS5_PTRN - Determines whether CS5 is considered as part of the Multiple Touch Pattern. Bit 3 - CS4_PTRN - Determines whether CS4 is considered as part of the Multiple Touch Pattern. Bit 2 - CS3_PTRN - Determines whether CS3 is considered as part of the Multiple Touch Pattern. Bit 1 - CS2_PTRN - Determines whether CS2 is considered as part of the Multiple Touch Pattern. Bit 0 - CS1_PTRN - Determines whether CS1 is considered as part of the Multiple Touch Pattern.

5.17 Base Count Out of Limit Register

Table 5.28 Base Count Out of Limit Register

ADDRR/WREGISTERB7B6B5B4B3B2B1B0
2Eh R
Base Count Out of Limit
--
BC_
OUT_
6
The Base Count Out of Limit Register indicates which sensor inputs have base counts out of limit (see
Section 4.4, "Sensor Input Calibration"). When these bits are set, the BC_OUT bit is set (see Section
5.2, "Status Registers").
For all bits in this register:
‘0’ - The base count for the specified sensor input is in the ope rating range.‘1’ - The base count of the specified sensor input is not in the operating range.
Bit 5 - BC_OUT_6 - Indicates whether CS6 has a base count out of limit.
BC_
OUT_
5
BC_
OUT_
4
BC_
OUT_
3
BC_
OUT_
2
BC_
OUT_
1
DEFAULT
00h
Bit 4 - BC_OUT_5 - Indicates whether CS6 has a base count out of limit. Bit 3 - BC_OUT_4 - Indicates whether CS6 has a base count out of limit. Bit 2 - BC_OUT_3 - Indicates whether CS3 has a base count out of limit. Bit 1 - BC_OUT_2 - Indicates whether CS2 has a base count out of limit. Bit 0 - BC_OUT_1 - Indicates whether CS1 has a base count out of limit.
2013 Microchip Technology Inc. DS01567A-page 45
6-Channel Capacitive Touch Sensor
Datasheet

5.18 Recalibration Configuration Register

Ta ble 5.29 Recalibration Configuration Registers

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
2Fh R/W
Recalibration
Configuration
BUT_
LD_TH
NO_CLR
_INTD
NO_CLR
_NEG
NEG_DELTA_
CNT[1:0]
CAL_CFG[2:0] 8Ah
The Recalibration Configuration register con trols some recalibration routine settings (see Sectio n 4.4,
"Sensor Input Calibration") as well as advanced controls to program the Sensor Input Threshold
register settings. Bit 7 - BUT_LD_TH - Enables setting all Sensor Input Threshold registers by writing to the Sensor
Input 1 Threshold register.
‘0’ - Each Sensor Input X Threshold register is updated individually. ‘1’ (default) - Writing the Sensor Input 1 Threshold register will automatically over write the Sensor
Input Threshold registers for all sensor inputs (Sensor Input Threshold 1 through Sen sor Input
Threshold 6). The individual Sensor Input X Threshold registers (Sensor Input 2 T hreshold through
Sensor Input 6 Threshold) can be individually updated at any time. Bit 6 - NO_CLR_INTD - Controls whether the accumulation of intermediate data is cleared if the noise
status bit is set.
‘0’ (default) - The accumulation of intermediate data is cleared if the noise status bit is set.‘1’ - The accumulation of intermediate data is not cleared if the noise status bit is set.
APPLICATION NOTE: Bits 5 and 6 should both be set to the same value. Either both should be set to ‘ 0’ or both
should be set to ‘1’.
Bit 5 - NO_CLR_NEG - Controls whether the consecutive negative delta counts counter is cleared if the noise status bit is set.
‘0’ (default) - The consecutive negative delta counts counter is cleared if the noise status bit is set.‘1’ - The consecutive negative delta counts counter is not cleared if the noise status bit is set.
Bits 4 - 3 - NEG_DELTA_CNT[1:0] - Determines the number of negative delta counts necessary to trigger a digital recalibration (see Section 4.4.2, "Negative Delta Count Recalibration"), as shown in
Table 5.30.

