Page 1
4.8 V NPN Silicon Bipolar
Common␣ Emitter Transistor
Technical Data
AT-38086
Features
• 4.8 Volt Pulsed
(pulse width = 577 µ sec,
duty cycle = 12.5%)/CW
Operation
• +28 dBm Pulsed P
@␣ 900␣ MHz, Typ.
• +23.5 dBm CW P
@␣ 836.5␣ MHz, Typ.
• 60% Pulsed Collector
Efficiency @ 900 MHz, Typ.
• 11 dB Pulsed Power Gain
@␣ 900 MHz, Typ.
• -35 dBc IMD3 @ P
17␣ dBm per tone, 900 MHz,
Typ.
out
out
out
of
Applications
• Driver Amplifier for GSM
and AMPS/ETACS/ 900 MHz
NMT Cellular Phones
• 900 MHz ISM and Special
Mobile Radio
85 mil Plastic Surface
Mount Package
Outline 86
Pin Configuration
4
EMITTER
1
BASE
EMITTER
2
3
COLLECTOR
Description
Hewlett Packard’s AT-38086 is a
low cost, NPN silicon bipolar
junction transistor housed in a
surface mount plastic package.
This device is designed for use as
a pre-driver or driver device in
applications for cellular and
wireless communications
markets. At 4.8 volts, the
AT-38086 features +28 dBm pulsed
output power, Class AB operation,
and +23.5␣ dBm CW. Superior
efficiency and gain makes the
AT-38086 an excellent choice for
battery powered systems.
The AT-38086 is fabricated with
Hewlett Packard’s 10 GHz Ft SelfAligned-Transistor (SAT) process.
The die are nitride passivated for
surface protection. Excellent
device uniformity, performance
and reliability are produced by the
use of ion-implantation, selfalignment techniques, and gold
metalization in the fabrication of
these devices.
4-89
5965-5959E
Page 2
AT-38086 Absolute Maximum Ratings
Absolute
Symbol Parameter Units Maximum
V
EBO
V
CBO
V
CEO
I
C
I
C
P
T
P
T
T
j
T
STG
Notes:
1. Permanent damage may occur if any of these limits are exceeded.
2. Pulsed operation, pulse width = 577␣ µ sec, duty cycle␣ =␣ 12.5%.
3. CW operation.
4. Derate at 57.1 mW/° C for T
collector pin 3, where the lead contacts the circuit board.
5. Derate at 7.1 mW/° C for T
collector pin 3, where the lead contacts the circuit board.
6. Using the liquid crystal technique, V
“hot-spot” resolution.
Emitter-Base Voltage V 1.4
Collector-Base Voltage V 16.0
Collector-Emitter Voltage V 9.5
Collector Current
Collector Current
Peak Power Dissipation
CW Power Dissipation
[2]
[3]
[2, 4]
[3, 5]
m A 250
m A 160
W 3.7
m W 460
Junction Temperature ° C 150
Storage Temperature ° C -65 to 150
␣>␣85 °C. T
C
␣>␣85 °C. T
C
is defined to be the temperature of the
C
is defined to be the temperature of the
C
= 4.5 V, Ic= 50 mA, T
CE
=150° C, 1-2␣ µ m
j
[1]
Thermal Resistance
θjc = 140°C/W
[6]
:
Electrical Specifications, T
= 25° C
C
Symbol Parameters and Test Conditions Units Min. Typ. Max.
P
out
η
C
P
out
IMD
BV
BV
BV
h
FE
I
CEO
Freq. = 900 MHz, VCE = 4.8 V, I
duty cycle = 12.5%, unless otherwise specified
Output Power, Test Circuit A, Pin = +17 dBm dBm +26.5 +28.0
Pulsed Operation
Collector Efficiency, Test Circuit A, Pin = +17 dBm % 50 60
Pulsed Operation
Mismatch Tolerance Test Circuit A, P
No Damage, Pulsed
[1]
[1]
[1]
Output Power , F = 836.5 MHz, ICQ = 1 5 m A d B m +22.0 +23.5
CW Operation
3rd Order Intermodulation Distortion, F1 = 899 MHz, F2 = 901 MHz
3
2-Tone Test, P
[2]
each tone = +17 dBm, CW
out
Mismatch Tolerance, No Damage, F = 836.5 MHz, ICQ = 15 mA 7:1
[2]
CW
Emitter-Base Breakdown Voltage IE = 0.2 mA, open collector V 1.4
EBO
Collector-Base Breakdown Voltage IC = 1.0 mA, open emitter V 16.0
CBO
Collector-Emitter Breakdown Voltage IC = 3.0 mA, open base V 9.5
CEO
Forward Current Transfer Ratio VCE = 3 V, IC = 160 mA — 40 150 330
Collector Leakage Current V
= 20 mA, Pulse width = 577 µ sec,
CQ
out
any phase, 2 sec duration
Test Circuit B, Pin = +10 dBm
[2,3]
ICQ = 15 mA, Test Circuit B
Test Circuit B, P
out
any phase, 2 sec duration
= +28 dBm, 7:1
dBc -35
= +23.5 dBm
= 5 V µ A1 5
CEO
Notes:
1. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit A (GSM).
2. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit B (AMPS).
3. Test circuit B re-tuned at 900␣ MHz.
4-90
Page 3
AT-38086 Typical Performance, T
Frequency = 900 MHz, VCE = 4.8 V, I
= 20 mA, pulsed operation, pulse width␣ =␣ 577␣ µ sec, duty cycle␣ =␣ 12.5%,
CQ
= 25° C
C
Test Circuit A (GSM), unless otherwise specified
32
Γ
= 0.75 ∠ -177
source
30
Γ
= 0.48 ∠ +161
load
28
26
(dBm)
24
22
20
18
OUTPUT POWER
16
14
12
21 4 12 6 41 0 81 8 16 24 22 20
P
out
η
c
INPUT POWER (dBm)
100
90
80
70
60
50
40
30
20
10
0
Figure 1. Output Power and Collector
Efficiency vs. Input Power.
32
Γ
source
30
Γ
(%)
COLLECTOR EFFICIENCY
load
28
26
(dBm)
24
22
20
18
OUTPUT POWER
16
14
12
21 4 12 6 41 0 81 8 16 24 22 20
Figure 2. Output Power vs. Input
Power Over Bias Voltage.
= 0.75 ∠ -177
= 0.48 ∠ +161
INPUT POWER (dBm)
3.6 V
4.8 V
6.0 V
90
Γ
= 0.75 ∠ -177
source
80
Γ
= 0.48 ∠ +161
load
(%)
70
60
50
40
30
20
COLLECTOR EFFICIENCY
10
0
21 4 12 6 41 0 81 8 16 24 22 20
INPUT POWER (dBm)
3.6 V
4.8 V
6.0 V
Figure 3. Collector Efficiency vs.
Input Power Over Bias Voltage.
32
Γ
= 0.75 ∠ -177
source
Γ
= 0.48 ∠ +161
load
30
(dBm)
28
26
24
OUTPUT POWER
22
20
10 16 12 14 18 24 22 20
INPUT POWER (dBm)
TC = +85° C
= +25° C
T
C
= –40° C
T
C
Figure 4. Output Power vs. Input
Power Over Temperature.
29.0
Γ
28.8
Γ
28.6
28.4
(dBm)
28.2
28.0
27.8
27.6
OUTPUT POWER
27.4
27.2
27.0
880
Pin = +17 dBm
= 0.75 ∠ -177
source
= 0.48 ∠ +161
load
P
out
η
c
FREQUENCY (MHz)
Figure 5. Output Power and
Collector Efficiency vs. Frequency.
Note: Tuned at 900 MHz, then Swept
over Frequency.
75
71
67
63
59
55
0
Γ
-2
(%)
COLLECTOR EFFICIENCY
Γ
-4
(dB)
-6
-8
-10
RETURN LOSS
-12
-14
-16
800 850 950 1000 900 890 910 920 900
Figure 6. Input and Output Return
Loss vs. Frequency.
= 0.75 ∠ -177
source
= 0.48 ∠ +161
load
FREQUENCY (MHz)
Output R.L.
Input R.L.
4-91
Page 4
AT-38086 Typical Performance, T
= 25° C
C
Freq. = 836.5 MHz, VCE = 4.8 V, ICQ = 15 mA, CW operation, Test Circuit B (AMPS), unless otherwise specified
28
Γ
= 0.86 ∠ -180
source
Γ
= 0.46 ∠ +128
load
26
24
(dBm)
22
20
18
OUTPUT POWER
16
14
P
out
η
c
28 4 6 10 12 14 16 17
INPUT POWER (dBm)
90
80
70
60
50
40
30
20
Figure 7. Output Power and Collector
Efficiency vs. Input Power.
