Datasheet AS8201 Datasheet (Austria Mikro Systeme International)

AS8201
Austria Mikro Systeme International AG
TTP/C-C1 Communications Controller
Data Sheet
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
Boot ROM
RAM_ADDRESS[10:0]
RAM_CEB
RAM_OEB
RAM_READYB
TIME_OVERFLOW
TIME_SIGNAL
TIME_TICK
XENA0
XIN0
XOUT0
RESETB
ROM_ADDRESS[16:0]
ROM_DATA[15:0]
ROM_RESETB
ROM_CEB
ROM_OEB
ROM_WEB
ROM_READY
Quarz or
Oscillator
base
Host
processor
AS8201
Key Features
First dedicated controller supporting TTP/C (time triggered protocol class C)
Device for building up TTP/C nodes in a TTP/C local area networks (clusters).
Suited for dependable distributed real-time systems with guaranteed response time
application examples:
automotive: braking, steering, vehicle dynamics control, drive train control industry: air plane flap control, rail way points
Bit data rate 2 Mbits/s @ clock 20 MHz, 5.0V
Fabricated in 0.6u CMOS process, automotive temperature range of -40 to 125deg C
1k x 16 RAM message, status and control area
RAM for instruction code and configuration data
16 bit non-multiplexed host CPU interface
16 bit RISC architecture
external firmware (FLASH memory) conforming the TTP/C specification
automatic booting after power on
software tools, design-in support, development boards available ( http://www.tttech.com)
120 pin PQFP Package
Description
The TTP/C-C1 communications controller is the first integrated device supporting serial communication according to the TTP/C specification (time triggered protocol class C). It performs all communications tasks such as reception and transmission of messages in a TTP/C cluster without interaction of the host CPU. TTP/C provides mechanisms that allow the deployment in high-dependability distributed real­time systems. It provides the following services:
predictable transmission of messages with minimal jitter
fault-tolerant distributed clock synchronisation
consistent membership service with small delay
masking of single faults
Interface
RAM_DATA[15:0]
RAM_WEB
MICROTICK
Controller
network
interface
(CNI)
Reset &
Time
TTP/C-C1
protocol
processor core
Receiver
Bus
guardian
Transmitter
RXD[1:0]
BDE[1:0] XENA1 XIN1 XOUT1
TXD[1:0] CTS[1:0] OE[1:0]
TTP/C bus ­Meadia Drivers
Interface
Instruction
memory
Network
configuration
memory
(MEDL)
TEST_SE FTEST FTEST_IEN LED[7:0]
Test Inter­face
Figure 1 Block Diagramm
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
The CNI (controller network interface) forms a temporal firewall. It decouples the controller network from the host subsystem by use of a dual ported RAM. This prevents the propagation of control errors. The interface to the host CPU is implemented as 16 bit wide non-multiplexed asynchronous bus interface.
TTP/C follows a conflict-free media access strategy called time-division-multiple access (TDMA). This means, TTP/C deploys a time slot technique based on a global time which is permanently synchronised. Each node is assigned a time slot in which it is allowed to perform transmit operation. The sequence of time slots is called TDMA round, a set of TDMA rounds forms a cluster cycle. After one cluster cycle the operation of the network repeats. The sequence of interactions forming the cluster cycle is defined in a static time schedule, called message-descriptor-list (MEDL). The definition of the MEDL in conjunction with the global time determines the response time for a service request. The membership of all nodes in the network is evaluated by the communication controller. This information is presented in a consistent fashion to all correct cluster members. During operation, the status of every other node is propagated within one TDMA round. The MEDL is loaded into the configuration memory before run time when the system starts up.
Package and Pin Assignment
Type: PQFP 120, plastic quad flat package
TTP/C-C1
Communications
Controller
(TOP VIEW)
Figure 1 PQFP 120 pin package and pin assignment
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
Pin Description
PinNr. Pin Name Dir Description 1 VDD P positive power supply 2 VSS P negative power supply 3-18 RAM_DATA[0:15] I/O DPRAM data bus, tristate 19 VDD P positive power supply 20 VSS P negative power supply 21 RAM_OEB I DPRAM output enable, active low 22 RAM_WEB I DPRAM write enable, active low 23 RAM_READYB O DPRAM ready, active low, indicates read/write operation finished 24 TIME_OVERFLOW O CNI control signal, overflow of global time 25 TIME_SIGNAL O CNI control signal, CNI time signal 26 TIME_TICK O CNI clock signal, macrotick, typically about 1us at 20 MHz clock. 27 MICROTICK O output of main clock, inverted to signal applied at pin XOUT0. 28 XENA0 I oscillator 0 (main clock) enable, active low. 29 VDD P positive power supply 30 VSS P negative power supply 31 XIN0 A analog pad from oscillator / use as input when providing external
clock
32 XOUT0 A analog pad from oscillator / leave open when providing external
clock 33 VSS P positive power supply 34 VDD P negative power supply 35 OE[0] I channel [0]: transmitter output enable 36 RXD[0] IPUchannel [0]: receiver input 37 TXD[0] O channel [0]: transmit data 38 CTS[0] O channel [0]: transmitter clear to send 39 BDE[0] O channel [0]: bus driver enable 40 RESETB I (1) main reset input signal, active low. When connected the in-
ternal power-on reset function is overridden
(2) if unconnected: an internal reset is generated after power-on.
Reset pulse duration typically 24 us. 41 TEST_SE IPDtest input: scan enable, active high 42 FTEST IPDtest input: functional test mode, active high 43 FTEST_IEN IPDtest input: instruction insertion enable, active high 44-50 LED[0:6] O test outputs:
(1) in production test used as scan chain outputs
(2) in operation: can be used as generic output port, e.g. to drive
LEDs 51 OE[1] I channel [1]: transmitter output enable 52 RXD[1] IPUchannel [1]: receiver input 53 TXD[1] O channel [1]: transmit data 54 CTS[1] O channel [1]: transmitter clear to send 55 BDE[1] O channel [1]: bus driver enable 56 XENA1 I oscillator 1 (bus guardian) enable, active low. 57 VDD P positive power supply 58 VSS P negative power supply 59 XIN1 A analog pad from oscillator / use as input when providing external
clock 60 XOUT1 A analog pad from oscillator / leave open when providing external
clock 61 VSS P positive power supply 62 VDD P negative power supply
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
63-79 ROM_ADDRESS[0:16] O ROM address bus, range = 2^17 = 128k 80 ROM_RESETB O ROM reset line, active low 81 ROM_CEB O ROM chip enable, active low 82 ROM_OEB O ROM output enable, active low 83 ROM_WEB O ROM write enable, active low; “read” if high. 84 ROM_READY IPUROM ready, signals read operation ready, leave open when un-
used 85 VDD P positive power supply 86 VSS P negative power supply 87-94 ROM_DATA[0:7] I/O ROM data bus (lower byte) 95 VDD P positive power supply 96 VSS P negative power supply 97-
ROM_DATA[8:15] I/O ROM data bus (higher byte) 104 105 VDD P positive power supply
106 VSS P negative power supply 107-
RAM_ADDRESS[0:10] I DPRAM address bus, range = 2^11 = 2048 117 118 RAM_CEB I DPRAM chip enable, active low
119 VDD P positive power supply 120 VSS P negative power supply
I Input CMOS I
PU
I
PD
O Output CMOS I/O Input/Output CMOS tristate P Power Pin A Analog Pin
Input CMOS with pull up Input CMOS with pull down
Electrical Specifications
Absolute Maximum Ratings ( Non Operating)
SYMBOL PARAMETER MIN MAX NOTE VDD DC Supply Voltage -0.3 V 7.0 V V
in
I
in
T
strg
T
sold
t
sold
H Humidity 5 % 85 % ESD Electrostatic Discharge 1000 V
1) 300
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability (e.g. hot carrier degradation).
Input Voltage on any Pin - 0.3 V VDD + 0.3 V Input Current on any Pin -100 mA 100 mA 25°C Storage Temperature
Soldering Temperature
-55 oC 150 oC 260 oC
1)
Soldering Time 10 sec Reflow and Wave
HBM: R = 1.5 k, C = 100 pF
o
C all ceramic packages and DIL plastic packages, 260 oC for surface mounting plastic packages
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
Recommended Operating Conditions
PARAMETER SYMBOL MIN TYP MAX NOTE DC Supply Voltage VDD 4.5 V 5.0 V 5.5 V
1)
Circuit Ground VSS 0.0 V 0.0 V 0.0 V Static Supply Current IDDS ----
Operating Supply
IDD ---- 110 mA 160 mA fCLK = 20 MHz, VDD = 5.5 V
40 µA 100 µA
2)
3)
Current Main clock frequency CLK 5 MHz 20 MHz oscillator pins XIN0, XOUT0 Bus Guardian clock frequency Ambient Temperature T
1) The input and output parameter values in this table are directly related to ambient temperature and DC supply voltage. A temperature range other Ta affect these values and must be evaluated extra.
2) Static supply current IDDS is exclusive of input/output drive requirements and is measured at maximum VDD with the clocks stopped and all inputs tied to VDD or VSS, configured to draw minimum current.
3) Operating current is exclusive of input/output drive requirements and is measured at maximum VDD and maxi­mum clock frequency 20 MHz.
CLK2 4 MHz 16 MHz oscillatpr pins XIN1, XOUT1
a -40 oC +125 oC
min
to Ta
or a supply voltage range other than VDD
max
1)
to VDD
min
max
will
DC Characteristics and Voltage Levels
CMOS I/O levels for specified voltage and temperature range unless otherwise noted.
Inputs Pins
Pin Name Vil Vih Iil (1) Iih(2) NOTE
max min min max min max All inputs and IO pins (except: ROM_READY,
30%
VDD
70% VDD
NA -1.0 µANA 1.0
µA
CMOS input (3)
RXD[0], RXD[1], FTEST, FTEST_IEN, TEST_SE) ROM_READY, RXD[0], RXD[1] FTEST, FTEST_IEN, TEST_SE
Notes:
1) Iil ist tested at VDDmax and Vin = 0
2) Iih ist tested at VDDmax and Vin = VDDmax
3) CMOS input levels are in percentage of VDD
4)
30%
VDD
30%
VDD
70% VDD 70% VDD
-50
µA
-160 µANA NA CMOS with pull
NA NA 30
µA
160
µA
up (3) CMOS with pull down (3)
Output Pins
Pin Name Vol Voh Iol (1) Ioh(2) Ioz(3) NOTE
V V mA mA
All output pins
0.4 4.0 4.0 -4.0 NA CMOS output (except XOUT0,XOUT1) All I/O pins 0.4 4.0 4.0 -4.0 +/-10 CMOS output, Tristate
1) Vol, Iol is tested at VDD = 4.5V
2) Voh, Ioh is tested at VDD = 4.5V
3) Ioz is tested at VDD = 5.5V
µA
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
AC Characteristics
Clock applied at XOUT0, resp. XOUT1.
PARAMETER SYMBOL PIN MIN MAX NOTE data in setup time data output valid
t
setup
all IN, all IO
tdav all OUT,
all IO
20 ns vs. Falling edge of clk @XOUT0, XOUT1
35 ns vs. rising edge of clk @ XOUT0, XOUT1
Application Information
ROM Interface
Pin name mode width comment
ROM_DATA inout (tri) 16 ROM data bus ROM_ADDRESS out 17 ROM address bus ROM_CEB out 1 ROM chip enable ROM_WEB out 1 ROM write enable ROM_OEB out 1 ROM output enable ROM_READY in 1 ROM ready ROM_RESETB out 1 external reset line
Table 1 ROM Interface Ports
The timing and behaviour of the ROM Interface is designed to operate with the AM29F200 Flash EPROM or compatible devices. For detailed timing information see [AM29F200] 1. Figure 2 shows the connection between TTP/C-C1 controller and the AM29F200 Flash. The contents of the Flash memory is loaded into the instruction memory by a boot sequencer automatically after power on.
AM29F200
DQ0-DQ15
16
rom_resetb rom_web rom_ceb rom_oeb rom_address
CE
OE A0-A16
17
RY/BYRESET WE
rom_readyrom_data
BYTE
VCC
TTA-C1
Figure 2 ROM Interface
Host CPU Interface
The host CPU interface also referred as CNI (controller network interface) connects the application circuitry to the TTP/C network. As shown in Table 2 all RAM_-lines provide asynchronous read/write access to a dual ported RAM. There are no setup/hold constraints referred to the microtick (main clock “clk”). The signals have to be applied for certain duration according to Table 3. So, the applied signals get synchronised with the microtick. The TIME_-
1
[AMD96] Advanced Micro Devices, "Flash Memory Products - 1996 Data Book/Handbook", Advanced Micro Devices Inc., 1996.
2
The label TTA-C1 stands for TTP/C-C1 in the following diagrams
2
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
lines signal to host CPU the global synchronous time of the TTP network and determine when to deliver, resp. to fetch data from the host interface. One of the lines may be connected to a interrupt inputs of the host CPU.
Pin Name mode width comment
RAM_ADDRESS in 11 DPRAM address bus, 11 bit RAM_DATA inout (tri) 16 DPRAM data bus, 16 bit RAM_CEB in 1 DPRAM chip enable RAM_WEB in 1 DPRAM write enable RAM_OEB in 1 DPRAM output enable RAM_READYB out 1 DPRAM ready TIME_OVERFLOW out 1 overflow of global time TIME_SIGNAL out 1 CNI time signal TIME_TICK out 1 macrotick
Table 2 Host Interface Ports
t
ct
microtick
t
rwct
t
ram_ceb
ce
ram_web
t
a
ram_address XXX
ram_data
address stable
XXX
t
dv
Figure 3: Read Cycle Timing
Addresses and RAM_WEB have to be stable before the falling edge of RAM_CEB. RAM_CEB has to be applied for 2 microticks. Addresses and RAM_WEB have to be applied for 3 microticks. Data can be read from RAM_DATA after 6 microticks. RAM_OEB drives the result of the (last) read operation to the RAM_DATA bus.
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
t
AS8201
ct
microtick
t
ce
ram_ceb
ram_web
t
a
ram_address XXX
ram_data
address stable
data stable
XXXX
t
rwct
Figure 4: Write Cycle Timing
Addresses, data and RAM_WEB have to be stable before the falling edge of RAM_CEB. RAM_CEB has to be applied for 2 microticks. Addresses, data, and RAM_WEB have to be applied for 3 microticks.
Parameter Symbol Min Typ Max
controller cycle time t duration of chip enable t address time t data valid time t read write cycle time t
Table 3: Host Interface Timing
ct ce a dv rwct
87.5ns 100ns 112.5ns
137.5ns 150ns 162.5ns
50ns
300ns 300ns
Reset and Oscillator
Pin Name mode width Comment
XIN0 in 1 controller oscillator input XENA0 in 1 controller clock enable XOUT0 out 1 controller oscillator output XIN1 in 1 bus guardian oscillator input XOUT1 out 1 bus guardian oscillator output XENA1 in 1 bus guardian clock enable RESETB in 1 external reset MICROTICK out 1 controller clock (inverted)
Table 4: Reset and Oscillator Ports
External Reset Signal
To issue a reset of the chip the RESETB port has to be driven low for at least 200µs. After power-up the reset must overlap the build-up time of the oscillator circuit.
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
Integrated Power-On Reset
An internal Power-On Reset generator is integrated. When The supply voltage ramps up, the internal reset signal is kept active (low) for about 24 us typical. To activate this function the RESETB must be left unconnected.
Parameter Symbol Min Typ Max Unit
supply voltage slope dV/dt 250 - - kV/s power on reset active time after VDD >
t
pon_res
16 24 34 us 1,2V external reset low to internal high t external reset high to internal low t
res_fall reset_rise
81 118 173 ns
130 129 104 ns
Oscillator circuitry
The internal oscillator cell requires an external quartz or an external oscillator respectively (Figure 5, Figure 6). The internal controller clock is available at the port MICROTICK (inverted to clock signal applied at XOUT0).
VSS
20Mhz
XOUT0XENA0
XIN0
TTA-C1
VSS
XENA1
XIN1
16Mhz
XOUT1
XIN0
20Mhz
OSC
XOUT0XENA0
VSS
XENA0 XOUT0 XIN0 XENA1 XOUT1 XIN1
TTA-C1
Figure 5: Quartz Circuit Figure 6: Oscillator Circuit
TTP/C Bus Interface
Pin Name mode width comment CTS out 2 transmitter clear to send OE in 2 transmitter output enable TXD out 2 transmit data RXD in 2 receiver input BDE out 2 bus driver enable
Table 5: TTP/C Bus Interface Ports
VSS
XENA1
XIN1
16Mhz
OSC
XOUT1
The controller can be connected to transceivers with recessive state and to transceivers with three-state outputs, respectively. For safe operation of the device the bus driver enable signal BDE must be connected with output enable OE. To deactivate the bus guardian the OE signal has to be tied to VCC. Applications with recessive state transceivers do not use the CTS signal.