Table 5.30 NEG_DELTA_CNT Bit Decode

NEG_DELTA_CNT[1:0]
NUMBER OF CONSECUTIVE NEGATIVE DELTA
COUNT VALUES10
00 8 0 1 16 (default) 10 32 1 1 None (disabled)
Bits 2 - 0 - CAL_CFG[2:0] - Determines the update time and number of samples of the automatic recalibration routine (see Section 4.4.1, "Automatic Recalibration"). The settings apply to all sensor
DS01567A-page 46  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet
inputs universally (though individual sensor inputs can be configured to support recalibration - see
Section 5.11).

Table 5.31 CAL_CFG Bit Decode

CAL_CFG[2:0]
RECALIBRATION
SAMPLES (SEE
0 0 0 16 16 001 32 32 0 1 0 64 64 (default) 0 1 1 128 128 100 256 256 1 0 1 256 1024 1 1 0 256 2048 1 1 1 256 4096
Note 5.1 Recalibration Samples refers to the number of samples that are measured and averaged
before the Base Count is updated however does not control the base count u pda te peri od.
Note 5.2 Update Time refers to the amount of time (in sensing cycle periods) that elapses before
the Base Count is updated. The time will depend upon the number of channels enabled, the averaging setting, and the programmed sensing cycle time.

5.19 Sensor Input Threshold Registers

Note 5.1)
UPDATE TIME (SEE
Note 5.2)210

Table 5.32 Sensor Input Threshold Registers

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
30h R/W
31h R/W
32h R/W
33h R/W
34h R/W
35h R/W
Sensor Input 1
Threshold
Sensor Input 2
Threshold
Sensor Input 3
Threshold
Sensor Input 4
Threshold
Sensor Input 5
Threshold
Sensor Input 6
Threshold
-6432168421 40h
-6432168421 40h
-6432168421 40h
-6432168421 40h
-6432168421 40h
-6432168421 40h
The Sensor Input Threshold registers store the delta threshold that is used to determine if a touch has been detected. When a touch occurs, the input signal of the corresponding sensor pad chang es due
2013 Microchip Technology Inc. DS01567A-page 47
6-Channel Capacitive Touch Sensor
Datasheet
to the capacitance associated with a touch. If the sensor input change excee ds the threshold settings, a touch is detected.
When the BUT_LD_TH bit is set (see Section 5.18 - bit 7), writing data to the Sensor Input 1 Threshold register will update all of the Sensor Input Threshold registers (31h - 35h inclusive).

5.20 Sensor Input Noise Threshold Register

Table 5.33 Sensor Input Noise Threshold Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
38h R/W
Sensor Input
Noise Threshold
The Sensor Input Noise Threshold register controls the value of a secondary internal threshold to detect noise and improve the automatic recalibration routine. If a capacitive touch sensor input exceeds the Sensor Input Noise Threshold but does not exceed the sensor input threshold, it is determined to be caused by a noise spike. That sample is not used by the automatic recalibration routine. This feature can be disabled by setting the DIS_DIG_NOISE bit.
Bits 1-0 - CS1_BN_TH[1:0] - Controls the noise threshold for all capacitive touch sensor inputs, as shown in Table 5.34. The threshold is proportion al to the threshold setting.
CS_BN_TH[1:0]
0025% 0 1 37.5% (default) 1050% 1 1 62.5%
------

Table 5.34 CSx_BN_TH Bit Decode

PERCENT THRESHOLD SETTING10
CS_BN_TH
[1:0]
01h

5.21 Standby Channel Register

T able 5.35 Standby Channel Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
40h R/W
DS01567A-page 48  2013 Microchip Technology Inc.
Standby Channel
The Standby Channel register controls which (if any) capacitive touch sensor inputs are enabled in Standby (see Section 4.3.1.2, "Standby State Sensing Settings").
--
CS6_ STBY
CS5_
STBY
CS4_ STBY
CS3_
STBY
CS2_
STBY
CS1_
STBY
00h
6-Channel Capacitive Touch Sensor
Datasheet
For all bits in this register:
‘0’ (default) - The specified channel will not be monitored in Standby. ‘1’ - The specified channel will be monitored in Standby. It will use the standby threshold setting,
and the standby averaging and sensitivity settings. Bit 5 - CS6_STBY - Controls whether the CS6 channel is enabled in Standby. Bit 4 - CS5_STBY - Controls whether the CS5 channel is enabled in Standby. Bit 3 - CS4_STBY - Controls whether the CS4 channel is enabled in Standby. Bit 2 - CS3_STBY - Controls whether the CS3 channel is enabled in Standby. Bit 1 - CS2_STBY - Controls whether the CS2 channel is enabled in Standby. Bit 0 - CS1_STBY - Controls whether the CS1 channel is enabled in Standby.

