Datasheet BFR505 Datasheet (Philips)

Page 1
DISCRETE SEMICONDUCTORS
DATA SH EET
BFR505
NPN 9 GHz wideband transistor
Product specification File under Discrete Semiconductors, SC14
September 1995
Page 2
NPN 9 GHz wideband transistor BFR505
FEATURES
High power gain
Low noise figure
High transition frequency
Gold metallization ensures
excellent reliability.
DESCRIPTION
The BFR505 is an npn silicon planar epitaxial transistor, intended for applications in the RF frontend in wideband applications in the GHz range, such as analog and digital cellular telephones, cordless telephones (CT1, CT2, DECT, etc.), radar detectors, pagers and satellite TV tuners (SATV).
The transistor is encapsulated in a plastic SOT23 envelope.
QUICK REFERENCE DATA
PINNING
PIN DESCRIPTION
Code: N30 1 base 2 emitter 3 collector
page
3
12
Top view
MSB003
Fig.1 SOT23.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CBO
V
CES
I
C
P
tot
h
FE
C
re
f
T
G
UM
S
21
F noise figure Γ
collector-base voltage open emitter −−20 V collector-emitter voltage RBE=0 −−15 V DC collector current −−18 mA total power dissipation up to Ts = 135 °C; note 1 −−150 mW DC current gain IC = 5 mA; VCE = 6 V 60 120 250 feedback capacitance IC=ic= 0; VCB= 6 V; f = 1 MHz 0.3 pF transition frequency IC = 5 mA; VCE = 6 V; f = 1 GHz 9 GHz maximum unilateral
power gain
2
insertion power gain IC = 5 mA; VCE = 6 V;
IC = 5 mA; VCE = 6 V; T
= 25 °C; f = 900 MHz
amb
= 5 mA; VCE = 6 V;
I
C
T
= 25 °C; f = 2 GHz
amb
T
= 25 °C; f = 900 MHz
amb
T
Γ
T
Γ
T
s amb
s amb
s amb
= Γ
= Γ
= Γ
= 1.25 mA; VCE= 6 V;
opt;IC
=25°C; f = 900 MHz
= 5 mA; VCE= 6 V;
opt;IC
=25°C; f = 900 MHz
= 1.25 mA; VCE= 6 V;
opt;IC
=25°C; f = 2 GHz
17 dB
10 dB
13 14 dB
1.2 1.7 dB
1.6 2.1 dB
1.9 dB
Note
1. T
is the temperature at the soldering point of the collector tab.
s
September 1995 2
Page 3
NPN 9 GHz wideband transistor BFR505
LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CBO
V
CES
V
EBO
I
C
P
tot
T
stg
T
j
THERMAL RESISTANCE
R
th j-s
collector-base voltage open emitter 20 V collector-emitter voltage RBE=0 15 V emitter-base voltage 2.5 V DC collector current continuous 18 mA total power dissipation up to Ts= 135 °C; note 1 150 mW storage temperature 65 150 °C junction temperature 175 °C
SYMBOL PARAMETER THERMAL RESISTANCE
from junction to soldering point (note 1) 260 K/W
Note
1. T
is the temperature at the soldering point of the collector tab.
s
September 1995 3
Page 4
NPN 9 GHz wideband transistor BFR505
CHARACTERISTICS
T
= 25 °C unless otherwise specified.
j
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
CBO
h
FE
C
e
C
c
C
re
f
T
G
UM
S
21
F noise figure Γ
P
L1
ITO third order intercept point note 2 10 dBm
collector cut-off current IE = 0; VCB = 6 V −−50 nA DC current gain IC= 5 mA; VCE = 6 V 60 120 250 emitter capacitance IC = ic= 0; VEB = 0.5 V; f = 1 MHz 0.4 pF collector capacitance IE=ie= 0; VCB= 6 V; f = 1 MHz 0.4 pF feedback capacitance IC= 0; VCB= 6 V; f = 1 MHz 0.3 pF transition frequency IC = 5 mA; VCE = 6 V; f = 1 GHz 9 GHz maximum unilateral power
gain (note 1)
2
insertion power gain IC = 5 mA; VCE = 6 V;
output power at 1 dB gain compression
IC = 5 mA; VCE = 6 V; T
= 25 °C; f = 900 MHz
amb
I
= 5 mA; VCE = 6 V;
C
T
= 25 °C; f = 2 GHz
amb
T
= 25 °C; f = 900 MHz
amb
T
Γ
T
Γ
T
= Γ
s amb
= Γ
s amb
= Γ
s amb
= 5 mA; VCE= 6 V;
opt;IC
=25°C; f = 900 MHz
= 5 mA; VCE= 6 V;
opt;IC
=25°C; f = 900 MHz
= 5 mA; VCE= 6 V;
opt;IC
=25°C; f = 2 GHz
IC= 5 mA; VCE=6 V;RL=50Ω; T
=25°C; f = 900 MHz
amb
17 dB
10 dB
13 14 dB
1.2 1.7 dB
1.6 2.1 dB
1.9 dB
4 dBm
Notes
1. G
2. I
is the maximum unilateral power gain, assuming S12 is zero and
UM
G
UM
= 5 mA; VCE=6 V;RL=50Ω;T
C
--------------------------------------------------------------
10

