Datasheet BD788, BD787 Datasheet (Motorola)

Page 1
1
Motorola Bipolar Power Transistor Device Data
    
. . . designed for lower power audio amplifier and low current, high–speed switching applications.
Low Collector–Emitter Sustaining Voltage — V
60 Vdc (Min) — BD787, BD788
High Current–Gain — Bandwidth Product — fT = 50 MHz (Min) @ IC = 100 mAdc
Collector–Emitter Saturation Voltage Specified at 0.5, 1.0, 2.0 and 4.0 Adc
MAXIMUM RATINGS
Rating
Symbol
BD787 BD788
Unit
Collector–Emitter Voltage
V
CEO
60
Vdc
Collector–Base Voltage
V
CBO
80
Vdc
Emitter–Base Voltage
V
EBO
6.0
Vdc
Collector Current — Continous
— Peak
I
C
4.0
8.0
Adc Adc
Base Current
I
B
1.0
Adc
Total Power Dissipation @ TC = 25°C
Derate Above 25_C
P
D
15
0.12
Watts W/_C
Operating and Storage Junction
Temperature Range
TJ, T
stg
–65 to +150
_
C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R
θJC
8.34
_
C/W
16
12
0
20 40 60 100 120 140 160
Figure 1. Power Derating
T, TEMPERATURE (°C)
P
D
, POWER DISSIPATION (WATTS)
80
4.0
8.0
1.6
1.2
0
0.4
0.8
P
D
, POWER DISSIPATION (WATTS)
T
A
T
C

SEMICONDUCTOR TECHNICAL DATA
Order this document
by BD787/D
Motorola, Inc. 1995
 
4 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
60 VOLTS
15 WATTS
CASE 77–08
TO–225AA TYPE


REV 7
Page 2
 
2
Motorola Bipolar Power Transistor Device Data
*ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Characteristic
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
Min
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (1)
(IC = 10 mAdc, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
CEO(sus)
60
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Collector Cutoff Current
(VCE = 20 Vdc, IB = 0) (VCE = 30 Vdc, IB = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
I
CEO
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µAdc
Collector Cutoff Current
(VCE = 80 Vdc, V
BE(off)
= 1.5 Vdc)
(VCE = 40 Vdc, V
BE(off)
= 1.5 Vdc, TC = 125°C)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
I
CEX
— —
1.0
0.1
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
µAdc
mAdc
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
I
EBO
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
µAdc
ON CHARACTERISTICS(1)
DC Current Gain
(IC = 200 mAdc, VCE = 3.0 Vdc) (IC = 1.0 Adc, VCE = 3.0 Vdc) (IC = 2.0 Adc, VCE = 3.0 Vdc) (IC = 4.0 Adc, VCE = 3.0 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
h
FE
40 25 20
5.0
250
— — —
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 500 mAdc, IB = 50 mAdc) (IC = 1.0 Adc, IB = 100 mAdc) (IC = 2.0 Adc, IB = 200 mAdc) (IC = 4.0 Adc, IB = 800 mAdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
CE(sat)
— — — —
0.4
0.6
0.8
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter Saturation Voltage
(IC = 2.0 Adc, IB = 200 mAdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
BE(sat)
2.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter On Voltage
(IC = 2.0 Adc, VCE = 3.0 Vdc)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
V
BE(on)
1.8
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
DYNAMIC CHARACTERISTICS
Current–Gain — Bandwidth Product
(IC = 100 mAdc, VCE = 10 Vdc, f = 10 MHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
f
T
50
ÎÎÎ
ÎÎÎ
ÎÎÎ
MHz
Output Capacitance
(VCB = 10 Vdc, IC = 0) BD787 (f = 0.1 MHz) BD788
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
C
ob
— —
50 70
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
Small–Signal Current Gain
(IC = 200 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
h
fe
10
ÎÎÎ
ÎÎÎ
ÎÎÎ
*Indicates JEDEC Registered Data (1) Pulse Test; Pulse Width v 300 µs, Duty Cycle v 2.0%.
Figure 2. Switching Time Test Circuit
500
0.04
Figure 3. Turn–On Time
IC, COLLECTOR CURRENT (AMP)
t, TIME (ns)
70
30 20
5.0
0.06 0.2 0.4 0.6
td @ V
BE(off)
= 5.0 V
VCC = 30 V IC/IB = 10 TJ = 25°C
+ 11 V
0
+ 30 V
SCOPE
R
B
– 4 V
tr, tf
v
10 ns
DUTY CYCLE = 1.0%
R
C
t
r
7.0
10
1.0 4.0
D1 MUST BE FAST RECOVERY TYPE, e.g.:
1N5825 USED ABOVE IB
[
100 mA
MSD6100 USED BELOW IB
[
100 mA
FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES.
25 µs
– 9.0 V
D
1
51
RB AND RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
V
CC
BD787 (NPN) BD788 (PNP)
300 200
100
50
0.1 2.0
Page 3
 