5.22 Standby Configuration Register

Table 5.36 Standby Configuration Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
41h R/W
Standby
Configuration
AVG_
SUM
STBY_AVG[2:0]
STBY_SAMP_
TIME[1:0]
STBY_CY_TIME
[1:0]
39h
The Standby Configuration register controls averaging and sensing cycle time for sensor inputs enabled in Standby. This register allows the user to change averaging and sample time s on a limited number of sensor inputs in Standby and still maintain normal functionality in the Active state.
Bit 7 - AVG_SUM - Determines whether the sensor inputs enabled in Standby will average the programmed number of samples or whether they will accumulate for the programmed number of samples.
‘0’ - (default) - The Standby enabled sensor input delta count values will be based on the average
of the programmed number of samples when compared against the threshold.
‘1’ - The Standby enabled sensor input delta count values will be based on the summation of the
programmed number of samples when compared against the threshold. Caution should be used
with this setting as a touch may overflow the delta count registers and may result in false readings. Bits 6 - 4 - STBY_AVG[2:0] - Determines the number of samples that are taken for all Standby enabled
channels during the sensing cycle as shown in Table 5.37. All samples are taken consecutively on the same channel before the next channel is sampled and the result is averaged over the number of samples measured before updating the measured results.
Table 5.37 STBY_AVG Bit Decode
STBY_AVG[2:0]
NUMBER OF SAMPLES TAKEN
PER MEASUREMENT210
000 1 001 2 010 4 0 1 1 8 (default)
2013 Microchip Technology Inc. DS01567A-page 49
6-Channel Capacitive Touch Sensor
Datasheet
Table 5.37 STBY_AVG Bit Decode (continued)
STBY_AVG[2:0]
NUMBER OF SAMPLES TAKEN
PER MEASUREMENT210
100 16 101 32 110 64 1 1 1 128
Bit 3 - 2 - STBY_SAMP_TIME[1:0] - Determines the time to take a single sample for sensor inputs enabled in Standby as shown in Table 5.38.

Table 5.38 STBY_SAMP_TIME Bit Decode

STBY_SAMP_TIME[1:0]
SAMPLING TIME10
0 0 320us 0 1 640us 1 0 1.28ms (default) 1 1 2.56ms
Bits 1 - 0 - STBY_CY_TIME[2:0] - Determines the desired sensing cycle time for sensor inputs enabled during Standby, as shown in Table 5.39. All enabled channels are sampled at the beginning of the sensing cycle. If additional time is remaining, the device is placed into a lower power state for the remainder of the sensing cycle.

Table 5.39 STBY_CY_TIME Bit Decode

STBY_CY_TIME[1:0]
PROGRAMMED SENSING CYCLE
TIME10
00 35ms 0 1 70ms (default) 1 0 105ms 1 1 140ms
APPLICATION NOTE: The programmed sensing cycle time (STDBY_CY_TIME[1:0] is only maintained if the actual
time to take the samples is less than the p rogrammed cycle time. The STBY_AVG[2:0] bits will take priority, so the sensing cycle time will be extended as necessary to accommodate the number of samples to be measured.
DS01567A-page 50  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

5.23 Standby Sensitivity Register

Table 5.40 Standby Sensitivity Register

ADDRR/WREGISTER B7 B6 B5B4B3B2B1B0DEFAULT
42h R/W
APPLICATION NOTE: A value of 128x is the most sensitive setting available. At the most sensitivity settings, the
Standby
Sensitivity
The Standby Sensitivity register controls the sensitivity for sensor inputs enabled in Standby. Bits 2 - 0 - STBY_SENSE[2:0] - Controls the sensitivity for sensor inputs that are enabled in Standby.
The sensitivity settings act to scale the relative delta count value higher or lower based on the system parameters. A setting of 000b is the most sensitive while a setting of 111b i s the least sensitive. At the more sensitive settings, touches are detected for a smaller delta capacitance corresponding to a “lighter” touch. These settings are more sensitive to noise, however, and a noisy environment may flag more false touches than higher sensitivity levels.
MSB of the Delta Count register represents 64 out of ~25,000 which co rresponds to a touch of approximately 0.25% of the base capacitance (or a capacitance). Conversely a value of 1x is the least sensitive setting available. At these settings, the MSB of the Delta Count register corresponds to a delta count of 8192 counts out of ~25,000 which corresponds to a touch of approximately 33% of the base capacitance
ΔC of 3.33pF from a 10pF base capacitance).
(or a
- - - - - STBY_SENSE[2:0] 02h
ΔC of 25fF from a 10pF base

