Datasheet AS7C164-20PC, AS7C164-20JC, AS7C164-15PC, AS7C164-15JC, AS7C164-12PC Datasheet (Alliance Semiconductor Corporation)

...
Page 1
6
66
65 55
5$ $$
$0 00
0
2&72%(5#4<<<
2&72%(5#4<<<
Copyright ©1999 Alliance Semiconductor. All rights reserved.
$6:&497
$6:&497$6:&497
$6:&497
','#440533440$1#425:233
','#440533440$1#425:233','#440533440$1#425:233
','#440533440$1#425:233 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 56
5656
56
89#;.[;#&026#65$0
89#;.[;#&026#65$089#;.[;#&026#65$0
89#;.[;#&026#65$0
®
)HDWXUHV
• AS7C164 (5V version)
• Commercial temperatur
• Organization: 8,192 words × 8 bits
• Center power and ground pins
• High speed
- 12/15/20 ns addres s access time
- 3/4/5 ns output enable access time
• Low power consumption: ACTIVE
- 550 mW (AS7C164) / max @ 12 ns
• Low power consumption: STANDBY
- 11 mW (AS7C164) / max CMOS I/O
•2.0V data retention
• Easy memory expansion with CE1
, CE2, OE inputs
• TTL-compatible, three-state I/O
• 28-pin JEDEC standard package
- 300 mil PDIP and SOJ
• ESD protection 2000 volts
• Latch-up current ≥ 200 mA
/RJLF#EORFN#GLDJUDP
A5A
0
128×64×8
Array
(65,536)
Input buffer
A1 A2 A3
A4 A10 A11 A12
A6A7A8A
9
I/O0
I/O7
V
CC
GND
OE CE1
WE
Column decoder
Row decoder
Control
circuit
Sense amp
CE2
3LQ#DUUDQJHPHQW
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17
Vcc WE CE2 A8 A9 A11 OE A10 CE1 I/O7 I/O6 I/O5 I/O4 I/O3
NC
A12
A7 A6 A5 A4 A3 A2 A1
A0 I/O0 I/O1 I/O2 GND
28-pin DIP, SOJ (300 mL)
16 15
AS7C164
6HOHFWLRQ#JXLGH#
AS7C164-12 AS7C164-15 AS7C164-20 Unit
Maximum address access time 12 15 20 ns Maximum output enable access time 3 4 5 ns Maximum operating current 110 100 90 mA Maximum CMOS standby current 2.0 2.0 2.0 mA
Page 2
6
66
65
55
5$
$$
$0
00
0
$6:&497
$6:&497$6:&497
$6:&497
®
57
5757
57 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 ','#440533440$1#425:233
','#440533440$1#425:233','#440533440$1#425:233
','#440533440$1#425:233
)XQFWLRQDO#GHVFULSWLRQ
The AS7C164 is a high performance CMOS 65,536-bit Static Random Access Memory (SRAM) device organized as 8,192 words × 8 bits. It is designed for memory applications where fast data access , low power, and simple interfacing are desired.
Equal address access and cycle times (tAA, tRC, tWC) of 12/15/20 ns with output enable access times (tOE) of 3/4/5 ns are ideal for high performance applications. Active high and low chip enables (CE1
, CE2) permit easy memory expansion with multiple-bank memory
systems. When CE1 is High or CE2 is Low the device enters standby mode. The standard AS7C164 is guaranteed not to exceed 11.0 mW power
consumption in standby mode, and typically requires only 250 µW; it offers 2.0V data retention with maximum power of 120 µW. A write cycle is accomplished by asserting write enable (WE) and both chip enables (CE1, CE2). Data on the input pins I/O0-I/O7 is written
on the rising edge of WE
(write cycle 1) or the active-to-inactive edge of CE1 or CE2 (write cycle 2). To avoid bus contention, external
devices should drive I/O pins only after outputs have been disabled with output enable (OE
) or write enable (WE).
A read cycle is accomplished by asserting output enable (OE
) and both chip enables (CE1, CE2), with write enable (WE) High. The chip drives I/O pins with the data word referenced by the input address. When either chip enable or output enable is inactive, or write enable is active, output drivers stay in high-impedance mode.
All chip inputs and outputs are TTL-compatible, and operation is from a single 5V supply. The AS7C164 is packaged in all high volume industry standard packages.
$EVROXWH#PD[LPXP#UDWLQJV
NOTE: Stresses greater than those listed under
Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
7UXWK#WDEOH
Key: X = Don’t Care, L = Low, H = High
Parameter Device Symbol Min Max Unit
Voltage on V
CC
relative to GND AS7C164 V
t1
–0.50 +7.0 V
Voltage on any pin relativ e to GND V
t2
–0.50 VCC + 0.50 V
Power dissipation P
D
–1.0W
Storage temperature (plastic) T
stg
–65 +150
o
C
Ambient temperature with V
CC
applied T
bias
–55 +125
o
C
DC current into outputs (low) I
out
–20mA
CE1
CE2 WE OE Data Mode
H X X X High Z Standby (I
SB
, I
SB1
)
X L X X High Z Standby (I
SB
, I
SB1
)
L H H H High Z Output disable (I
CC
)
LHHLD
out
Read (ICC)
LHLXD
in
Write (ICC)
Page 3
6
66
65 55
5$ $$
$0 00
0
®
$6:&497
$6:&497$6:&497
$6:&497
####
','#440533440$1#425:233
','#440533440$1#425:233','#4405334 40$1#425:23 3
','#440533440$1#425:233 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 58
5858
58
6
66
65 55
5$ $$
$0 00
0
5HFRPPHQGHG#RSHUDWLQJ#FRQGLWLRQV
#
'&#RSHUDWLQJ#FKDUDFWHULVWLFV#+RYHU#WKH#RSHUDWLQJ#UDQJH,
1
&DSDFLWDQFH#+I 40+]/#7D 58R#&/#9&&# #120,1$/,
2
Parameter Device Symbol Min Typical Max Unit
Supply voltage AS7C164 V
CC
4.5 5.0 5.5 V
Input voltage AS7C164
V
IH
2.2 VCC+1 V
V
IL
–0.5
*
* V
IL
min = –3.0V for pulse width less than tRC/2.
–0.8V
Ambient operating temperature AS7C164 T
A
0– 70oC
Parameter Symbol Test Conditions Device
-12 -15 -20 UnitMin Max Min Max Min Max
Input leakage current|I
LI
|
V
CC
= Max,
V
IN
= GND to V
CC
–1–1–1µA
Output leakage current
|
I
LO
|
V
CC
= Max,
CE1
= VIH or CE2 = VIL,
V
OUT
= GND to V
CC
–1–1–1µA
Operating power supply current
I
CC
VCC = Max, CE1
= VIL, CE2 = VIH,
f
=
f
Max, IOUT
= 0 mA
AS7C164 110 100 90 mA
Standby powe r supply current
I
SB
VCC = Max, CE1
= VIH or CE2 = VIL,
f
=
f
Max
AS7C164 30 25 25 mA
I
SB1
VCC = Max, CE1
V
CC
–0.2V
or
CE2 ≤ 0.2V, V
IN
0.2V
or
V
IN
V
CC
–0.2V, f = 0
AS7C164 2.0 2.0 2.0 mA
Output voltage
V
OL
IOL = 8 mA, VCC = Min 0. 4 0.4 0.4 V
V
OH
IOH = –4 mA, VCC = Min 2.4 2.4 2.4 V
Parameter Symbol Signals Test conditions Max Unit
Input capacitance C
IN
A, CE1, CE2, WE, OE Vin = 0V 5 pF
I/O capacitance C
I/O
I/O Vin = V
out
= 0V 7 pF
Page 4
6
66
65
55
5$
$$
$0
00
0
$6:&497
$6:&497$6:&497
$6:&497
®
59
5959
59 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 ','#440533440$1#425:233
','#440533440$1#425:233','#440533440$1#425:233
','#440533440$1#425:233
5HDG#F\FOH#+RYHU#WKH#RSHUDWLQJ#UDQJH,
3,9
.H\#WR#VZLWFKLQJ#ZDYHIRUPV
5HDG#ZDYHIRUP#4#+DGGUHVV#FRQWUROOHG,
3, 6, 7, 9, 12
5HDG#ZDYHIRUP#5#+&(4#DQG#&(5#FRQWUROOHG,
3, 6, 8, 9, 12
Parameter Symbol
-12 -15 -20 Unit NotesMin Max Min Max Min Max
Read cycle time t
RC
12 15 20 ns
Address access time t
AA
–12–15–20ns3
Chip enable (CE1
) access time t
ACE1
–12–15–20ns3, 12
Chip enable (CE2) access time t
ACE2
–12–15–20ns3, 12
Output enable (OE
) access time t
OE
–3–4–5ns
Output hold from address change t
OH
3–3–3–ns5
CE1
Low to output in low Z t
CLZ1
3–3–3–ns4, 5, 12
CE2 High to output in low Z t
CLZ2
3–3–3–ns4, 5, 12
CE1
High to output in high Z t
CHZ1
–3–4–5ns4, 5, 12
CE2 Low to output in high Z t
CHZ2
–3–4–5ns4, 5, 12
OE
Low to output in low Z t
OLZ
0–0–0–ns4, 5
OE
High to output in high Z t
OHZ
–3–4–5ns4, 5
Power up time t
PU
0–0–0–ns4, 5, 12
Power down time t
PD
12 15 20 ns 4, 5, 12
Undefined output/don’t careFalling inputRising input
Address
D
OUT
Data valid
t
OH
t
AA
t
RC
current
Supply
CE2
OE
D
OUT
t
OE
t
OLZ
t
ACE1, tACE2
t
CHZ1, tCHZ2
t
CLZ1, tCLZ2
t
PU
t
PD
I
CC
I
SB
50% 50%
t
OHZ
Data valid
t
RC
1
CE1
Page 5
6
66
65 55
5$ $$
$0 00
0
®
$6:&497
$6:&497$6:&497
$6:&497
####
','#440533440$1#425:233
','#440533440$1#425:233','#4405334 40$1#425:23 3
','#440533440$1#425:233 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 5:
5:5:
5:
6
66
65 55
5$ $$
$0 00
0
:ULWH#F\FOH#+RYHU#WKH#RSHUDWLQJ#UDQJH,
11
:ULWH#ZDYHIRUP#4+:(#FRQWUROOHG,
10, 11, 12
:ULWH#ZDYHIRUP#5#+&(4#DQG#&(5#FRQWUROOHG,
10, 11, 12
Parameter Symbol
-12 -15 -20 Unit NotesMin Max Min Max Min Max
Write cycle time t
WC
12 15 20 ns
Chip enable (CE1
) to write end t
CW1
9 10 12 ns 12
Chip enable (CE2) to write end t
CW2
9 10 12 ns 12
Address setu p to write end t
AW
9–10–12– ns
Address setu p time t
AS
0–0–0– ns12
Write pulse width t
WP
8–9–12– ns
Address hold f rom write end t
AH
0–0–0– ns
Data valid to write end t
DW
6–7–8– ns
Data hold time t
DH
0–0–0– ns4, 5
Write enable to output in high Z t
WZ
–5–5–5 ns4, 5
Output active from write end t
OW
3–3–3– ns4, 5
t
AW
t
AH
t
WC
Address
WE
D
OUT
t
DH
t
OW
t
DW
t
WZ
t
WP
t
AS
Data valid
D
IN
t
AW
Address
CE1
WE
D
OUT
t
CW1, tCW2
t
WP
t
DW
t
DH
t
AH
t
WZ
t
WC
t
AS
CE2
Data validD
IN
Page 6
6
66
65
55
5$
$$
$0
00
0
$6:&497
$6:&497$6:&497
$6:&497
®
5;
5;5;
5; $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 ','#440533440$1#425:233
','#440533440$1#425:233','#440533440$1#425:233
','#440533440$1#425:233
'DWD#UHWHQWLRQ#FKDUDFWHULVWLFV#+RYHU#WKH#RSHUDWLQJ#UDQJH,
13
'DWD#UHWHQWLRQ#ZDYHIRUP#
$&#WHVW#FRQGLWLRQV
1RWHV
1During VCC power-up, a pull-up resistor to VCC on CE1 is required to meet ISB specification. 2 This parameter is sampled, but not 100% tested. 3 For test conditions, see
AC Test Conditions
, Figures A, B, and C.
4t
CLZ
and t
CHZ
are specified with CL = 5pF as in Figures B or C. Transition is measured ±500mV from steady-state voltage. 5 This parameter is guaranteed, but not 100% tested. 6WE
is High for read cycle.
7CE1
and OE are Low and CE2 is High for read cycle.
8 Address valid prior to or coincident with CE1
transition Low and CE2 transition High. 9 All read cycle timings are referenced from the last valid address to the first transitioning address. 10 CE1
or WE must be High or CE2 Low during address transitions. Either CE or WE asserting high terminates a write cycle. 11 All write cycle timings are referenced from the last valid address to the first transitioning address. 12 CE1
and CE2 have identical timing. 13 2V data retention applies to the commercial operating range only. 14 C = 30pF, except on High Z and Low Z parameters, where C = 5pF.
Parameter Symbol Test co nditions Min Ma x U nit
V
CC
for data retention V
DR
VCC = 2.0V
CE1
≥ VCC–0.2V
or
CE2
0.2V
2.0 V
Data retention current I
CCDR
–6A
Chip enable to data retention time t
CDR
0–ns
Operation recovery time t
R
t
RC
–ns
V
CC
CE1
t
R
t
CDR
Data retention mode
V
CC
V
CC
V
DR
2.0V
V
IH
V
IH
V
DR
- Output load: see Figure B or Figure C.
- Input pulse level: GND to 3.0V. See Figure A.
- Input rise and fall times: 2 ns. See Figure A.
- Input and output timing reference levels: 1.5V.
