
1
Motorola Bipolar Power Transistor Device Data
$ " $# %
#)% %"&&'#% )'
"'%' # '#%!''%
# " ( '" "'
"'&'(%'#" ')#%
The BUL44D2 is state–of–art High Speed High gain BIPolar transistor (H2BIP).
High dynamic characteristics and lot to lot minimum spread (±150 ns on storage time)
make it ideally suitable for light ballast applications. Therefore, there is no need to
guarantee an hFE window.
Main features:
• Low Base Drive Requirement
• High Peak DC Current Gain (55 Typical) @ IC = 100 mA
• Extremely Low Storage Time Min/Max Guarantees Due to the
H2BIP Structure which Minimizes the Spread
• Integrated Collector–Emitter Free Wheeling Diode
• Fully Characterized and Guaranteed Dynamic V
CE(sat)
• “6 Sigma” Process Providing Tight and Reproductible Parameter Spreads
It’s characteristics make it also suitable for PFC application.
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Sustaining Voltage
ОООООООО
ОООООООО
ОООООООО
Collector–Base Breakdown Voltage
ОООООООО
ОООООООО
ОООООООО
Collector–Emitter Breakdown Voltage
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Collector Current — Continuous
— Peak (1)
ОООООООО
ОООООООО
ОООООООО
Base Current — Continuous
Base Current — Peak (1)
ОООООООО
ОООООООО
ОООООООО
ОООООООО
*Total Device Dissipation @ TC = 25_C
*Derate above 25°C
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Operating and Storage Temperature
ОООООООО
ОООООООО
ОООООООО
Thermal Resistance
— Junction to Case
— Junction to Ambient
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Maximum Lead Temperature for Soldering Purposes:
1/8″ from case for 5 seconds
ОООООООО
ОООООООО
ОООООООО
ОООООООО
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by BUL44D2/D
POWER TRANSISTORS
2 AMPERES
700 VOLTS
50 WATTS
CASE 221A–06
TO–220AB

BUL44D2
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS
(T
C
= 25°C unless otherwise noted)
Collector–Emitter Sustaining Voltage
(IC = 100 mA, L = 25 mH)
Collector–Base Breakdown Voltage
(I
CBO
= 1 mA)
Emitter–Base Breakdown Voltage
(I
EBO
= 1 mA)
Collector Cutoff Current
(VCE = Rated V
CEO
, IB = 0)
Collector Cutoff Current (VCE = Rated V
CES
, VEB = 0)
Collector Cutoff Current (VCE = 500 V, VEB = 0)
@ TC = 25°C
@ TC = 125°C
@ TC = 125°C
Emitter–Cutoff Current
(VEB = 10 Vdc, IC = 0)
Base–Emitter Saturation Voltage
(IC = 0.4 Adc, IB = 40 mAdc)
(IC = 1 Adc, IB = 0.2 Adc)
Collector–Emitter Saturation Voltage
(IC = 0.4 Adc, IB = 40 mAdc)
(IC = 1 Adc, IB = 0.2 Adc)
(IC = 0.4 Adc, IB = 20 mAdc)
DC Current Gain
(IC = 0.4 Adc, VCE = 1 Vdc)
(IC = 1 Adc, VCE = 1 Vdc)
Forward Diode Voltage
(IEC = 1 Adc)
Forward Recovery Time (see Figure 22 bis)
(IF = 0.2 Adc, di/dt = 10 A/µs)
(IF = 0.4 Adc, di/dt = 10 A/µs)
(IF = 1 Adc, di/dt = 10 A/µs)
V
BE(sat)
Vdc
V
CE(sat)
h
FE
V
EC
T
Vdc
fr
—
V
ns

BUL44D2
3
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25°C unless otherwise noted)
DYNAMIC SATURATION VOLTAGE
Dynamic Saturation
Voltage:
Determined 1 µs and
µs and
3 µs respectively after
rising IB1 reaches
Current Gain Bandwidth
(IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1 MHz)
Input Capacitance
(VEB = 8 Vdc)
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 40 µs)
IB2 = 250 mAdc
VCC = 300 Vdc
IB2 = 0.5 Adc
VCC = 300 Vdc
SWITCHING CHARACTERISTICS: Inductive Load (V
clamp
= 300 V, VCC = 15 V, L = 200 µH)
IC = 0.4 Adc
IB1 = 40 mAdc
I
= 0.2 Adc
IC = 1 Adc
IB1 = 0.2 Adc
I
= 0.5 Adc
IC = 0.8 Adc
IB1 = 160 mAdc
I
= 160 mAdc
IC = 0.4 Adc
IB1 = 40 mAdc
I
= 40 mAdc
IC = 0.4 A
V
CE(dsat)
IC = 1 A
IC = 0.5 Adc, IB1 = 50 mAdc
IC = 1 Adc, IB1 = 0.2 Adc

BUL44D2
4
Motorola Bipolar Power Transistor Device Data
TYPICAL STATIC CHARACTERISTICS
Figure 1. DC Current Gain @ 1 Volt
100
80
60
40
20
0
1010.10.010.001
IC, COLLECTOR CURRENT (AMPS)
h
FE
, DC CURRENT GAIN
TJ = 125°C
TJ = 25°C
TJ = –20°C
VCE = 1 V
Figure 2. DC Current Gain @ 5 Volt
100
80
60
40
20
0
1010.10.010.001
IC, COLLECTOR CURRENT (AMPS)
h
FE
, DC CURRENT GAIN
TJ = 125°C
TJ = 25°C
TJ = –20°C
VCE = 5 V
Figure 3. Collector Saturation Region
4
2
0
1000100101
IB, BASE CURRENT (mA)
IC = 200 mA
Figure 4. Collector–Emitter Saturation Voltage
10
1
0.1
1010.10.010.001
IC, COLLECTOR CURRENT (AMPS)
TJ = 125
°
C
TJ = 25°C
TJ = –20°C
IC/IB = 5
V
CE
, VOLTAGE (VOLTS)
V
CE
, VOLTAGE (VOLTS)
3
1
TJ = 25°C
400 mA
1 A
1.5 A
2 A
Figure 5. Collector–Emitter Saturation Voltage
10
1
0.1
100.10.010.001
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Collector–Emitter Saturation Voltage
10
1
0.1
10.10.010.001
IC, COLLECTOR CURRENT (AMPS)
TJ = 125
°
C
TJ = 25°C
TJ = –20°C
V
CE
, VOLTAGE (VOLTS)
V
CE
, VOLTAGE (VOLTS)
1
IC/IB = 10
TJ = 125°C
TJ = 25°C
TJ = –20°C
IC/IB = 20

BUL44D2
5
Motorola Bipolar Power Transistor Device Data
TYPICAL STATIC CHARACTERISTICS
Figure 7A. Base–Emitter Saturation Region
10
1
0.1
100.10.010.001
IC, COLLECTOR CURRENT (AMPS)
Figure 7B. Base–Emitter Saturation Region
10
1
0.1
100.10.010.001
IC, COLLECTOR CURRENT (AMPS)
TJ = 125
°
C
TJ = –20°C
V
BE
, VOLTAGE (VOLTS)
V
BE
, VOLTAGE (VOLTS)
1
TJ = 125°C
TJ = 25°C
TJ = –20°C
IC/IB = 10
1
IC/IB = 5
Figure 7C. Base–Emitter Saturation Region
10
1
0.1
10.10.010.001
IC, COLLECTOR CURRENT (AMPS)
Figure 8. Forward Diode Voltage
10
1
0.1
100.10.01
REVERSE EMITTER–COLLECTOR CURRENT (AMPS)
125
°
C
25°C
V
BE
, VOLTAGE (VOLTS)
FORWARD DIODE VOLTAGE (VOLTS)
TJ = 125°C
TJ = –20°C
1
IC/IB = 20
TJ = 25°C
TJ = 25°C