Table 5.41 STBY_SENSE Bit Decode

STBY_SENSE[2:0]
SENSITIVITY MULTIPLIER210
0 0 0 128x (most sensitive) 001 64x 0 1 0 32x (default) 011 16x 100 8x 101 4x 110 2x 1 1 1 1x - (least sensitive)

5.24 Standby Threshold Register

Table 5.42 Standby Threshold Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
43h R/W
2013 Microchip Technology Inc. DS01567A-page 51
Standby
Threshold
-6432168421 40h
6-Channel Capacitive Touch Sensor
Datasheet
The Standby Threshold register stores the delta threshold that is used to determine if a touch has been detected. When a touch occurs, the input signal of the corresponding sensor pad changes due to the capacitance associated with a touch. If the sensor input change exceeds the threshold settings, a touch is detected.

5.25 Sensor Input Base Count Registers

Table 5.43 Sensor Input Base Count Registers

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
50h R
51h R
52h R
53h R
54h R
55h R
Sensor Input 1
Base Count
Sensor Input 2
Base Count
Sensor Input 3
Base Count
Sensor Input 4
Base Count
Sensor Input 5
Base Count
Sensor Input 6
Base Count
The Sensor Input Base Count registers store the calibrated “not touched” input value from the capacitive touch sensor inputs. These registers are periodically updated by the calibration and recalibration routines.
The routine uses an internal adder to add the current count value for each readin g to the sum of the previous readings until sample size has been reac hed. At this point, the upper 16 bits are taken and used as the Sensor Input Base Count. The internal adder is then reset and the reca libration routine continues.
The data presented is determined by the BASE_SHIFT[3:0] bits (see Section 5.5).
128 64 32 16 8 4 2 1 C8h
128 64 32 16 8 4 2 1 C8h
128 64 32 16 8 4 2 1 C8h
128 64 32 16 8 4 2 1 C8h
128 64 32 16 8 4 2 1 C8h
128 64 32 16 8 4 2 1 C8h

5.26 Power Button Register

Table 5.44 Power Button Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
60h R/W Power Button - - - - - PWR_BTN[2:0] 00h
The Power Button Register indicates the sensor input that has been designated as the p ower button (see Section 4.5, "Power Button").
Bits 2 - 0 - PWR_BTN[2:0] - When the power button feature is enabled, this control indicates the sensor input to be used as the power button. The decode is shown in Table 5.45.
DS01567A-page 52  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

Table 5.45 PWR_BTN Bit Decode

PWR_BTN[3:0]
SENSOR INPUT DESIGNATED AS POWER BUTTON201
000 CS1 001 CS2 010 CS3 011 CS4 100 CS5 101 CS6

5.27 Power Button Configuration Register

Table 5.46 Power Button Configuration Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
STBY_
-
PWR_
EN
STBY_PWR_
TIME [1:0]
PWR_
-
EN
PWR_TIME [1:0] 22h
61h R/W
Power Button Configuration
The Power Button Configuration Register controls the length of time that the designate d power button must indicate a touch before an interrupt is generated and the power status indicator is set (see
Section 4.5, "Power Button").
Bit 6 - STBY_PWR_EN - Enables the power button feature in the Standby state.
‘0’ (default) - The Standby power button circuitry is disabled.‘1’ - The Standby power button circuitry is enabled.
Bits 5 - 4 - STBY_PWR_TIME[1:0] - Determines the overall time, as shown in Table 5.47, that the power button must be held in the Standby state, in order for an interrupt to be generated and the PWR bit to be set.
Bit 2 - PWR_EN - Enables the power button feature in the Acti ve state.
‘0’ (default) - The power button circuitry is disabled in the Active state.‘1’ -The power button circuitry is enabled in the Active state.
Bits 1 - 0 - PWR_TIME[1:0] - Determines the overall time, as shown in Table 5.47, that the power button must be held in the Active state, in order for an interrupt to be generated and the PWR bit to be set.
2013 Microchip Technology Inc. DS01567A-page 53
6-Channel Capacitive Touch Sensor
Datasheet

