Datasheet BFS520 Datasheet (Philips)

Page 1
DISCRETE SEMICONDUCTORS
DATA SH EET
BFS520
NPN 9 GHz wideband transistor
Product specification File under Discrete Semiconductors, SC14
September 1995
Page 2
NPN 9 GHz wideband transistor BFS520
FEATURES
High power gain
Low noise figure
High transition frequency
It is intended for wideband applications such as satellite TV tuners, cellular phones, cordless phones, pagers etc., with signal frequencies up to 2 GHz.
handbook, 2 columns
3
Gold metallization ensures excellent reliability
SOT323 envelope.
DESCRIPTION
NPN transistor in a plastic SOT323 envelope.
PINNING
PIN DESCRIPTION
Code: N2 1 base 2 emitter 3 collector
12
Top view
MBC870
Fig.1 SOT323.
QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CBO
V
CES
I
C
P
tot
h
FE
f
T
G
UM
F noise figure I
collector-base voltage open emitter −−20 V collector-emitter voltage RBE=0 −−15 V DC collector current −−70 mA total power dissipation up to Ts=118°C; note 1 −−300 mW DC current gain IC= 20 mA; VCE= 6 V; Tj=25°C 60 120 250 transition frequency IC= 20 mA; VCE= 6 V; f = 1 GHz;
T
=25°C
amb
maximum unilateral power gain Ic= 20 mA; VCE= 6 V; f = 900 MHz;
T
=25°C
amb
= 5 mA; VCE= 6 V; f = 900 MHz;
c
T
=25°C
amb
9 GHz
15 dB
1.1 1.6 dB
LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V V V I P T T
CBO CES EBO
C
tot stg j
collector-base voltage open emitter 20 V collector-emitter voltage RBE=0 15 V emitter-base voltage open collector 2.5 V DC collector current 70 mA total power dissipation up to Ts=118°C; note 1 300 mW storage temperature 65 150 °C junction temperature 175 °C
Note
1. T
is the temperature at the soldering point of the collector tab.
s
September 1995 2
Page 3
NPN 9 GHz wideband transistor BFS520
THERMAL RESISTANCE
SYMBOL PARAMETER CONDITIONS THERMAL RESISTANCE
R
th j-s
Note
is the temperature at the soldering point of the collector tab.
1. T
s
CHARACTERISTICS
=25°C, unless otherwise specified.
T
j
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
CBO
h
FE
C
e
C
c
C
re
f
T
G
UM
2
S
21
F noise figure Γ
P
L1
ITO third order intercept point note 2 26 dBm
thermal resistance from junction to
up to Ts=118°C; note 1 190 K/W
soldering point
collector cut-off current IE= 0; VCE=6 V −−50 nA DC current gain IC= 20mA; VCE= 6 V 60 120 250 emitter capacitance IC=ic= 0; VEB= 0.5 V; f = 1 MHz 1 pF collector capacitance IE=ie= 0; VCB= 6 V; f = 1 MHz 0.5 pF feedback capacitance IC= 0; VCB= 6 V; f = 1 MHz 0.4 pF transition frequency IC= 20 mA; VCE= 6 V; f = 1 GHz;
T
=25°C
amb
maximum unilateral power gain (note 1)
IC= 20 mA; VCE= 6 V; f = 900 MHz; T
=25°C
amb
= 20 mA; VCE= 6 V; f = 2 GHz;
I
C
T
=25°C
amb
insertion power gain IC= 20 mA; VCE= 6 V; f = 900 MHz;
T
=25°C
amb
output power at 1 dB gain compression
= Γ
s
f = 900 MHz; T
Γ
= Γ
s
f = 900 MHz; T
Γ
= Γ
s
f = 2 GHz; T Ic= 20 mA; VCE= 6 V; RL=50Ω;
f = 900 MHz; T
= 5 mA; VCE=6 V;
opt;IC
=25°C
amb
= 20 mA; VCE=6 V;
opt;IC
=25°C
amb
= 5 mA; VCE=6 V;
opt;IC
=25°C
amb
=25°C
amb
9 GHz
15 dB
9 dB
13 14 dB
1.1 1.6 dB
1.6 2.1 dB
1.9 dB
17 dBm
Notes
1. G
2. I
is the maximum unilateral power gain, assuming S12is zero and
UM
G
UM
= 20 mA; VCE= 6 V; RL=50Ω; f = 900 MHz; T
C
--------------------------------------------------------------
10 log

1S

fp= 900 MHz; fq= 902 MHz; measured at f
2
S
21
2

1S

11
22
dB.=
2
=25°C;
amb
= 898 MHz and at f
(2pq)
September 1995 3
(2qp)
= 904 MHz.
Page 4
NPN 9 GHz wideband transistor BFS520
400
handbook, halfpage
P
tot
(mW)
300
200
100
0
0 50 100 200
150
Fig.2 Power derating curve.
MRC030 - 1
o
Ts(
C)
200
handbook, halfpage
h
FE
150
100
50
0
2
10
VCE= 6 V; Tj=25°C.
1
10
11010
MRC028
I
(mA)
C
Fig.3 DC current gain as a function of collector
current.
2
0.7
handbook, halfpage
C
re
(pF)
0.6
0.5
0.4
0.3
0.2
0.1
0
0246810
IC= 0; f= 1 MHz.
V (V)
CB
Fig.4 Feedback capacitance as a function of
collector-base voltage.
MRC021
12
handbook, halfpage
f
T
(GHz)
10
8
6
4
2
0
1 10 100
f = 1 GHz; T
amb
=25°C.
V
CE
= 8 V
3 V
IC(mA)
Fig.5 Transition frequency as a function of
collector current.
MRC022
September 1995 4
Page 5
NPN 9 GHz wideband transistor BFS520
In Figs 6 to 9, GUM= maximum unilateral power gain; MSG = maximum stable gain; G gain.
handbook, halfpage
20
G
UM
(dB)
18
= maximum available
max
MRC027
25
handbook, halfpage
gain (dB)
20
15
MRC026
MSG
G
max
G
UM
16
14
12
10
0102030
VCE= 6 V; f = 900 MHz; T
amb
=25°C.
V
IC(mA)
Fig.6 Maximum unilateral power gain as a
function of collector current.
50
handbook, halfpage
gain (dB)
40
G
UM
CE
= 6 V
3 V
MRC024
10
5
0
0 102030
VCE= 6 V; f = 2 GHz; T
amb
=25°C.
IC(mA)
Fig.7 Gain as a function of collector current.
50
handbook, halfpage
gain (dB)
40
G
UM
MRC025
30
20
10
0
2
10
IC= 5 mA; VCE= 6 V; T
MSG
10
amb
1
=25°C.
G
max
110
f (GHz)
Fig.8 Gain as a function of frequency.
September 1995 5
30
20
10
0
2
10
IC= 20 mA; VCE= 6 V; T
MSG
10
amb
1
=25°C.
Fig.9 Gain as a function of frequency.
G
max
110
f (GHz)
Page 6
NPN 9 GHz wideband transistor BFS520
handbook, halfpage
4
F
(dB)
3
f = 2 GHz
2
1
0
11010
VCE= 6 V; T
amb
=25°C.
900 MHz
500 MHz
I
(mA)
C
Fig.10 Minimum noise figure as a function of
collector current.
MRC029
2
handbook, halfpage
4
F
(dB)
3
2
1
0
1
10
VCE= 6 V; T
amb
=25°C.
I = 20 mA
C
5 mA
110
f (GHz)
Fig.11 Minimum noise figure as a function of
frequency.
MRC023
September 1995 6
Page 7
NPN 9 GHz wideband transistor BFS520
handbook, full pagewidth
IC= 5 mA; VCE= 6 V; f = 900 MHz; Z
o
=50Ω.
pot. unst. region
180°
stability circle
135°
0
0.2
135°
0.5
0.2
0.2 0.5 1 2 5
F = 3 dB
0.5
F = 1.5 dB
F = 2 dB
90°
90°
1
F
min
1
Fig.12 Noise circle.
= 1. 1 dB
Γ
OPT
1.0
45°
2
5
5
2
45°
MRC077
0.8
0.6
0.4
0.2
0°
0
1.0
handbook, full pagewidth
IC= 5 mA; VCE= 6 V; f = 2 GHz; Z
=50Ω.
o
G
max
180°
= 9.1 dB
90°
1
135°
0
0.2
135°
0.5
F = 3 dB
0.2
F
min
0.2 0.5 1 2 5
G = 8,5 dB
Γ
MS
G = 8 dB
G = 7 dB
0.5
Γ
F = 2 dB
= 1. 9 dB
OPT
F = 2.5 dB
1
90°
Fig.13 Noise circle.
1.0
45°
2
5
5
2
45°
MRC078
0.8
0.6
0.4
0.2
0°
0
1.0
September 1995 7
Page 8
NPN 9 GHz wideband transistor BFS520
handbook, full pagewidth
IC= 20 mA; VCE= 6 V;
=50Ω.
Z
o
90°
1
180°
135°
0
0.2
135°
0.5
0.2 3 GHz
0.2 0.5 1 2 5
0.5
1
90°
2
40 MHz
2
45°
45°
Fig.14 Common emitter input reflection coefficient (S11).
5
5
MRC066
1.0
0.8
0.6
0.4
0.2
0°
0
1.0
handbook, full pagewidth
IC= 20 mA; VCE= 6 V.
90°
135°
45°
40 MHz
90°
3 GHz
0°
45°
MRC067
180°
50 40 30 20 10
135°
Fig.15 Common emitter forward transmission coefficient (S21).
September 1995 8
Page 9
NPN 9 GHz wideband transistor BFS520
handbook, full pagewidth
IC= 20 mA; VCE= 6 V.
90°
135°
45°
3 GHz
180°
0.5 0.4 0.3 0.2 0.1
135°
40 MHz
45°
90°
0°
MRC060
Fig.16 Common emitter reverse transmission coefficient (S12).
handbook, full pagewidth
IC= 20 mA; VCE= 6 V;
=50Ω.
Z
o
90°
1
180°
135°
0
0.5
0.2
0.2 0.5 1 2 5
45°
2
5
40 MHz
3 GHz
0.2
135°
0.5
2
1
90°
5
45°
Fig.17 Common emitter output reflection coefficient (S22).
MRC061
1.0
0.8
0.6
0.4
0.2
0°
0
1.0
September 1995 9
Page 10
NPN 9 GHz wideband transistor BFS520
PACKAGE OUTLINE
Plastic surface mounted package; 3 leads SOT323
D
y
3
A
12
e
b
1
p
e
w M
B
E
H
E
A
1
detail X
AB
Q
L
p
X
v M
A
c
0 1 2 mm
scale
DIMENSIONS (mm are the original dimensions)
A
max
0.1
1
b
cD
p
0.4
0.25
0.3
0.10
IEC JEDEC EIAJ
2.2
1.8
E
1.35
1.15
REFERENCES
1.3
e
e
1
0.65
UNIT
A
1.1
mm
0.8
OUTLINE VERSION
SOT323 SC-70
September 1995 10
H
E
2.2
2.0
L
p
0.45
0.15
Qwv
0.23
0.13
0.20.2
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
Page 11
NPN 9 GHz wideband transistor BFS520
DEFINITIONS
Data Sheet Status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
September 1995 11
Loading...