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
BUS0 BUS1
CL CH
PCA82C250
TXD RXD
OE[0] CTS[0]TXD[0] RXD[0]BDE[0]
TTA-C1
CL CH
PCA82C250
TXD RXD
OE[1] CTS[1]TXD[1] RXD[1]BDE[1]
BUS0
CL CH
MAX1487
DI DO
OE[0] CTS[0]TXD[0] RXD[0]BDE[0]
BUS1
DERE
OE[1] CTS[1]TXD[1] RXD[1]BDE[1]
TTA-C1
CL CH
MAX1487
DI DO
Figure 7: Transceivers with Recessive State Figure 8: Transceivers with Three-State Output
Test Interface
Pin Name mode width comment
FTEST in (pull down) 1 functional test mode FTEST_EIN in (pull down) 1 instruction insertion enable LED out 7 LED vector TEST_SE in (pull down) 1 scan enable
Table 6: Test Interface Ports
DERE
The ports of the test interface support the manufacturing test of the chip. In the application environment FTEST, FTEST_IEN, and TEST_SE are not connected. The LED bus can be used as a universal output port. The driver strength of the LED ports is 4mA.
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
Quartz
MAX1487
Bus0
Bus1
AS8201
Principles of Operation
The next 2 figures show a typical TTP/C node as it is to be deployed in a TTP/C communication cluster. The circuit example uses the MAX1487 as driver, the host CPU may be selected by the user and a 29F200 Flash memory. For detailed information the protocol on application programming refer to the manuals provided by TTTech Computer Technik GmbH.
Sensor / Actor interface
Host CPU
Controller network interface (CNI)
Boot ROM
(external)
TTP/C-C1
controller chip
TTP/C bus
TTP/C
Protocol
processor
Bus guardian - Rx / Tx
Media Divers
Instruction
memory
Configuration
memory (MEDL)
Figure 9 Typical node in a TTP/C cluster using the TTP/C-C1
RAM_DATA[15:0] RAM_ADDRESS[10:0]
Host CPU
20 MHz Quartz
Flash
EPROM
29F200
RAM_CEB RAM_OEB RAM_WEB RAM_READYB TIME_OVERFLOW TIME_SIGNAL TIME_TICK
MICROTICK XENA0 XIN0 XOUT0
RESETB ROM_ADDRESS[16:0]
ROM_DATA[15:0] ROM_RESETB ROM_CEB ROM_OEB ROM_WEB ROM_READY
TTP/C-C1
controller
TEST_SE
FTEST_IEN
TXD[0]
RXD[0]
CTS[0]
BDE[0]
OE[0]
TXD[1]
RXD[1]
CTS[1]
BDE[1]
OE[1]
XENA1
XIN1
XOUT1
FTEST
LED[7:0]
RE DI CL
DO CH DE
MAX1487
RE DI CL
DO CH DE
16 MHz
Figure 10 Typical application circuit
TTP/C-C1 Communications Controller Data Sheet
Austria Mikro Systeme International AG
AS8201
Ordering Information
Part Number: AS8201 Part Name: TTP/C-C1 Communications Controller Package: PQFP 120
Support
Software tools, hardware development boards, evaluation systems and extensive support on TTP/C system integration as well as consulting is provided by
TTTech Computertechnik GmbH Time-Triggered Technology
Schönbrunnerstraße 7 A-1040 Vienna Austria
Voice: +43 1 5853434 - 0 Fax: +43 1 5853434 - 90 email: office@tttech.com web: http://www.tttech.com
TTP is a trademark of FTS Computertechnik Ges.m.b.H. TTTech is a trademark of TTTech Computertechnik GmbH.
(c) 1999 Austria Mikro Systeme International AG and TTTech Computertechnik GmbH. All rights reserved.
Copyright 1999, Austria Mikro Systeme International AG, Schloß Premstätten, 8141 Unterpremstätten, Austria. Telefon +43-(0)3136-500-0, Telefax +43-(0)3136-52501, E-Mail info@amsint.com All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing by the copyright holder. To the best of its knowledge, Austria Mikro Systeme International asserts that the information contained in this publication is accurate and correct.
Loading...