Datasheet BUV48 Datasheet (ON Semiconductor)

Page 1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
ÎÎÎ
Î
Î
Î
Î
ÎÎÎ
Î
ÎÎÎ
Î ÎÎÎ
ÎÎÎ
ÎÎÎ

SEMICONDUCTOR TECHNICAL DATA
Order this document
by BUV48/D

       
The BUV48/BUV48A transistors are designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line–operated switchmode applications such as:
Switching Regulators
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits
Fast Turn–Off Times
60 ns Inductive Fall Time — 25_C (Typ)
120 ns Inductive Crossover Time — 25_C (Typ) Operating Temperature Range –65 to +175_C 100_C Performance Specified for:
Reverse–Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltage
Leakage Currents (125_C)

15 AMPERES
NPN SILICON
POWER TRANSISTORS
400 AND 450 VOLTS
V
(BR)CEO
850–1000 VOLTS
V
(BR)CEX
150 WATTS
CASE 340D–02
TO–218 TYPE
MAXIMUM RATINGS
Rating
Collector–Emitter Voltage Collector–Emitter Voltage (VBE = –1.5 V) Emitter Base Voltage Collector Current — Continuous
ОООООООООООООООООООО
— Peak (1) — Overload
Base Current — Continuous
ОООООООООООООООООООО
— Peak (1)
Total Power Dissipation — TC = 25_C
ОООООООООООООООООООО
— TC = 100_C
Derate above 25_C
Operating and Storage Junction Temperature Range
THERMAL CHARACTERISTICS
ОООООООООООООООООООООООООООООООО
Characteristic
Thermal Resistance, Junction to Case Maximum Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.
Symbol
V
CEO(sus)
V
CEX
V
EB
I
C
I
ÎÎ
CM I
OI
I
B
ÎÎ
I
BM
P
D
ÎÎ
TJ, T
Symbol
R
θJC
T
L
BUV48
400 850
ОООООО
ОООООО
ОООООО
stg
–65 to +175
7
15 30 60
5
20
150
75
1
Max
1
275
BUV48A
450
1000
Unit
Vdc Vdc Vdc Adc
ÎÎ
Adc
ÎÎ
Watts
ÎÎ
W/_C
_
C
Unit
_
C/W
_
C
SWITCHMODE is a trademark of Motorola, Inc.
REV 8
Motorola, Inc. 1996
Motorola Bipolar Power Transistor Device Data
1
Page 2
 
ÎÎÎ
ÎÎÎ
Î
(I
C
200 mA, I
B
mH BUV48
Î
400
Î
Î
ÎÎÎ
Î
Î
Î
Î
Î
Î
Î
(V
CE
Rated V
CEX
R
BE
)T
C
25_C
0.5
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
I
10 A, I
2 A BUV48
C
,B,
T
V
300 V
(T
25_C)
I
B1
A
IB1 1.6 A
ELECTRICAL CHARACTERISTICS (T
Characteristic
= 25_C unless otherwise noted)
C
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS (1)
Collector–Emitter Sustaining Voltage (Table 1)
=
=
ОООООООООООООООООО
=
=
= 0) L = 25
BUV48A
Collector Cutoff Current
(V
= Rated Value, V
CEX
ОООООООООООООООООО
(V
= Rated Value, V
CEX
= 1.5 Vdc)
BE(off)
= 1.5 Vdc, TC = 125_C)
BE(off)
Collector Cutoff Current
=
=
=
,
= 10
=
=
_
TC = 125_C
Emitter Cutoff Current
ОООООООООООООООООО
(VEB = 5 Vdc, IC = 0)
Emitter–Base Breakdown Voltage
(IE = 50 mA – IC = 0)
ОООООООООООООООООО
V
CEO(sus)
ÎÎÎÎÎ
I
CEX
ÎÎ
I
CER
450
ÎÎ
— —
I
EBO
ÎÎ
V
(BR)EBO
ÎÎ
ÎÎ
ÎÎ
7
— —
ÎÎ
ÎÎ
— —
ÎÎ
ÎÎ
— —
ÎÎ
0.2
ÎÎ
2
3
0.1
ÎÎ
ÎÎ
Vdc
ÎÎ
mAdc
ÎÎ
mAdc
mAdc
ÎÎ
Vdc
ÎÎ
SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
ОООООООООООООООООО
Clamped Inductive SOA with Base Reverse Biased
ОООООООООООООООООО
ON CHARACTERISTICS (1)
ОООООООООООООООООООООООООООООООО
DC Current Gain
ОООООООООООООООООО
(IC = 10 Adc, VCE = 5 Vdc) BUV48 (IC = 8 Adc, VCE = 5 Vdc) BUV48A
ОООООООООООООООООО
Collector–Emitter Saturation Voltage
(IC = 10 Adc, IB = 2 Adc)
ОООООООООООООООООО
(IC = 15 Adc, IB = 3 Adc) BUV48 (IC = 10 Adc, IB = 2 Adc, TC = 100_C)
ОООООООООООООООООО
(IC = 8 Adc, IB = 1.6 Adc)
ОООООООООООООООООО
(IC = 12 Adc, IB = 2.4 Adc) BUV48A (IC = 8 Adc, IB = 1.6 Adc, TC = 100_C)
ОООООООООООООООООО
Base–Emitter Saturation Voltage
(IC = 10 Adc, IB = 2 Adc) BUV48
ОООООООООООООООООО
(IC = 10 Adc, IB = 2 Adc, TC = 100_C) (IC = 8 Adc, IB = 1.6 Adc) BUV48A
ОООООООООООООООООО
(IC = 8 Adc, IB = 1.6 Adc, TC = 100_C)
I
S/b
ÎÎ
RBSOA
ÎÎ
h
FE
ÎÎ
ÎÎ
V
CE(sat)
ÎÎ
ÎÎ
ÎÎ
ÎÎ
V
BE(sat)
ÎÎ
ÎÎ
ОООООООО
ОООООООО
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
See Figure 12 See Figure 13
8 8
— — — — — —
— — — —
ÎÎ
— —
ÎÎ
ÎÎ
— —
ÎÎ
ÎÎ
— —
ÎÎ
ÎÎ
— —
ÎÎ
ÎÎ
— —
ÎÎ
1.5
ÎÎ
5 2
ÎÎ
1.5
ÎÎ
5 2
ÎÎ
1.6
ÎÎ
1.6
1.6
ÎÎ
1.6
ÎÎ
ÎÎ
ÎÎ
ÎÎ
Vdc
ÎÎ
ÎÎ
ÎÎ
ÎÎ
Vdc
ÎÎ
ÎÎ
DYNAMIC CHARACTERISTICS
Output Capacitance
ОООООООООООООООООО
(VCB = 10 Vdc, IE = 0, f
= 1 MHz)
test
C
ob
ÎÎ
ÎÎ
ÎÎ
350
ÎÎ
pF
ÎÎ
SWITCHING CHARACTERISTICS Resistive Load (Table 1)
ОООООООООООООООООООООООООООООООО
Delay Time Rise Time Storage Time Fall Time
=
C
IC = 8 A, IB, = 1.6 A BUV48A Duty Cycle v 2%, V
= 30 µs,
p
, =
B
= 5 V
BE(off)
=
CC
t
d
t
r
t
s
t
f
— — — —
0.1
0.4
1.3
0.2
0.2
0.7 2
0.4
µs
Inductive Load, Clamped (Table 1)
Storage Time
ООООО
Fall Time
ООООО
Storage Time
ООООО
Crossover Time
ООООО
Fall Time
ООООО
ОООООООО
IC = 10 A BUV48 I
= 2 A
= 2
ОООООООО
ОООООООО
IC = 8 A BUV48A IB1 = 1.6 A
ОООООООО
ОООООООО
t
ÎÎÎÎ_ÎÎ
=
C
ÎÎÎÎ
ÎÎÎÎ
(TC = 100_C)
ÎÎÎÎ
ÎÎÎÎ
sv t
fi
ÎÎ
t
sv
ÎÎ
t
c
ÎÎ
t
fi
ÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
1.3
0.06
1.5
0.3
0.17
ÎÎÎÎ
ÎÎÎÎ
2.5
ÎÎ
0.6
ÎÎ
0.35
ÎÎ
µs
ÎÎ
ÎÎ
ÎÎ
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle v 2%. Vcl = 300 V, V
= 5 V, Lc = 180 µH
BE(off)
2
Motorola Bipolar Power Transistor Device Data
Page 3
DC CHARACTERISTICS
 