Table 5.47 Power Button Time Bits Decode

PWR_TIME[1:0] / STBY_PWR_TIME[1:0]
POWER BUTTON TOUCH HOLD TIME10
0 0 280ms 0 1 560ms 1 0 1.12 sec (default) 1 1 2.24 sec

5.28 Sensor Input Calibration Registers

Table 5.48 Sensor Input Calibration Registers

ADDR REGISTER R/W B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
B1h
B2h
B3h
B4h
B5h
B6h
B9h
BAh
Sensor Input 1
Calibration
Sensor Input 2
Calibration
Sensor Input 3
Calibration
Sensor Input 4
Calibration
Sensor Input 5
Calibration
Sensor Input 6
Calibration
Sensor Input
Calibration
LSB 1
Sensor Input
Calibration
LSB 2
R CAL1_9 CAL1_8 CAL1_7 CAL1_6 CAL1_5 CAL1_4 CAL1_3 CAL1_2 00h
R CAL2_9 CAL2_8 CAL2_7 CAL2_6 CAL2_5 CAL2_4 CAL2_3 CAL2_2 00h
R CAL3_9 CAL3_8 CAL3_7 CAL3_6 CAL3_5 CAL3_4 CAL3_3 CAL3_2 00h
R CAL4_9 CAL4_8 CAL4_7 CAL4_6 CAL4_5 CAL4_4 CAL4_3 CAL4_2 00h
R CAL5_9 CAL5_8 CAL5_7 CAL5_6 CAL5_5 CAL5_4 CAL5_3 CAL5_2 00h
R CAL6_9 CAL6_8 CAL6_7 CAL6_6 CAL6_5 CAL6_4 CAL6_3 CAL6_2 00h
R CAL4_1 CAL4_0 CAL3_1 CAL3_0 CAL2_1 CAL2_0 CAL1_1 CAL1_0 00h
R - - - - CAL6_1 CAL6_0 CAL5_1 CAL5_0 00h
The Sensor Input Calibration registers hold the 10-bit value that represents the last calibration value. The value represents the capacitance applied to the internal sensing circuits to balance the capacitance of the sensor input pad. Minimum (000h) and maximum (3FFh) values indicate analog calibration failure (see Section 4.4, "Sensor Input Calibration").
DS01567A-page 54  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

5.29 Product ID Register

Table 5.49 Product ID Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
FDh R
Product ID
CAP1206-1
The Product ID register stores a unique 8-bit value that identifies the device.
01100111 67h

5.30 Manufacturer ID Register

Table 5.50 Vendor ID Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
FEh RManufacturer ID01011101 5Dh
The Vendor ID register stores an 8-bit value that represents MCHP.

5.31 Revision Register

Table 5.51 Revision Register

ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT
FFhR Revision 00000000 00h
The Revision register stores an 8-bit value that represen ts the part revision.
2013 Microchip Technology Inc. DS01567A-page 55

Chapter 6 Package Information

6.1 CAP1206 Package Drawings

6-Channel Capacitive Touch Sensor
Datasheet

Figure 6.1 CAP1206 Package Drawing - 10-Pin DFN 3mm x 3mm

DS01567A-page 56  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

Figure 6.2 CAP1206 Package Dimensio ns - 10-Pin DFN 3mm x 3mm

Figure 6.3 CAP1206 PCB Land Pattern and Stencil - 10-Pin DFN 3mm x 3mm

2013 Microchip Technology Inc. DS01567A-page 57
6-Channel Capacitive Touch Sensor
Datasheet

Figure 6.4 CAP1206 PCB Detail A - 10-Pin DFN 3mm x 3mm

DS01567A-page 58  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

Figure 6.5 CAP1206 PCB Detail B - 10-Pin DFN 3mm x 3mm

Figure 6.6 CAP1206 Land Dimensio ns - 10-Pin DFN 3mm x 3mm

2013 Microchip Technology Inc. DS01567A-page 59

6.2 Package Marking

BOTTOM
LINE 1: Device code, first 2 of last 6
digits of lot number
LINE 2: Last 4 digits of lot number
TOP
e4
PIN 1
BOTTOM MARKING IS NOT ALLOWED
2 7 L L
L L L L
6-Channel Capacitive Touch Sensor
Datasheet