BUL44D2
6
Motorola Bipolar Power Transistor Device Data
TYPICAL SWITCHING CHARACTERISTICS
Figure 9. Capacitance
1000
10
1
100101
VR, REVERSE VOLTAGE (VOLTS)
Figure 10. Resistive Switch Time, t
on
1000
400
0
20.80.2
IC, COLLECTOR CURRENT (AMPS)
C, CAPACITANCE (pF)
1.4
t, TIME (ns)
800
600
200
100
Cib (pF)
Cob (pF)
TJ = 25°C
f
(test)
= 1 MHz
TJ = 125
°
C
TJ = 25
°
C
IC/IB = 10
IC/IB = 5
I
Bon
= I
Boff
VCC = 300 V
PW = 40 µs
Figure 11. Resistive Switch Time, t
off
4000
2500
1000
210
IC, COLLECTOR CURRENT (AMPS)
Figure 12. Inductive Storage Time,
tsi @ IC/IB = 5
3
1
0
20.80.4
IC, COLLECTOR CURRENT (AMPS)
1.6
2
1.5
0.5
3000
t, TIME ( s)
µ
t, TIME ( s)
µ
3500
2000
1500
TJ = 125°C
TJ = 25
°
C
IC/IB = 10
IC/IB = 5
I
Bon
= I
Boff
VCC = 300 V
PW = 40 µs
2.5
1.2
TJ = 125°C
TJ = 25
°
C
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
Figure 13. Inductive Switching,
tc & tfi @ IC/IB = 5
700
400
0
210
IC, COLLECTOR CURRENT (AMPS)
Figure 14. Inductive Storage Time
4
2
0
1563
hFE, FORCED GAIN
12
3
1
500
t, TIME (ns)
600
300
200
9
, STORAGE TIME (t
si
µ
s)
100
0.5 1.5
TJ = 125°C
TJ = 25
°
C
IC = 1 A
IC = 0.3 A
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
TJ = 125°C
TJ = 25
°
C
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
IC/I
Bon
= 5
t
c
t
fi

BUL44D2
7
Motorola Bipolar Power Transistor Device Data
TYPICAL SWITCHING CHARACTERISTICS
Figure 15. Inductive Fall Time
700
0
1593
hFE, FORCED GAIN
Figure 16. Inductive Crossover Time
1000
400
0
1563
hFE, FORCED GAIN
12
800
600
200
500
Figure 17. Inductive Switching, t
fi
900
600
0
21.20.4
IC, COLLECTOR CURRENT (AMPS)
Figure 18. Inductive Switching, t
c
2000
0
20.80.4
IC, COLLECTOR CURRENT (AMPS)
1.6
1500
1000
500
700
t, TIME (ns)
t, TIME (ns)
800
500
400
TJ = 125°C
TJ = 25
°
C
IC/IB = 20
1.2
Figure 19. Inductive Storage Time, t
si
3000
0
310
IC, COLLECTOR CURRENT (AMPS)
Figure 20. Inductive Storage Time, t
si
3000
1500
500
20.50
IC, COLLECTOR CURRENT (AMPS)
1.5
2500
1000
2000
t, TIME (ns)
1000
10.5 1.5
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
TJ = 125°C
TJ = 25
°
C
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
t
fi
, FALL TIME (ns)
t
c
, CROSSOVER TIME (ns)
600
400
300
200
100
5 7 11 13
TJ = 125°C
TJ = 25
°
C
IC = 0.3 A
IC = 1 A
I
Boff
= I
Bon
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
9
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
TJ = 125°C
TJ = 25
°
C
IC = 1 A
IC = 0.3 A
300
200
100
0.8 1.6
IC/IB = 10
I
Bon
= I
Boff
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
TJ = 125°C
TJ = 25
°
C
I
Boff
= IC/2
VCC = 15 V
VZ = 300 V
LC = 200
µ
H
IC/IB = 20
IC/IB = 10
t, TIME (ns)
2 2.5
IC/IB = 5
IB = 50 mA
IB = 100 mA
IB = 200 mA
IB = 500 mA
2000
IC/IB = 20
IC/IB = 10

BUL44D2
8
Motorola Bipolar Power Transistor Device Data
TYPICAL SWITCHING CHARACTERISTICS
Figure 21. Dynamic Saturation
Voltage Measurements
TIME
Figure 22. Inductive Switching Measurements
10
4
0
820
TIME
6
8
6
2
Figure 22 bis. tfr Measurements
0
1060
V
F
I
F
4
2 8
9
7
5
3
1
1 3 5
7
V
CE
0 V
I
B
90% I
B
1 µs
3 µs
dyn 1 µs
dyn 3 µs
I
B
I
C
V
clamp
t
si
t
c
t
fi
90% I
C
10% I
C
90% I
B1
4
10% V
clamp
VFR (1.1 VF unless
otherwise specified)
V
FRM
t
fr
V
F
0.1 V
F
10% I
F
Table 1. Inductive Load Switching Drive Circuit
V
(BR)CEO(sus)
L = 10 mH
RB2 =
∞
VCC = 20 Volts
I
C(pk)
= 100 mA
Inductive Switching
L = 200
µ
H
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired I
B1
RBSOA
L = 500
µ
H
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired I
B1
+15 V
1
µ
F
150
Ω
3 W
100
Ω
3 W
MPF930
+10 V
50
Ω
COMMON
–V
off
500
µ
F
MPF930
MTP8P10
MUR105
MJE210
MTP12N10
MTP8P10
150
Ω
3 W
100
µ
F
I
out
A
R
B1
R
B2
1
µ
F
IC PEAK
VCE PEAK
V
CE
I
B
IB1
IB2