28
Γ
= 0.86 ∠ -180
source
Γ
26
24
(dBm)
22
20
18
OUTPUT POWER
16
14
= 0.46 ∠ +128
load
TC = +85° C
= +25° C
T
C
= –40° C
T
C
28 4 6 10 12 14 16
INPUT POWER (dBm)
17
Figure 10. Output Power vs. Input
Power Over Temperature.
29
Γ
= 0.86 ∠ -180
source
Γ
= 0.46 ∠ +128
load
27
(%)
25
(dBm)
23
21
19
OUTPUT POWER
17
COLLECTOR EFFICIENCY
15
28 4 6 10 12 14 16
INPUT POWER (dBm)
3.6 V
4.8 V
6.0 V
Figure 8. Output Power vs. Input
Power Over Bias Voltage.
0
Γ
= 0.86 ∠ -180
source
Γ
= 0.46 ∠ +128
-2
load
-4
(dB)
-6
-8
-10
RETURN LOSS
-12
-14
800 900 850 950 836.5
750
Output R.L.
Input R.L.
FREQUENCY (MHz)
Figure 11. Input and Output Return
Loss vs. Frequency.
90
Γ
= 0.86 ∠ -180
source
80
Γ
= 0.46 ∠ +128
load
(%)
70
60
50
40
30
20
COLLECTOR EFFICIENCY
17
10
28 4 6 10 12 14 16
INPUT POWER (dBm)
3.6 V
4.8 V
6.0 V
17
Figure 9. Collector Efficiency vs.
Input Power Over Bias Voltage.
0
Γ
= 0.87 ∠ -178
source
-5
Γ
= 0.48 ∠ +126
load
-10
-15
-20
(dBc)
-25
-30
IMD
-35
-40
-45
-50
IMD3
IMD5
51 1 7 9 13 15 17 19 22 21
OUTPUT POWER/TONE (dBm)
Figure 12. IMD3, IMD5 vs. Output
Power Per Tone.
Note: Test circuit B (AMPS) used and re-tuned at
900 MHz.
4-92
Page 5
AT-38086 Typical Large Signal Impedances (GSM)
Freq. = 900 MHz, VCE = 4.8 V, ICQ = 20 mA, Pulsed Operation, P
Γ
Freq.
source
MHz Mag. Ang. Mag. Ang.
880 0.743 -175.6 0.474 162.0
890 0.741 -176.4 0.476 161.5
900 0.747 -177.3 0.478 161.2
910 0.751 -178.1 0.481 160.0
915 0.752 -178.6 0.482 159.6
920 0.754 -179.1 0.483 158.9
␣ =␣ +28.0 dBm
out
Γ
load
AT-38086 Typical Large Signal Impedances (AMPS)
Freq. = 836.5 MHz, VCE = 4.8 V, ICQ = 15 mA, CW Operation, P
Γ
Freq.
source
MHz Mag. Ang. Mag. Ang.
824 0.856 -178.9 0.455 129.1
836.5 0.864 -179.9 0.459 128.2
849 0.870 -179.1 0.464 127.3
␣ =␣ +23.5 dBm
out
Γ
load
SPICE Model Parameters
Die Model Packaged Model
CPad
C
3.5
3.3
3.1
2.9
2.7
(pF)
2.5
Ccb
2.3
2.1
1.9
1.7
1.5
02 3 19 45678
Vcb (V)
Figure 13. Collector-Base
Capacitance vs. Collector-Base
Voltage (DC Test).
