ISOWATT220AC / TO-220FPAC:
Insulation voltage = 2000 V DC
Capacitance = 12 pF
DESCRIPTION
Single chip rectifier suited for Switch Mode Power
SuppliesandhighfrequencyDC to DCconverters.
Packaged in TO-220AC, ISOWATT220AC and
TO-220FPAC this device is intended for use in low
voltage, high frequency inverters, free wheeling
and polarity protection applications.
K
TO-220AC
BYW80-200
A
ISOWATT220AC
BYW80F-200
TO-220FPAC
BYW80FP-200
A
K
A
K
ABSOLUTE MAXIMUM RATINGS
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage
RMS forward current
Average forward current
δ = 0.5
TO-220ACTc=120°C
ISOWATT220AC
Tc=95°C
200V
20A
10A
10
TO-220FPAC
I
FSM
Surge non repetitive forward current
tp=10ms
100A
sinusoidal
Tstg
Tj
January 2002 - Ed: 3G
Storage and junction temperature range
Maximum operating temperature range
- 65 to + 150°C
+ 150°C
1/7
Page 2
BYW80F/FP-200
THERMAL RESISTANCE
SymbolParameterValueUnit
Rth (j-c)
Junction to case
TO-220AC
ISOWATT220AC / TO-220FPAC
2.5°C/W
4.7
ELECTRICAL CHARACTERISTICS
STATIC CHARACTERISTICS
SymbolTest ConditionsMin.Typ.Max.Unit
*
I
R
V
F**
Pulse test:*tp=5ms,duty cycle<2%
= 25°CVR=V
T
j
= 100°C
T
j
Tj= 125°CIF=7A
T
= 125°CIF=15A
j
T
= 25°CIF=15A
j
** tp = 380 µs, duty cycle<2%
RRM
10µA
1mA
0.85V
1.05
1.15
To evaluate the conduction losses use the following equation :
P=0.65xI
F(AV)
+ 0.027 x I
F2(RMS)
RECOVERY CHARACTERISTICS
SymbolTest ConditionsMin.Typ.Max.Unit
trrT
= 25°CIF= 0.5A
j
Irr = 0.25A25ns
IR=1A
I
=1A
F
dIF/dt = -50A/µs35
VR= 30V
tfrT
V
FP
=25°CI
j
=1A
F
VFR=1.1xV
tr=10ns15ns
F
Tj= 25°CIF=1Atr=10ns2V
2/7
Page 3
BYW80F/FP-200
Fig. 1: Average forward power dissipation versus
average forward current
P
F(av)(W)
14
12
=0.05
=0.1
=0.2
=0.5
=1
10
8
6
T
4
2
0
01234567891011121314
I
F(av)(A)
=tp/T
tp
Fig. 3: Forward voltage drop versus forward current (maximum values)
VFM(V)
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.1110100
Tj=125 C
o
IFM(A)
Fig. 2: Peak current versus form factor
I
M(A)
200
=tp/T
T
I
M
tp
175
150
125
100
75
50
P=10W
P=5W
P=15W
25
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fig. 4: Relative variation of thermal impedance
junctionto case versuspulse duration (TO-220AC)
K
1.0
Zth(j-c) (tp. )
K=
Rth(j-c)
0.5
0.2
0.1
=0.5
=0.2
=0.1
Single pulse
tp(s)
1.0E-031.0E-021.0E-01
=tp/T
T
tp
1.0E+00
Fig. 5: Relative variation of thermal impedance
junction to case versus pulse duration.
(ISOWATT220AC / TO-220FPAC)
K
1
Zth(j-c) (tp. )
K=
Rth(j-c)
0.8
=0.5
0.6
0.4
=0.1
0.2
0
1.0E-031.0E-021.0E-01
=0.2
Single pulse
tp(s)
T
=tp/T
tp
1.0E+001.0E+01
Fig. 6: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
I
M(A)
100
90
80
70
60
50
40
30
IM
20
10
0
0.0010.010.11
t
=0.5
t(s)
o
Tc=25 C
Tc=75 C
o
Tc=120 C
o
3/7
Page 4
BYW80F/FP-200
Fig. 7: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AC /
TO-220FPAC)
I
M(A)
80
70
60
50
o
40
30
IM
20
10
0
0.0010.010.1110
t
=0.5
t(s)
Tc=25 C
o
Tc=50 C
o
Tc=95 C
Fig. 9: Average current versus ambient temperature(dutycycle:0.5)(ISOWATT220AC/
TO-220FPAC)
I
F(av)(A)
12
11
10
9
8
7
Rth(j-a)=15 C/W
o
6
=0.5
5
4
T
3
2
1
=tp/T
0
020406080100 120 140 160
tp
Rth(j-a)=Rth(j-c)
o
Tamb( C)
Fig. 8: Average current versus ambient temperature (duty cycle : 0.5) (TO-220AC)
I
F(av)(A)
12
11
10
9
8
7
6
=0.5
5
4
3
2
=tp/T
1
0
0 20406080100120140160
Rth(j-a)=15 C/W
T
tp
Rth(j-a)=Rth(j-c)
o
o
Tamb( C)
Fig. 10: Junction capacitance versus reverse voltage applied (Typical values)
C(pF)
VR(V)
Fig. 11: Recovery charges versus dIF/dt.
QRR(nC)
90% CONFIDENCE Tj=125 C
4/7
o
dIF/dt(A/us)
IF=IF(av)
Fig. 12: Peak reverse current versus dIF/dt.
I
RM(A)
90% CONFIDENCE Tj=125 C
o
dIF/dt(A/us)
IF=IF(av)
Page 5
Fig. 13: Dynamic parameters versus junction
temperature
Recommended torque value (ISOWATT220AC, TO-220FPAC): 0.55 nm
■
Maximum torque value (ISOWATT220AC, TO-220FPAC): 0.7 Nm
■
Recommended torque value (TO-220AC): 0.8 Nm
■
Maximum torque value (TO-220AC): 1.0 Nm
■
Epoxy meets UL94, V0
■
BYW80-200TO-220AC2.3 g50Tube
BYW80F-200ISOWATT220AC2 g50Tube
BYW80FP-200TO-220FPAC1.8 g50Tube
Informationfurnished is believed to be accurate andreliable.However, STMicroelectronics assumes no responsibility for theconsequences of
useof such information nor for anyinfringement of patents or other rightsof third parties which may resultfrom its use. No license isgranted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics