Datasheet AN2566 APPLICATION NOTE (ST)

Page 1
AN2566
Application note
PM6680 evaluation kit dual step-down controller
with auxiliary voltages for notebook power system
Introduction
PM6680A evaluation kit order code: STEVAL-ISA053V1. The PM6680 is a dual step-down controller with adju stable output voltages for notebook

Figure 1. PM6680 evaluation kit

Top
April 2008 Rev 3 1/29
Bottom
www.st.com
Page 2
Contents AN2566
Contents
1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Evaluation kit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Evaluation board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Recommended equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9 Feedback output connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10 Test setup and performance summary . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.2 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.3 Soft-start and shutdown waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.4 1.5 V and 1.05 V output efficiency vs. load current . . . . . . . . . . . . . . . . . 19
10.5 Power consumption analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.6 Switching frequency vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.7 Linear regulator output voltages vs. output current . . . . . . . . . . . . . . . . . 24
10.8 Load transient responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
11 Representatives waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2/29
Page 3
AN2566 List of figures
List of figures
Figure 1. PM6680 evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Evaluation kit schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. PM6680 evaluation board layout - top layer (PGND plain and component side) . . . . . . . . . 9
Figure 4. PM6680 evaluation board layout - inner layer 1 (SGND layer and V
Figure 5. PM6680 evaluation board layout - inner layer 2 (SGND layer and signals) . . . . . . . . . . . . 10
Figure 6. PM6680 evaluation board layout - bottom layer (PM6680 and component side). . . . . . . . 10
Figure 7. REF and LDO5 power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. Section 1 soft-start waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. Section 2 soft-start waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10. Section 1 shutdown waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. Section 2 shutdown waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12. 1.5 V SMPS efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13. 1.05 V SMPS efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 14. Input current vs. input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15. Input current vs. input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 16. Input current vs. input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 17. Device current consumption vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 18. Device current consumption vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 19. 1.5 V output switching frequency vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 20. 1.05 V output switching frequency vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 21. LDO5 output vs. load current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 22. SMPS 1.5 V load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 23. SMPS 1.05 V load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 24. SMPS pulse skip mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 25. SMPS no-audible skip mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 26. SMPS PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
plane) . . . . . . . . . . . 9
IN
3/29
Page 4
List of tables AN2566
List of tables
Table 1. Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. The test points of the evaluation board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Jumper S11 - V5SW pin connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Jumper S3 - FSEL pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Jumper S10 - SKIP pin connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. Jumper S4, S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. Jumper S8, S9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Jumper S4, S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 9. Jumper S8, S9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 10. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4/29
Page 5
AN2566 Main features

1 Main features

Constant on-time control allows very fast load transients
6 V to 28 V input voltage range
5 V auxiliary output voltage
Adjustable switching outputs
Lossless current sensing using lo w side MOSFET R
Negative current limit
Soft-start internally fixed at 2.8 ms
Soft-end for output discharge
200 kHz / 300 kHz, 300 kHz / 400 kHz, 400 kHz / 500 kHz (5 V / 3 V selectable
switching frequency)
Selectable pulse skip and no-audible skip modes at light loads
Independent power good signals
DS(on)
5/29
Page 6
Evaluation kit schematic AN2566