Cbc
B
Die Area = 0.67
CPad = 0.36 pF
Label Label
BF
IKF
ISE
NE
VAF
NF
TF
XTF
VTF
ITF
PTF
XTB
BR
IKR
ISC
NC
VAR
Value
280
299.9
9.9E-11
2.399
33.16
0.9935
1.6E-11
0.006656
0.02785
0.001
23
0
54.61
81
8.7E-13
1.587
1.511
E1
NR
TR
EG
IS
XTI
CJC
VJC
MJC
XCJC
FC
CJE
VJE
MJE
RB
RE
RC
CPad
Value
0.9886
1E-9
1.11
3.598E-15
3
1.02 pF
0.4276
0.2508
0.001
0.999
0.98 pF
0.811
0.596
5.435
1.30
0.01
E2
CPad
L1
B
Cbe Cce
Lb
Label
Cbe
Cbc
Cce
L1
L2
L3
Lb
Le
B
E1
Le
L2
E
Value
0.032 pF
0.036 pF
0.122 pF
0.46 nH
0.46 nH
0.46 nH
0.47 nH
0.14 nH
E2
C
L3
C
4-93
Page 6
AT-38086 Typical Scattering Parameters, Common Emitter, Z
VCE = 3.6 V, Ic = 50 mA, T
Freq. S
11
= 25° C
c
S
21
S
12
= 50 Ω
O
S
GHz Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.05 0.71 -85 31.7 38.52 138 -31.7 0.026 54 0.75 -57
0.10 0.73 -124 28.2 25.72 118 -29.1 0.035 39 0.56 -90
0.25 0.75 -160 21.3 11.66 84 -27.3 0.043 35 0.39 -133
0.50 0.76 -176 15.5 5.95 76 -25.5 0.053 43 0.36 -155
0.75 0.76 175 12.0 3.98 72 -23.6 0.066 50 0.36 -165
0.90 0.77 171 10.4 3.32 69 -22.6 0.074 52 0.36 -168
1.00 0.77 169 9.5 2.99 63 -22.0 0.079 54 0.37 -170
1.25 0.78 164 7.6 2.39 57 -20.5 0.094 56 0.38 -174
1.50 0.78 160 6.0 1.99 51 -19.3 0.108 57 0.40 -176
1.75 0.79 156 4.7 1.71 46 -18.3 0.122 57 0.41 -179
2.00 0.80 152 3.5 1.49 41 -17.3 0.137 57 0.43 179
2.25 0.80 148 2.5 1.33 37 -16.4 0.151 57 0.45 176
2.50 0.81 145 1.5 1.19 32 -15.7 0.164 56 0.47 174
2.75 0.81 142 0.7 1.08 28 -15.0 0.178 55 0.49 172
3.00 0.82 139 -0.1 0.99 25 -14.4 0.191 54 0.51 169
VCE = 4.8 V, Ic = 50 mA, T
0.05 0.72 -82 31.8 39.02 139 -31.7 0.026 54 0.76 -55
0.10 0.73 -121 28.4 26.32 119 -29.1 0.035 40 0.56 -87
0.25 0.75 -158 21.6 12.00 97 -27.3 0.043 35 0.38 -130
0.50 0.75 -176 15.8 6.14 85 -25.5 0.053 43 0.35 -154
0.75 0.76 176 12.3 4.10 76 -23.7 0.065 49 0.35 -163
0.90 0.76 172 10.7 3.42 72 -22.7 0.073 52 0.35 -167
1.00 0.76 169 9.8 3.08 69 -22.0 0.079 53 0.36 -169
1.25 0.77 164 7.8 2.46 63 -20.6 0.093 56 0.37 -172
1.50 0.78 160 6.2 2.05 57 -19.4 0.107 57 0.38 -175
1.75 0.78 156 4.9 1.76 51 -18.3 0.121 58 0.40 -178
2.00 0.79 152 3.8 1.54 46 -17.4 0.135 57 0.42 180
2.25 0.80 149 2.7 1.37 41 -16.5 0.150 57 0.44 177
2.50 0.80 145 1.8 1.23 37 -15.8 0.163 56 0.46 175
2.75 0.81 142 1.0 1.12 32 -15.0 0.177 55 0.48 173
3.00 0.82 139 0.2 1.02 28 -14.4 0.190 55 0.50 170
VCE = 6.0 V, Ic = 50 mA, T
0.05 0.73 -79 31.8 39.07 140 -32.0 0.025 55 0.76 -54
0.10 0.74 -119 28.5 26.60 120 -29.1 0.035 40 0.56 -85
0.25 0.74 -157 21.7 12.21 98 -27.3 0.043 35 0.38 -128
0.50 0.75 -175 15.9 6.25 85 -25.5 0.053 42 0.34 -152
0.75 0.75 176 12.4 4.18 76 -23.7 0.065 49 0.34 -162
0.90 0.76 172 10.8 3.48 72 -22.7 0.073 52 0.34 -166
1.00 0.76 170 9.9 3.13 69 -22.2 0.078 53 0.34 -167
1.25 0.77 165 8.0 2.51 63 -20.7 0.092 56 0.36 -171
1.50 0.77 160 6.4 2.09 57 -19.5 0.106 57 0.37 -174
1.75 0.78 156 5.1 1.79 51 -18.4 0.120 57 0.39 -177
2.00 0.79 152 3.9 1.56 46 -17.5 0.134 58 0.41 -179
2.25 0.79 149 2.9 1.39 41 -16.6 0.148 57 0.43 178
2.50 0.80 146 1.9 1.25 37 -15.8 0.162 56 0.45 176
2.75 0.81 142 1.1 1.13 32 -15.1 0.175 56 0.47 174
3.00 0.81 139 0.3 1.03 28 -14.5 0.188 55 0.49 171
= 25° C
c
= 25° C
c
22
4-94
Page 7
Typical Performance
35
MSG
30
25
20
(dB)
15
GAIN
|S
21
10
5
0
-5
0.05 1.00 0.25 0.75 1.50 3.00 2.50 2.00
MAG
2
|
FREQUENCY (GHz)
Figure 14. Insertion Power Gain,
Maximum Available Gain, and Maximum
Stable Gain vs. Frequency. V
Ic = 50 mA.
= 3.6V,
CE
35
MSG
30
25
20
(dB)
15
GAIN
10
5
0
0.05 1.00 0.25 0.75 1.50 3.00 2.50 2.00 0.05 1.00 0.25 0.75 1.50 3.00 2.50 2.00
Figure 15. Insertion Power Gain,
Maximum Available Gain, and Maximum
Stable Gain vs. Frequency. V
Ic = 50 mA.
Part Number Ordering Information
Part Number No. of Devices Container
AT-38086-TR1 1000 7" Reel
AT-38086-BLK 100 Antistatic Bag
MAG
2
|
|S
21
FREQUENCY (GHz)
= 4.8V,
CE
35
30
MSG
25
20
(dB)
15
GAIN
10
|S
5
0
MAG
2
|
21
FREQUENCY (GHz)
Figure 16. Insertion Power Gain,
Maximum Available Gain, and Maximum
Stable Gain vs. Frequency. VCE = 6.0V,
Ic = 50 mA.
Package Dimensions
Outline 86
0.51 ± 0.13
1.52 ± 0.25
(0.060 ± 0.010)
0.66 ± 0.013
(0.026 ± 0.005)
0.30 MIN
(0.012 MIN)
(0.020 ± 0.005)
45°
(0.105 ± 0.15)
DIMENSIONS ARE IN MILLIMETERS (INCHES)
4
1
2
2.67 ± 0.38
5° TYP.
2.16 ± 0.13
(0.085 ± 0.005)
C
L
3
2.34 ± 0.38
(0.092 ± 0.015)
0.203 ± 0.051
(0.006 ± 0.002)
8° MAX
0° MIN
4-95
Page 8
Test Circuit A: Test Circuit Board Layout @ 900 MHz for Pulsed Operation (GSM)
38.1 (1.5)
V
BB
V
BB
T1
R1
R2
C2
C3
L1
R3 R5
R4
C4 C1
PA1 DEMO
76.2 (3.0)
Pulse Test
V
= 4.8 V
CE
= 20 mA
I
CQ
Freq. = 900 MHz
NOTE:
Dimensions are shown in millimeters (inches).