3
Motorola Bipolar Power Transistor Device Data
Figure 4. Thermal Response
t, TIME (ms)
1.0
0.01
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200
R
θ
JC(t)
= r(t) R
θ
JC
R
θ
JC
= 8.34
°
C/W MAX
D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t
1
T
J(pk)
– TC = P
(pk)
R
θ
JC(t)
P
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
D = 0.5
0 (SINGLE PULSE)
0.2
0.05
0.1
0.02
0.01
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
Figure 5. Active Region Safe Operating Area
10
1.0 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
5.0
2.0
0.5
0.01
2.0 5.0 10 50 100
BONDING WIRE LIMITED THERMALLY LIMITED @ TC = 25
°
C
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
0.05
0.02
I
C
, COLLECTOR CURRENT (AMP)
BD787 (NPN) BD788 (PNP)
20
CURVES APPLY BELOW RATED V
CEO
TJ = 150°C
dc
5.0 ms
1.0 ms 500 µs
100 µs
1.0
0.1
30 70
60 V
3.0 7.0
There are two limitations on the power handling ability of a transistor: average junction temperature and second break­down. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipa­tion than the curves indicate.
The data of Figure 5 is based on T
J(pk)
= 150_C: TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 1 0% provided T
J(pk)
v
150_C, T
J(pk)
may be calculated from the data in Fig­ure 4. At high case temperatures, thermal limitations will re­duce the power that can be handled to values less than the limitations imposed by second breakdown.
0.04
Figure 6. Turn–Off Time
IC, COLLECTOR CURRENT (AMP)
t, TIME (ns)
0.06 0.1 0.2 0.6 1.0 2.0 4.0
VCC = 30 V IC/IB = 10 IB1 = I
B2
TJ = 25
°
C
t
s
0.4
t
f
(NPN) (PNP)
2000
20
700
100
200
1000
500 300
30
50
70
200
1.0
Figure 7. Capacitance
VR, REVERSE VOLTAGE (VOLTS)
10
2.0 3.0 5.0 7.0 20 30 10010
C, CAPACITANCE (pF)
100
70 50
30
TJ = 25°C
C
ib
C
ob
(NPN) (PNP)
20
50 70
Page 4
 
4
Motorola Bipolar Power Transistor Device Data
400
0.04
Figure 8. DC Current Gain
IC, COLLECTOR CURRENT (AMP)
0.1 0.2 0.4 0.6 1.0 2.0
100
50
30
300
70
h
FE
, DC CURRENT GAIN
TJ = 150°C
25°C
–55°C
200
20
4.0
NPN
BD787
NPN
BD788
VCE = 1.0 V VCE = 3.0 V
0.06
200
0.04 IC, COLLECTOR CURRENT (AMP)
0.1 0.2 0.4 0.6 1.0 2.0
50
20
100
30
h
FE
, DC CURRENT GAIN
TJ = 150°C
25°C
–55°C
70
10
4.0
VCE = 1.0 V VCE = 3.0 V
0.06
2.0
0.04 IC, COLLECTOR CURRENT (AMP)
0.2 0.6 2.0 4.0
0.8
0.4
0
TJ = 25°C
V
BE(sat)
@ IC/IB = 10
V
CE(sat)
@ IC/IB = 10
V, VOLTAGE (VOLTS)
Figure 9. “On” Voltages
0.1 1.00.4
1.6
1.2
V
BE(on)
@ VCE = 3.0 V
2.0
IC, COLLECTOR CURRENT (AMP)
0.8
0.4
0
TJ = 25°C
V
BE(sat)
@ IC/IB = 10
V
CE(sat)
@ IC/IB = 10
V, VOLTAGE (VOLTS)
1.6
1.2
VBE @ VCE = 3.0 V
0.06 0.04 0.2 0.6 2.0 4.00.1 1.00.40.06
+2.5
Figure 10. Temperature Coefficients
IC, COLLECTOR CURRENT (AMP)
V
, TEMPERATURE COEFFICIENTS (mV/ C)
°θ
+2.0 +1.5
+0.5
0 –0.5 –1.0 –1.5 –2.0 –2.5
θ
VB
FOR V
BE
*
θ
VC
FOR V
CE(sat)
*APPLIES FOR IC/IB
h
FE/3
+1.0
25
°
C to 150°C
– 55°C to 25°C
25°C to 150°C
– 55°C to 25°C
0.04 0.2 0.6 2.0 4.00.1 1.00.40.06
+2.5
IC, COLLECTOR CURRENT (AMP)
V
, TEMPERATURE COEFFICIENTS (mV/ C)
°θ
+2.0 +1.5
+0.5
0
–0.5 –1.0
–1.5 –2.0 –2.5
θ
VB
FOR V
BE
*
θ
VC
FOR V
CE(sat)
*APPLIES FOR IC/IB
h
FE/3
+1.0
25
°
C to 150°C
– 55°C to 25°C
25°C to 150°C
– 55°C to 25°C
0.04 0.2 0.6 2.0 4.00.1 1.00.40.06
Page 5
 
5
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
CASE 77–08
TO–225AA TYPE
ISSUE V
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
–B–
–A–
M
K
F
C
Q
H
V
G
S
D
J
R
U
1 32
2 PL
M
A
M
0.25 (0.010) B
M
M
A
M
0.25 (0.010) B
M
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.425 0.435 10.80 11.04 B 0.295 0.305 7.50 7.74 C 0.095 0.105 2.42 2.66 D 0.020 0.026 0.51 0.66 F 0.115 0.130 2.93 3.30 G 0.094 BSC 2.39 BSC H 0.050 0.095 1.27 2.41 J 0.015 0.025 0.39 0.63 K 0.575 0.655 14.61 16.63 M 5 TYP 5 TYP Q 0.148 0.158 3.76 4.01 R 0.045 0.055 1.15 1.39 S 0.025 0.035 0.64 0.88 U 0.145 0.155 3.69 3.93 V 0.040 ––– 1.02 –––
_ _
Page 6
 
6
Motorola Bipolar Power Transistor Device Data
How to reach us: USA /EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
BD787/D
*BD787/D*
Loading...