1S

fp = 900 MHz; fq= 902 MHz; measured at f
= 898 MHz and f
(2pq)
2
S
21
2

1S

11
22
amb
(2qp)
dB.log=
2
=25°C;
= 904 MHz.
September 1995 4
Page 5
NPN 9 GHz wideband transistor BFR505
200
handbook, halfpage
P
tot
(mW)
150
100
50
0
0 50 100 200
150
Fig.2 Power derating curve.
MRA718 - 1
o
Ts(
C)
10
MRA719
IC (mA)
250
handbook, halfpage
h
FE
200
150
100
50
0
3
10
VCE= 6 V.
2
10
1
10
1
Fig.3 DC current gain as a function of collector
current.
2
10
0.4
handbook, halfpage
C
re
(pF)
0.3
0.2
0.1
0
02 10
Ic = 0; f = 1 MHz.
46 8
MRA720
VCB (V)
Fig.4 Feedback capacitance as a function of
collector-base voltage.
September 1995 5
12
f
T
(GHz)
8
4
10
T
=25°C; f = 1 GHz.
amb
VCE = 6V
VCE = 3V
1
1
10
MRA721
IC (mA)
Fig.5 Transition frequency as a function of
collector current.
2
10
Page 6
NPN 9 GHz wideband transistor BFR505
25
handbook, halfpage
gain (dB)
20
15
10
5
0
04
VCE= 6 V; f = 900 MHz.
812
Fig.6 Gain as a function of collector current.
MRA764
MSG G
UM
I
(mA)
C
25
handbook, halfpage
gain (dB)
20
15
MSG
10
5
0
04
VCE= 6 V; f = 2 GHz.
812
Fig.7 Gain as a function of collector current.
MRA765
G
max
G
UM
I
(mA)
C
G
f (MHz)
MRA766
max
4
10
50
handbook, halfpage
gain (dB)
G
40
30
MSG
20
10
0
10
VCE= 6 V; Ic= 1.25 mA.
UM
2
10
3
10
Fig.8 Gain as a function of frequency.
September 1995 6
50
handbook, halfpage
gain (dB)
40
30
20
10
0
10
VCE= 6 V; Ic= 5 mA.
Fig.9 Gain as a function of frequency.
G
UM
MSG
MRA767
G
max
2
10
3
10
f (MHz)
4
10
Page 7
NPN 9 GHz wideband transistor BFR505
handbook, halfpage
5
F
min
(dB)
4
3
2
1
0
10
VCE= 6 V.
1
2000 MHz 1000 MHz
900 MHz 500 MHz
f = 900 MHz
1000 MHz
F
2000 MHz
ass
min
IC (mA)
G
1
Fig.10 Minimum noise figure and associated
available gain as functions of collector current.
MRA726
f (MHz)
MRA727
20 G
ass
(dB)
15
10
5
0
5
4
10
20 G
ass
(dB)
15
10
5
0
5
10
handbook, halfpage
5
F
min
(dB)
4
3
2
1
0
10
VCE= 6 V.
IC = 1.25 mA
5 mA
1.25 mA
2
5 mA
G
ass
F
min
3
10
Fig.11 Minimum noise figure and associated
available gain as functions of frequency.
handbook, full pagewidth
Zo=50Ω. VCE= 6 V; IC= 5 mA; f = 900 MHz.
stability circle
180°
pot. unst. region
135°
0