Test Circuit:
FR-4 Microstrip, glass epoxy board
Dielectric Constant = 4.5
Thickness = 0.79 (.031)
C5
L2
C6
B–MFG0139
V
CC
C8 C9
C7
100.0 pF
V
CC
9/96
C10
OUTPUT INPUT
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
R1
R2
R3
R4
R5
T1
L1
L2
100.0 pF
100.0 nF
8.2 pF
100.0 nF
100.0 pF
3.6 pF
1.5 µ F
10.0 µ F
100.0 pF
10.0 Ω
619.0 Ω
10.0 Ω
40.0 Ω
10.0 Ω
MBT 2222A
18.0 µ H
18.0 µ H
Test Circuit A: Test Circuit Schematic Diagram @ 900 MHz for Pulsed Operation (GSM)
B
CE
RF IN
V
10 Ω
619 Ω
DC
Transistor
10 Ω
18 µ H
100 pF
8.2 pF = 6.53 (.257)
BB
Pulse Test
V
= 4.8 V
CE
= 20 mA
I
CQ
Freq. = 900 MHz
100 nF
100 pF 100 pF
80 Ω
80 Ω
λ /4 @ 900 MHz λ /4 @ 900 MHz
40 Ω
50 Ω
50 Ω
= 19.00 (.748)
10 Ω
100 nF 1.5 µ F 10 µ F
18 µ H
3.6 pF
V
CC
100 pF
RF OUT
4-96
Page 9
Test Circuit B: Test Circuit Board Layout @ 836.5 MHz for CW Operation (AMPS)
V
CC
C7 C8
V
C9
100.0 pF
CC
9/96
C10
OUTPUT INPUT
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
R1
R2
R3
R4
R5
T1
L1
L2
100.0 nF
11.0 pF
100.0 pF
100.0 pF
100.0 nF
1.5 µ F
10.0 µ F
4.7 pF
100.0 pF
10.0 Ω
619.0 Ω
10.0 Ω
40.0 Ω
10.0 Ω
MBT 2222A
18.0 µ H
18.0 µ H
38.1 (1.5)
V
BB
V
BB
R2
R1
T1
R4
C1
C3
PA1 DEMO
76.2 (3.0)
CW Test
V
= 4.8 V
CE
= 15 mA
I
CQ
Freq. = 836.5 MHz
NOTE:
Dimensions are shown in millimeters (inches).
Test Circuit:
FR-4 Microstrip, glass epoxy board
Dielectric Constant = 4.5
Thickness = 0.79 (.031)
C5 C4
L2 L1
R5 R3
B–MFG0139
C6 C2
Test Circuit B: Test Circuit Schematic Diagram @ 836.5 MHz for CW Operation (AMPS)
B
CE
RF IN
V
BB
10 Ω
619 Ω
DC
Transistor
10 Ω
18 µ H
100 pF
11.0 pF = 9.02 (.355)
CW Test
V
= 4.8 V
CE
= 15 mA
I
CQ
Freq. = 836.5 MHz
100 nF
100 pF 100 pF
80 Ω
80 Ω
λ /4 @ 836.5 MHz λ /4 @ 836.5 MHz
40 Ω
50 Ω
50 Ω
= 32.66 (1.286)
10 Ω
100 nF 1.5 µ F 10 µ F
18 µ H
4.7 pF
V
CC
100 pF
RF OUT
4-97
Page 10
Tape Dimensions and Product Orientation for Outline 86
REEL
CARRIER
TAPE
USER
FEED
DIRECTION
COVER TAPE
NOTE: 1 INDICATES PIN 1 ORIENTATION
1
12 mm
t
COVER
TAPE
K
T P
CAVITY
PERFORATION
CARRIER TAPE
COVER TAPE
DISTANCE
BETWEEN
CENTERLINE
P
D
0
0
10 PITCHES CUMULATIVE
P
2
TOLERANCE ON TAPE ± 0.2 MM
E
A
C
DESCRIPTION SYMBOL SIZE (mm) SIZE (INCHES)
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
DIAMETER
PITCH
POSITION
WIDTH
THICKNESS
WIDTH
TAPE THICKNESS
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
B
1
A
5.77 ± 0.10
B
6.10 ± 0.10
K
1.70 ± 0.10
P
8.00 ± 0.10
1
1.50 min.
D
1
D
1.50 + 0.10/-0.05
0
4.00 ± 0.10
P
0
1.75 ± 0.10
E
Wt12.00 ± 0.20
0.30 ± 0.05
C
9.30 ± 0.10
T
0.065 ± 0.010
F
5.50 ± 0.05
P
2.00 ± 0.05
2
F
W
D
1
0.227 ± 0.004
0.240 ± 0.004
0.067 ± 0.004
0.314 ± 0.004
0.059 min.
0.059 + 0.004/-0.002
0.157 ± 0.004
0.069 ± 0.004
0.472 ± 0.008
0.012 ± 0.002
0.366 ± 0.004
0.0026 ± 0.0004
0.217 ± 0.002
0.079 ± 0.002
USER FEED
DIRECTION
4-98