Collector–Emitter VoltageV
Emitter–Base VoltageV
Collector Current — ContinuousI
CEO
EBO
C
– 45Vdc
– 5.0Vdc
– 100mAdc
THERMAL CHARACTERISTICS
CharacteristicSymbolMaxUnit
Total Device Dissipation FR– 5 Board, (1)
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient R
T otal Device Dissipation
Alumina Substrate, (2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to AmbientR
Junction and Storage T emperatureTJ , T
P
D
225mW
1.8mW/°C
θJA
P
D
556°C/W
300mW
2.4mW/°C
θJA
stg
417°C/W
–55 to +150°C
BCW70LT1
3
1
2
CASE 318–08, STYLE 6
SOT–23 (TO–236AB)
DEVICE MARKING
BCW69LT1 = H1; BCW70LT1 = H2,
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted.)
A
CharacteristicSymbolMinMaxUnit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage (IC = –2.0 mAdc, IB = 0 )V
Collector–Emitter Breakdown Voltage (IC = –100 µAdc, V
= 0 )V
EB
Emitter–Base Breakdown Voltage (I E= –10 µAdc, I C = 0)V
Collector Cutoff CurrentI
(BR)CEO
(BR)CES
(BR)EBO
CEO
(VCE = –20 Vdc, I E = 0 )—– 100nAdc
(VCE = –20 Vdc, I E = 0 , TA = 100°C)—– 10µAdc
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
– 45—Vdc
– 50—Vdc
– 5.0—Vdc
M13–1/6
Page 2
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted) (Continued)
A
CharacteristicSymbolMinMaxUnit
ON CHARACTERISTICS
DC Current Gainh
( IC= –2.0 mAdc, VCE = –5.0 Vdc ) BCW69LT1120260
BCW70LT1215500
Collector–Emitter Saturation Voltage
( IC = – 10 mAdc, IB = –0.5 mAdc )
Base–Emitter On Voltage
( IC = – 2.0 mAdc, V CE = – 5.0Vdc )
V
V
FE
CE(sat)
BE(on)
—– 0.3 Vdc
– 0.6– 0.75Vdc
SMALL–SIGNAL CHARACTERISTICS
Output Capacitance
( I E= 0 V CB = –10Vdc, f = 1.0 MHz)
Noise Figure
(V
= – 5.0 Vdc, I C = – 0.2 mAdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz)
CE
C
obo
N
F
— 7.0pF
—10dB
—
M13–2/6
Page 3
LESHAN RADIO COMPANY, LTD.
TYPICAL NOISE CHARACTERISTICS
(V CE = – 5.0 Vdc, T A = 25°C)
BCW69LT1 BCW70LT1
10
BANDWIDTH = 1.0 Hz
7.0
IC=10 µA
5.0
30µA
3.0
1.0mA
2.0
, NOISE VOLTAGE (nV)
n
e
1.0
102050 100200500 1.0k 2.0k5.0k 10k
100µA
300µA
f, FREQUENCY (Hz)
Figure 1. Noise V oltage
1.0M
500k
200k
100k
50k
20k
0.5 dB
10k
5.0k
2.0k
1.0k
500
, SOURCE RESISTANCE ( Ω )
200
S
R
100
1020 3050 70 100200 300 500 700 1.0K
1.0 dB
I C , COLLECTOR CURRENT (µA)
BANDWIDTH = 1.0 Hz
2.0dB
Figure 3. Narrow Band, 100 Hz
10.0
~
R S 0
~
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
, NOISE CURRENT (pA)
n
I
0.1
102050 100200500 1.0k 2.0k5.0k 10k
NOISE FIGURE CONTOURS
(V CE = – 5.0 Vdc, T A = 25°C)
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
3.0 dB
5.0 dB
500
, SOURCE RESISTANCE ( Ω )
200
S
100
R
1020 3050 70 100200 300 500 700 1.0K
BANDWIDTH = 1.0 Hz
~
R
~
S
IC=1.0mA
300µA
100µA
30µA
10µA
f, FREQUENCY (Hz)
Figure 2. Noise Current
BANDWIDTH = 1.0 Hz
0.5 dB
1.0dB
2.0 dB
3.0 dB
5.0 dB
I C , COLLECTOR CURRENT (µA)
Figure 4. Narrow Band, 1.0 kHz
8
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
, SOURCE RESISTANCE ( Ω )
S
200
R
100
1020 3050 70 100200 300 500 700 1.0K
0.5dB
10 Hz to 15.7KHz
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
1.0dB
3.0 dB
2.0dB
5.0 dB
Noise Figure is Defined as:
2
NF = 20 log
e
2 + 4KTRS + I
n
( –––––––––––––––)
10
4KTR
2
R
n
S
1/ 2
S
e n= Noise Voltage of the Transistor referred to the input. (Figure 3)
= Noise Current of the Transistor referred to the input. (Figure 4)
I
n
K = Boltzman’s Constant (1.38 x 10
–23
j/°K)
T = Temperature of the Source Resistance (°K)
R s= Source Resistance ( Ω )
DUTY CYCLE, D = t
D CURVES APPL Y FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t 1 (SEE AN–569)
Z
= r(t) • R
2
θJA(t)
T
J(pk)
– T A = P
θJA
(pk) Z θJA(t)
/ t
1
t, TIME (ms)
Figure 14. Thermal Response
C
ob
2
M13–5/6
Page 6
4
10
V
= 30 V
CC
3
10
I
2
10
1
10
CEO
I
CBO
AND
I
@ V
0
10
, COLLECTOR CURRENT (nA)
C
–1
10
I
–2
10
–4–20+20+40+60 +80 +100 +120 +140 +160
CEX
BE(off)
= 3.0 V
T J , JUNCTION TEMPERATURE (°C)
Figure 15. T ypical Collector Leakage Current
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
DESIGN NOTE: USE OF THERMAL RESPONSE DA TA
A train of periodical power pulses can be represented by the
model as shown in Figure 16. Using the model and the device
thermal response the normalized effective transient thermal resistance of Figure 14 was calculated for various duty cycles.
T o find Z
steady state value R
Example:
Dissipating 2.0 watts peak under the following conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading
of r(t) is 0.22.
The peak rise in junction temperature is therefore
∆T = r(t) x P
For more information, see AN–569.
, multiply the value obtained from Figure 14 by the
θJA(t)
(pk)
.
θJA
x R
= 0.22 x 2.0 x 200 = 88°C.
θJA
M13–6/6
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.