, DC CURRENT GAIN
FE
h
0.7
0.5
50 30
20
10
7 5
3 2
1
5 3
2
1
VCE = 5 V
1
90%
10%
2 3 5 8 10 20 30 50
IC, COLLECTOR CURRENT (AMPS)
Figure 1. DC Current Gain
βf = 5
90%
10%
, COLLECTOR–EMITTER VOL TAGE (VOLTS)
CE
V
10
0.5
0.3
0.1
0.7
0.5
5 3
1
0.1
7.5 A
IC = 5 A
TC = 25°C
0.3 0.5 IB, BASE CURRENT (AMPS)
10 A 15 A
Figure 2. Collector Saturation Region
βf = 5
2
1
TJ = 25°C
1234
TJ = 100°C
0.3
0.2
, COLLECTOR–EMITTER VOL TAGE (VOLTS)
CE
V
0.1
IC, COLLECTOR CURRENT (AMPS)
Figure 3. Collector–Emitter Saturation V oltage
4
10
VCE = 250 V
3
µ
10
TJ = 150°C
2
10
125°C
100°C
1
10
, COLLECTOR CURRENT ( A)
0
C
10
I
–1
10
–0.4
REVERSE
°
C
75
25°C
–0.2 0 0.2 0.4 0.6
VBE, BASE–EMITTER VOLTAGE (VOLTS)
FORWARD
Figure 5. Collector Cutoff Region
, BASE–EMITTER VOLTAGE (VOLTS)
BE
V
C, CAPACITANCE (pF)
0.3
10 k
1 k
100
10
0.1
1
0.3 3 IC, COLLECTOR CURRENT (AMPS)
Figure 4. Base–Emitter V oltage
C
ib
C
ob
TJ = 25°C
10
VR, REVERSE VOLTAGE (VOLTS)
Figure 6. Capacitance
1011 2 3 7 10 5020 305
100 1000
Motorola Bipolar Power Transistor Device Data
3
Page 4
 
V
CEO(sus)
T able 1. Test Conditions for Dynamic Performance
RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
+10 V
INPUT
0
CONDITIONS
PW Varied to Attain IC = 200 mA
L
= 25 mH, VCC = 10 V
coil
R
= 0.7
coil
VALUES
CIRCUIT
SEE ABOVE FOR DETAILED CONDITIONS
TEST CIRCUITS
20
1
INPUT
2
1
2
INDUCTIVE TEST CIRCUIT
TUT
1N4937
OR
EQUIVALENT
V
clamp
RS =
0.1
PULSES
δ
= 3%
220 100
680 pF
L R VCC = 20 V
R
coil
L
coil
V
CC
= 180 µH
coil
coil
100
= 0.05
I
C
V
CE
I
C(pk)
D1
1N4934D1 D2 D3 D4
D3
= 300 V
t
f
t
2
22 µF
22
22
0.22
tf Clamped
t
33
2 W
160
MM3735
680 pF
680 pF
2N3763
160
33
2 W
V
clamp
RB ADJUSTED TO ATTAIN DESIRED I
t
1
VCE
or
V
clamp
TIME
+10 V
2N6438
D3
0.1
D4
2N6339
µ
F
t
MR854
Ib1 ADJUST
µ
F
Ib2 ADJUST
dTb ADJUST
dT
MR854
V
CC
B1
t1 Adjusted to Obtain I
C
L
coil (IC
t1
V
L
coil (IC
t2
V
Clamp
Test Equipment
Scope — Tektronix
475 or Equivalent
CC
)
pk
)
pk
TURN–ON TIME
I
B1
IB1 adjusted to
obtain the forced
hFE desired
TURN–OFF TIME
Use inductive switching
driver as the input to
the resistive test circuit.
VCC = 300 V RL = 83 Pulse Width = 10 µs
RESISTIVE TEST CIRCUITOUTPUT WAVEFORMS
TUT
1 2
1 2
R
L
V
CC
IC pk
90% V
CE(pk)
I
C
t
sv
t
rv
90% I
t
fi
V
CE(pk)
C(pk)
t
ti
10
βf = 5
8
IC = 10 A
6
t
c
V
CE
I
B
90% I
B1
TIME
10% V
CE(pk)
10%
IC pk
2% I
4
C
, BASE CURRENT (AMPS)I
2
B2(pk)
0
0
123456
V
, BASE–EMITTER VOLTAGE (VOLTS)
BE(off)
Figure 7. Inductive Switching Measurements Figure 8. Peak–Reverse Current
4
Motorola Bipolar Power Transistor Device Data
Page 5
SWITCHING TIMES NOTE
 
In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.
tsv= Voltage Storage Time, 90% IB1 to 10% V
trv= Voltage Rise Time, 10–90% V
tfi= Current Fall Time, 90–10% I tti= Current Tail, 10–2% I
C
tc= Crossover Time, 10% V
clamp
clamp
C
to 10% I
clamp
C
An enlarged portion of the inductive switching waveforms is
INDUCTIVE SWITCHING
5 3
2
TC = 100°C
1
µ
0.7
0.5
t, TIME ( s)
0.3
0.2
βf = 5
0.1 1
25
37
IC, COLLECTOR CURRENT (AMPS)
TC = 25°C
2010 30
50
shown in Figure 7 to aid in the visual identity of these terms.
For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained us­ing the standard equation from AN–222:
P
= 1/2 VCCIC(tc) f
SWT In general, trv + tfi ] tc. However, at lower test currents this relationship may not be valid.
As is common with most switching transistors, resistive switching is specified at 25_C and has become a benchmark for designers. However, for designers of high frequency con­verter circuits, the user oriented specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C.
1
0.5
0.3
0.2
µ
0.1
t, TIME ( s)
0.05
0.03
0.02
0.01 12 5 5037 2010 30
t
c
t
fi
β
= 5
f
IC, COLLECTOR CURRENT (AMPS)
TC = 100°C
TC = 100°C
TC = 25°C
TC = 25°C
3 2
1
0.5
0.3
µ
0.2
0.1
t, TIME ( s)
0.05
0.03
0.02
0.01 0
Figure 9. Storage Time, t
t
sv
t
c
t
fi
12 45
3
βf, FORCED GAIN
sv
689710
Figure 11a. Turn–Off Times versus Forced Gain
TC = 25°C IC = 10 A V
= 5 V
BE(off)
Figure 10. Crossover and Fall Times
3 2
1
t
0.5
0.3
µ
0.2
0.1
t, TIME ( s)
0.05
0.03
0.02
0.01 01 2 453689710
Ib2/Ib
sv
t
c
t
fi
1
Figure 11b. Turn–Off Times versus Ib2/Ib
T
= 25°C
C
IC = 10 A
βf = 5 V
1
Motorola Bipolar Power Transistor Device Data
5
Page 6
 