Figure 6.7 CAP1206-1 Package Marking

DS01567A-page 60  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

Appendix A Device Delta

A.1 Delta from CAP1106-1 to CAP1206-1

The CAP1206 is pin- and register-compatible with the CAP1106, with the exception of the GAIN[1:0] bits and ALT_POL bit.
1. Revision ID set to 00h.
2. Added Power Button feature (see Section 4.5, "Power Button").
3. Added ACAL_FAIL bit to flag analog calibration failures (see Section 5.2, "Status Registers") and
ACAL_FAIL_INT bit to control analog calibration failure interrupts (see Section 5.6, "Configuration
Registers").
4. Added BC_OUT bit to flag calibration failures regarding base counts out of limit (see Se ction 5.2,
"Status Registers") and BC_OUT_RECAL and BC_OUT_INT bit to control base count out of limit
behavior and interrupts (see Section 5.6, "Configuration Registers"). Added Base Count Out of Limit Register to indicate which sensor inputs have base counts outside the operating range (see
Section 5.17, "Base Count Out of Limit Register").
5. Increased supply voltage range for 5V operation.
6. Increased operating temperature range from 0°C - 85°C to -40°C to 125°C.
7. Removed proximity detection gain (GAIN[1:0] bits).
8. Removed ALERT
9. Register additions are shown in Table A.1, "Register Delta".
ADDRESS REGISTER DELTA DELTA DEFAULT
00h
Page 29
02h
Page 30
26h
Page 40
2Eh
Page 45
44h
Page 34
Removed bits - Main
Added bits - General
Renamed Calibration
Activate and Status
Register and added
New - Base Count Out
Added and removed
bits - Configuration 2
pin configuration (ALT_POL bit).

Table A.1 Register Delta

Control Register
Added bit 4 PWR for new Power Button
Status Register
functionality
of Limit Register
Register
indicate analog calibration failure. Added
Added bit 1 ACAL_FAIL_INT. Added bit 4
Removed GAIN[1:0] bits. 00h
feature. Added bit 5 ACAL_FAIL to
bit 6 BC_OUT.
In addition to forcing a calibration, the
register also indicates the status of
calibration for each sensor input.
new register for calibration status 00h
BC_OUT_INT. Changed bit 6 from
ALT_POL to BC_OUT_RECAL.
00h
00h
40h
60h
Page 52
61h
Page 53
2013 Microchip Technology Inc. DS01567A-page 61
New - Power Button
Register
New - Power Button
Configuration Register
new register for Power Button feature 00h
new register for configuring the Power
Button feature
00h
6-Channel Capacitive Touch Sensor
Datasheet
Table A.1 Register Delta (continued)
ADDRESS REGISTER DELTA DELTA DEFAULT
FDh
Page 55
FFh
Page 55
Changed - Product ID New product ID for CAP1206-1 67h
Changed - Revision
Register
Revision changed. 00h
DS01567A-page 62  2013 Microchip Technology Inc.
6-Channel Capacitive Touch Sensor
Datasheet

Revision History

Table 6.1 Revision History

REVISION LEVEL AND
DATE SECTION/FIGURE/ENTRY CORRECTION
CAP1206Revision A replaces the previous SMSC version Revision 1.0
2013 Microchip Technology Inc. DS01567A-page 63
6-Channel Capacitive Touch Sensor
YSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
Datasheet
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meet s with y our specifications. MICROCHIP MA KES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY , PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implic­itly or otherwise, under any Microchip intellectual prope rty rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, K logo, rfPIC, SST , SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip T echnology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF , MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z­Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries. A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation (“SMSC”)
is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.
All other trademarks mentioned herein are property of their respective companies. © 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 9781620774465
EELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC
32
QUALITY MANAGEMENT S
DS01567A-page 64  2013 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and T empe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the desig n and manufacture of development systems is ISO 9001:2000 certified.
®
MCUs and dsPIC® DSCs, KEELOQ
®
code hopping
Worldwide Sales and Service
AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:
http://www.microchip.com/ support
Web Address:
www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453
Los Angeles
Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608
Santa Clara
Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511 Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588 Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187 Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100 Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460 Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829 Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200 Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300 Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252 Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138 Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040 Fax: 86-756-3210049
ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631 Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160 Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857 Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870 Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366 Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham

Tel: 44-118-921-5869 Fax: 44-118-921-5820
08/20/13
DS01567A-page 65  2013 Microchip Technology Inc.
Loading...