135°
0.5
0.2
0.2 0.5 1
0.2
0.5
90°
1
F
F = 1.5 dB
F = 2 dB
F = 3 dB
1
90°
Fig.12 Noise circle figure.
min
2
= 1. 2 dB
Γ
OPT
5
2
45°
45°
5
5
MRA728
1.0
0.8
0.6
0.4
0.2
0°
0
1.0
September 1995 7
Page 8
NPN 9 GHz wideband transistor BFR505
handbook, full pagewidth
90°
1
F = 2.5 dB
1
F = 3 dB
F
min
Γ
OPT
= 1. 9 dB
1.0
45°
2
5
0.8
0.6
0.4
0.2
0°
0
stability circle
180°
pot. unst. region
135°
0
0.5
0.2
0.2 0.5 2 5
Zo=50Ω. VCE= 6 V; IC= 5 mA; f = 2000 MHz.
0.2
135°
F = 4 dB
0.5
1
90°
Fig.13 Noise circle figure.
5
2
45°
MRA729
1.0
September 1995 8
Page 9
NPN 9 GHz wideband transistor BFR505
90°
1.0
0.8
0.6
135°
0.5
1
45°
2
VCE= 6 V; IC= 5 mA. Zo=50Ω.
handbook, full pagewidth
0.2
180°
0.2 0.5 1 2 5
0
0.2
0.5
135°
3 GHz
1
90°
40 MHz
2
45°
Fig.14 Common emitter input reflection coefficient (S11).
90°
135°
45°
5
5
MRA722
0.4
0.2
0°
0
1.0
180°
VCE= 6 V; IC= 5 mA.
40 MHz
15 12 9 6 3
135°
90°
Fig.15 Common emitter forward transmission coefficient (S21).
September 1995 9
3 GHz
0°
45°
MRA723
Page 10
NPN 9 GHz wideband transistor BFR505
handbook, full pagewidth
VCE= 6 V; IC= 5 mA.
90°
135°
180°
0.5 0.4 0.3 0.2 0.1
135°
3 GHz
40 MHz
90°
45°
0°
45°
MRA724
Fig.16 Common emitter reverse transmission coefficient (S12).
handbook, full pagewidth
VCE= 6 V; IC= 5 mA. Zo=50Ω.
90°
1
180°
135°
0
135°
0.5
0.2
0.2 0.5 1 2 5
0.2
0.5
1
90°
3 GHz
45°
2
5
40 MHz
5
2
45°
MRA725
Fig.17 Common emitter output reflection coefficient (S22).
1.0
0.8
0.6
0.4
0.2
0°
0
1.0
September 1995 10
Page 11
NPN 9 GHz wideband transistor BFR505
PACKAGE OUTLINE
Plastic surface mounted package; 3 leads SOT23
D
3
A
A
1
12
e
1
b
p
e
w M
B
E
H
E
detail X
AB
Q
L
p
X
v M
A
c
0 1 2 mm
scale
DIMENSIONS (mm are the original dimensions)
A
1
0.1
b
cD
p
0.48
0.15
0.09
3.0
2.8
0.38
IEC JEDEC EIAJ
e
E
1.4
1.9
1.2
REFERENCES
0.95
e
1
UNIT
mm
OUTLINE
VERSION
A
1.1
0.9
SOT23
max.
September 1995 11
H
2.5
2.1
L
Qwv
p
E
0.55
0.45
0.15
0.45
0.2
0.1
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
Page 12
NPN 9 GHz wideband transistor BFR505
DEFINITIONS
Data Sheet Status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
September 1995 12
Loading...