10%
90%
10%
90%
GND
+3.0V
Figure A: Input pulse
2ns
255
C
(14)
480
D
out
GND
+5V
Figure B: 5V O utput lo
ad
255
C
(14)
320
D
out
GND
+5V
Figure C: 3.3V O utput load
168
Thevenin Equivalent:
D
out
+1.728V (5V)
Page 7
6
66
65 55
5$ $$
$0 00
0
®
$6:&497
$6:&497$6:&497
$6:&497
####
','#440533440$1#425:233
','#440533440$1#425:233','#4405334 40$1#425:23 3
','#440533440$1#425:233 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 5<
5<5<
5<
6
66
65 55
5$ $$
$0 00
0
7\SLFDO#'&#DQG#$&#FKDUDFWHULVWLFV #
Supply voltage (V)
MIN
MAX
NOMINAL
0.0
0.2
0.6
0.8
0.4
1.0
1.2
1.4
Normalized I
CC
, I
SB
Normalized supply current ICC, I
SB
Ambient temperature (°C)
–55 80
125
35–10
0.0
0.2
0.6
0.8
0.4
1.0
1.2
1.4
Normalized I
CC
, I
SB
Normalized supply current ICC, I
SB
vs. ambient temperature
a
vs. supply voltage V
CC
I
CC
I
SB
I
CC
I
SB
Ambient temperature (°C)
-55 80
125
35-10
0.2
1
0.04
5
25
625
Normalized I
SB1 (log scale)
Normalized supply current I
SB1
vs. ambient temperature
a
V
CC
= VCC(NOMINAL)
Supply voltage (V)
MIN
MAX
NOMINAL
0.8
0.9
1.1
1.2
1.0
1.3
1.4
1.5
Normalized access time
Normalized access time t
AA
Ambient temperature (°C)
–55 80
125
35–10
0.8
0.9
1.1
1.2
1.0
1.3
1.4
1.5
Normalized access time
Normalized access time t
AA
Cycle frequency (MHz)
075
100
5025
0.0
0.2
0.6
0.8
0.4
1.0
1.2
1.4
Normalized I
CC
Normalized supply current I
CC
vs. ambient temperature
a
vs. cycle frequency 1/tRC, 1/t
WC
vs. supply voltage V
CC
VCC = VCC(NOMINAL)
Ta = 25°C
VCC = VCC(NOMINAL)Ta = 25°C
Output voltage (V)
V
CC
0
20
60
80
40
100
120
140
Output source current (mA)
Output source current I
OH
Output voltage (V)
V
CC
Output sink current (mA)
Output sink current I
OL
vs. output volt age
OL
vs. output voltage
OH
0
20
60
80
40
100
120
140
VCC = VCC(NOMINAL)PL
Ta = 25°C
VCC = VCC(NOMINAL)
Ta = 25°C
Capacitance (pF)
0 750
1000
500250
0
5
15
20
10
25
30
35
Change in t
AA
(ns)
Typical access time change ∆t
AA
vs. output capacitive loading
VCC = VCC(NOMINAL)
00
Page 8
6
66
65
55
5$
$$
$0
00
0
$6:&497
$6:&497$6:&497
$6:&497
®
63
6363
63 $//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725$//,$1&(#6(0,&21'8&725
$//,$1&(#6(0,&21'8&725 ','#440533440$1#425:233
','#440533440$1#425:233','#440533440$1#425:233
','#440533440$1#425:233
3DFNDJH#GLPHQVLRQV
2UGHULQJ#FRGHV
3DUW#QXPEHULQJ#V\VWHP
Package\ Access time Volt/Temp 12 ns 15 ns 20 ns
Plastic DIP\300 mL 5V commercial AS7C164-12PC AS7C164-15PC AS7C164-20PC Plastic SOJ\300 mL 5V commercial AS7C164-12JC AS7C164-15JC AS7C164-20JC
AS7C 164 X –XX X C
SRAM prefi x Device number Blank = Standard power Access time
Package cod e: P=PDIP 300 mil J=SOJ 300 mil
Commercial temperature range, 0°C to 70°C
c
eA
α
Seating
b
A1
E1
E
D
e
L
S
Plane
B
A
Pin 1
28-pin PDIP
Min Max
A - 0.175
A1 0.010 -
B 0.058 0.064 b 0.016 0.022
c 0.008 0.014
D - 1.400
E 0.295 0.320
E1 0.278 0.298
e 0.100 BSC
eA 0.330 0.370
L 0.1 20 0.140
α
15°
S - 0.055
28-pin SOJ
Min Max
A - 0.140 A1 0.025 ­A2 0.095 0.105
B0.028 TYP
b0.018 TYP
c0.010 TYP
D - 0.730
E 0.245 0.285 E1 0.295 0.305 E2 0.327 0.347
e 0.050 BSC
e
D
E1
Pin 1
b
B
A1
A2
c
E
Seating
Plane
E2
A
Loading...