BUL44D2
9
Motorola Bipolar Power Transistor Device Data
SECOND BREAKDOWN
DERATING
THERMAL DERATING
Figure 23. Forward Bias Safe Operating Area
10
0.01
100010
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 24. Reverse Bias Safe Operating Area
2.5
1
0
900200
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
100
1
0.1
I
C
, COLLECTOR CURRENT (AMPS)
I
C
, COLLECTOR CURRENT (AMPS)
DC
5 ms
1 ms
10 µs
1 µs
0.5
0 V
–1.5 V
–5 V
TC ≤ 125°C
GAIN
≥
4
LC = 500
µ
H
300 400 700600
2
1.5
TYPICAL CHARACTERISTICS
500 800
Figure 25. Forward Bias Power Derating
1
0
16010020
TC, CASE TEMPERATURE (
°
C)
0.8
POWER DERATING FACTOR
0.6
0.4
0.2
60 14040 80 120
EXTENDED SOA
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC–VCE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 23 is based
on TC = 25°C; T
J(pk)
is variable depending on power level.
Second breakdown pulse limits are valid for duty cycles to
10% b ut must b e derated w hen TC > 2 5°C. Second
breakdown limitations do not derate the same as thermal
limitations. A llowable current at the voltages shown o n
Figure 23 may be found at any case temperature by using
the appropriate curve on Figure 25.
T
J(pk)
may be calculated from the data in Figure 26. At any
case temperatures, thermal limitations will reduce the power
that can b e handled to values less than t he limitations
imposed by second breakdown. For inductive loads, high
voltage and current must be sustained simultaneously during
turn–off with the base to emitter junction reverse biased. The
safe level is specified as a reverse biased safe operating
area (Figure 24). This rating is verified under clamped
conditions so t hat t he device i s never s ubjected t o an
avalanche mode.

BUL44D2
10
Motorola Bipolar Power Transistor Device Data
TYPICAL THERMAL RESPONSE
Figure 26. Typical Thermal Response (Z
θJC
(t)) for BUL44D2
1
0.01
100.10.01
t, TIME (ms)
0.1
1 100 1000
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
R
θ
JC
(t) = r(t) R
θ
JC
R
θ
JC
= 2.5
°
C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
T
J(pk)
– TC = P
(pk)
R
θ
JC
(t)
P
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
0.05
SINGLE PULSE
0.5
0.2
0.1
0.02
TYPICAL STATIC CHARACTERISTICS
Figure 27. BVCER
1100
700
400
100010010
RBE (
Ω
)
Figure 28. Forward Recovery Time t
fr
440
360
300
210.50
IF, FORWARD CURRENT (AMP)
dI/dt = 10 A/µs
TC = 25
°
C
BVCER (VOLTS)
TJ = 25°C
1.5
BVCER (VOLTS) @ 10 mA
t
fr
, FORWARD RECOVERY TIME (ns)
1000
900
800
600
500
420
400
380
340
320
BVCER(sus) @ 200 mA

BUL44D2
11
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
CASE 221A–06
TO–220AB
ISSUE Y
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.570 0.620 14.48 15.75
B 0.380 0.405 9.66 10.28
C 0.160 0.190 4.07 4.82
D 0.025 0.035 0.64 0.88
F 0.142 0.147 3.61 3.73
G 0.095 0.105 2.42 2.66
H 0.110 0.155 2.80 3.93
J 0.018 0.025 0.46 0.64
K 0.500 0.562 12.70 14.27
L 0.045 0.060 1.15 1.52
N 0.190 0.210 4.83 5.33
Q 0.100 0.120 2.54 3.04
R 0.080 0.110 2.04 2.79
S 0.045 0.055 1.15 1.39
T 0.235 0.255 5.97 6.47
U 0.000 0.050 0.00 1.27
V 0.045 ––– 1.15 –––
Z ––– 0.080 ––– 2.04
B
Q
H
Z
L
V
G
N
A
K
F
1 2 3
4
D
SEATING
PLANE
–T–
C
S
T
U
R
J

BUL44D2
12
Motorola Bipolar Power Transistor Device Data
How to reach us:
USA /EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
BUL44D2/D
*BUL44D2/D*
◊