2 Evaluation kit schematic

Figure 2. Evaluation kit schematic

6/29
Page 7
AN2566 Component list

3 Component list

Table 1. Component list

Name Description Size Value Supplier Part number
C1, C2,
C3
C4
C5, C6 Ceramic capacitor 0805 0,1 µF Standard
C7 Low ESR capacitor D case Not installed Standard
C8
C11 Low ESR capacitor D case Not installed Standard
C12
C13, C14 Ceramic capacitor 0805 5.6 nF Standard C15, C16 Ceramic capacitor 0603 1 nF Standard C17, C18 Ceramic capacitor 0603 47 pF Standard
C19
C26
C20 Ceramic capacitor 0603 1 µF Standard
C21
C22 Ceramic capacitor 0805 220 nF Standard
Ceramic capacitor
50 V
Ceramic capacitor
50 V
Low ESR capacitor
4 V, 12 mΩ ESR
Low ESR capacitor
4 V, 12 mΩ ESR
Ceramic capacitor
50 V
Tantalum capacitor
35 V
Tantalum capacitor
package A, 16 V
1210 10 µF Taiyo Yuden UMK325BJ106KM
1210 Not installed
D case 330 µF POSCAP - Sanyo 4TPD33OM
D case 330 µF POSCAP - Sanyo 4TPD33OM
0805 0.1 µF Standard B37941K5104K62
C case 4.7 µF AVX TPS TPSC475*035#0600
B case 4.7 µF AVX THJ THJB475*016#JN
C9, C10 Ceramic capacitor 0805 Not installed Standard
C23 Ceramic capacitor 0603 10 pF Standard
CIN
CREF Ceramic capacitor 0603 100 nF Standard
C24,C25 Ceramic capacitor 0805 10 µF Standard
C27 Ceramic capacitor 0805 Not installed Standard C28 Tantalum capacitor 3216 Not installed Standard
D1 Dual Schottky diode SOT23 STMicroelectronics BA T54A
D2,D3 Diode 1 A, 30 V DO216-AA STMicroelectronics STPS1L30M
IC1 PM6680 device
Electrolytic capacitor
39 µF, 25 V
D 10 mm Not installed Sanyo 25SVPD39M
VFQFPN-32
5 mm x 5 mm
STMicroelectronics PM6680
7/29
Page 8
Component list AN2566
Table 1. Component list (continued)
Name Description Size Value Supplier Part number
L1
L2
M1
M2
M3
M4
R7,R8 Resistor 0805 680 Standard
R3 Resistor 0805 22 k Standard R4 Resistor 0805 36 k Standard R5 Resistor 0805 3.3 k Standard
R6 Resistor 0805 3 kΩ Standard R24 Resistor 0805 1.1 k Standard R25 Resistor 0805 820 Standard
R9 Resistor 0805 47 Standard
R10,R11 Resistor 0805 10 Standard
1.5 µH inductor, 12 A sat.
2.5 µH inductor, 8 A sat.
MOSFET control FET
SO-8
MOSFET control FET
SO-8
MOSFET Sync FET
SO-8
MOSFET Sync FET
SO-8
13 mm x
13 mm
13 mm x
13 mm
SO-8 STMicroelectronics STS12NH3LL
SO-8 STMicroelectronics STS12NH3LL
SO-8 STMicroelectronics STS12NH3LL
SO-8 STMicroelectronics STS12NH3LL
1.5 µH Coilcraft MLC1538-152ML
2.5 µH Coilcraft MLC1550-252ML
R12,R13,
R14,R15
R16 Resistor 0603 150 k Standard
R18,R19 Resistor 0603 Not installed
R17 Resistor 0603 560 k Standard R26 Resistor 1206 3.9 Standard
R20, R21,
R22, R23
R27 Resistor 0805 10 k Standard R28 Resistor 0805 6.8 k Standard R29 Resistor 0805 11 k Standard R30 Resistor 0805 1.8 k Standard R31 Resistor 0805 Not installed Standard
R32 Resistor 0805 Not installed Standard
RLD5V,
RLD3V
Resistor 0603 100 k Standard
Resistor 0805 0 Standard
Resistor 0805 Not installed Standard
8/29
Page 9
AN2566 Evaluation board layout

4 Evaluation board layout

Figure 3. PM6680 evaluation board layout - top layer (PGND plain and component
side)
Figure 4. PM6680 evaluation boar d la y out - inner la y er 1 (SGND la y er and V
plane)
IN
9/29
Page 10
Evaluation board layout AN2566

Figure 5. PM6680 evaluation board layout - inner layer 2 (SGND layer and signals)

Figure 6. PM6680 evaluation board layout - bottom layer (PM6680 and component
side)
10/29
Page 11
AN2566 I/O interface

5 I/O interface

The evaluation board has the following test points.

Table 2. The test points of the evaluation board

Test point Description
V
+ Input voltage
IN
- Input voltage ground
V
IN
LDO5 5 V linear regulator output
LDO_ADJ Not used for this device
EXT5V 5 V external input OUT1+ OUT1 switching section output
OUT1- OUT1 switching section output ground
PGOOD1 OUT1 switching section power good
OUT2+ OUT2 switching section output OUT2+ OUT2 switching section output ground
PGOOD2 OUT2 switching section power good
J10 Junction pin between PGND and SGND planes
11/29
Page 12
Recommended equipment AN2566

6 Recommended equipment

6 V to 28 V power supply, notebook computer battery or AC adapter
Active loads
Digital multimeter
500 MHz four-trace oscilloscope
12/29
Page 13
AN2566 Quick start