The Safe Operating Area figures shown in Figures 12 and 13 are specified for these devices under the test conditions shown.
30 10
5 2
1
0.5
0.2
0.1
0.05
, COLLECTOR CURRENT (AMPS)
C
I
0.02
0.01 1
DC
TC = 25°C
LIMIT ONLY FOR TURN ON
2 20 500
550
VCE, COLLECTOR–EMITTER VOL TAGE (VOLTS)
1 ms
tr ≤ 0.7 µs
200
100010 100
Figure 12. Forward Bias Safe Operating Area
50
40
30
20
10
, COLLECTOR CURRENT (AMPS)
C
I
0
0
V
BE(off) TC = 100°C
IC/IB
VCE, COLLECTOR–EMITTER VOL TAGE (VOLTS)
BUV48 BUV48A
= 5 V
5
200 400
600
800 1000
FIgure 13. Reverse Bias Safe Operating Area
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of a transistor: average junction temperature and second break­down. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipa­tion than the curves indicate.
The data of Figure 12 is based on TC = 25_C; T variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC v 25_C. Second breakdown limitations do not der­ate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case tem­perature by using the appropriate curve on Figure 14.
T
may be calculated from the data in Figure 11. At high
J(pk)
case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations im­posed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage current conditions during reverse biased turn–off. This rating is verified under clamped condi­tions so that the device is never subjected to an avalanche mode. Figure 13 gives RBSOA characteristics.
J(pk)
is
100
SECOND BREAKDOWN
DERATING
120
160 200
POWER DERATING F ACT OR (%)
80
60
40
20
THERMAL DERATING
0
0
40 80
TC, CASE TEMPERATURE (°C)
Figure 14. Power Derating
6
Motorola Bipolar Power Transistor Device Data
Page 7
0.5
 
1
D = 0.5
0.2
0.1
0.05
RESISTANCE (NORMALIZED)
0.02
r(t), EFFECTIVE TRANSIENT THERMAL
0.01
0.02
0.2
0.1
0.05
0.02
0.01
SINGLE PULSE
0.1 0.50.2
0.05 1 2 5 10 20 50 100 200 500
OVERLOAD CHARACTERISTICS
100
TC = 25°C
80
60
40
20
, COLLECTOR CURRENT (AMPS)
C
I
0
tp = 10 µs
VCE, COLLECTOR–EMITTER VOL TAGE (VOLTS)
Figure 16. Rated Overload Safe Operating Area
(OLSOA)
BUV48A
BUV48
300
R
(t) = r(t) R
θ
JC
θ
= 1
JC
D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t T
J(pk)
t, TIME (ms)
°
C/W MAX
– TC = P
θ
(pk)
JC
1
R
Figure 15. Thermal Response
OLSOA applies when maximum collector current is limited and known. A good example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. If the tran­sistor is then turned off within a specified amount of time, the magnitude of collector current is also known.
Maximum allowable collector–emitter voltage versus col­lector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, Figure 16 defines the
500100 400
450200
maximum time which can be allowed for fault detection and shutdown of base drive.
OLSOA is measured in a common–base circuit (Figure 18) which allows precise definition of collector–emitter voltage and collector current. This is the same circuit that is used to measure forward–bias safe operating area.
P
(pk)
t
1
t
(t)
θ
JC
2
DUTY CYCLE, D = t1/t
2
1000 2000
OLSOA
5
4
3
(AMP)
C
I
2
1
0
RBE = 2.2
RBE = 10
24
dV/dt (KV/µs)
RBE = 100
RBE = 0
6810
Figure 17. IC = f(dV/dt)
Motorola Bipolar Power Transistor Device Data
500 µF
Notes:
VCE = VCC + V
Adjust pulsed current source
for desired IC, t
BE
p
500 V
V
EE
V
CC
Figure 18. Overload SOA Test Circuit
7
Page 8
 
P ACKAGE DIMENSIONS
C
B
U
L
S
K
4
123
Q
E
A
D
J
H
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
DIM MIN MAX MIN MAX
A ––– 20.35 ––– 0.801 B 14.70 15.20 0.579 0.598 C 4.70 4.90 0.185 0.193 D 1.10 1.30 0.043 0.051 E 1.17 1.37 0.046 0.054 G 5.40 5.55 0.213 0.219 H 2.00 3.00 0.079 0.118
J 0.50 0.78 0.020 0.031 K 31.00 REF 1.220 REF L ––– 16.20 ––– 0.638 Q 4.00 4.10 0.158 0.161 S 17.80 18.20 0.701 0.717 U 4.00 REF 0.157 REF V 1.75 REF 0.069
INCHESMILLIMETERS
V
G
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
CASE 340D–02
TO–218 TYPE
ISSUE B
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us: USA/EUROPE /Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center ,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
8
Motorola Bipolar Power Transistor Device Data
BUV48/D
*BUV48/D*
Loading...