7 Quick start

1. Connect the VIN+ and VIN- test points of the evaluation board to an external power
supply.
2. Ensure that all DIP switches (S2) are in the "OFF" position. In this condition all outputs
are disabled (shutdown mode).
3. Turn S2
(standby-mode).
4. Turn S2
regulation of the output. PGOOD1 pin goes high after soft-start.
5. Turn S2
regulation of the output. PGOOD2 pin goes high after soft-start.
6. In order to load the switching ou tputs, the loads must be connected between the "+"
and the "-" output test points, respectively.
7. In order to load the linear outputs, the loads must be connected between J10 and
LDO5 or alternative RLD5V resistors can be used on the evaluation board.
to the “ON” position (SHDN pin high). This turns on the LDO5 output
1
to the “ON” position (EN1 pin high). The 1.5 V switching controller begins
2
to the “ON” position (EN2 pin high). The 1.05 V switching controller begins
3
13/29
Page 14
Jumper settings AN2566

8 Jumper settings

It is possible to select different working conditions by using the jumpers on the board.
Note: Jumpers S1,S6, S7, S12 and S13 are alread y soldere d on the evaluation board and it is not
necessary to change them. Please refer to the schemat ic to verify their proper connection.
The external bypass connections for the linear regulator LDO5 are set by connecting the V5SW pin to jumper S11 as indicated in Table 3 below.

Table 3. Jumper S11 - V5SW pin connections

Position LDO5 working conditions
OUT5V
SGND
EXT5V
When the main output voltage is greater than the boostrap-switchover threshold, an internal 3 Ω (max) P-chann el MOSFET switch connects the V5SW pin to the LDO5 pin shutting down the LDO5 internal linear regulator. If not used, it must be tied to ground.
The internal linear regulator LDO5 is always on. In this case LDO5 supplies all gate drivers and the internal circuitry. It can provide an output peak current of 100 mA.
The internal linear regulator LDO5 remains off if an alternative 5V external voltage is applied to the EXT5V test-point. An internal 3 Ω (max) P- channel MOSFET switch connects V5SW pin to LDO5 output. The gate drivers and internal circuitry are supplied by the same 5 V external voltage applied.
The FSEL pin is connected to jumper S3 to select the SMPS frequency. The jumper positions and corresponding frequencies are shown in Table 4 below.

Table 4. Jumper S3 - FSEL pin connections

Position SMPS OUT1 SMPS OUT2
SGND
200 kHz 300 kHz
VREF
LDO5
14/29
300 kHz 400 kHz
400 kHz 500 kHz
Page 15
AN2566 Jumper settings
To select the switching operation mod e of the SMPS , connect the SKIP pin to jumper S10 as described in Table 5.

Table 5. Jumper S10 - SKIP pin connections

Position Switching operating mode
GND
VREF
LDO5
If the SKIP pin is tied to ground, a pulse skip mode takes place at light loads. A zero crossing comparator prev ents the in ductor current fr om going negative.
if the SKIP pin is tied to VREF pin enables a pulse skip mode with a minimum switching frequency about 25 kHz (ultrasonic mode).
If the SKIP pin is tied to 5 V, The fixed PWM mode takes place. The switching output is in a position to sink and source current from the load.
15/29
Page 16
Feedback output connections AN2566

9 Feedback output connections

Table 6 and Table 7 below illustrate jumper settings for a loop compensation network for
very low output voltage ripple.

Table 6. Jumper S4, S5

Position Output ripple compensation
Short
Virtual ESR output ripple is generated by using a compensation network connected
between the output and PHASE pin of the switching section.

Table 7. Jumper S8, S9

Position Feedback connection
Controller feedback signal connected to the compensation network
Table 8 and Table 9 describe the settings for a loop compensation network for high output
voltage ripple.

Table 8. Jumper S4, S5

Position Output ripple compensation
Open ESR output ripple is used.

Table 9. Jumper S8, S9

Position Feedback connection
Controller feedback signal connected directly to the output capacitor.
16/29
Page 17
AN2566 Test setup and performance summary

10 Test setup and performance summary

10.1 Test setup

The PM6680 ev aluation board has the following input/output connections:
12 V input through J5-J2 (V – 1.5 V SMPS output through J4-J13 (OUT1+ and OUT1-) – 1.05 V SMPS output through J1-J12 (OUT2+ and OUT2-) – 5 V linear regulator output through J3 (LDO5)
+ and VIN-)
IN
A power supply capable of supplying at least 6 A should be connected to V active loads should be connected respectively to OUT1+, OUT1- and OUT2+, OUT2-.

10.2 Power-up

As shown in Figure 7, the power-up starts when the input voltage is applied and the voltage on the SHDN pin is above the de vice “on” threshold. First, the LDO5 goes up wit h a masking time of about 4 ms.

Figure 7. REF and LDO5 power -up

SHDN
LDO5
VREF
+, VIN- and two
IN

10.3 Soft-start and shutdown waveforms

Figure 8 and 9 show the soft-start waveforms. Figure 10 and 11 show the shut down waveforms.
The PM6680 has an independent internal digital soft-start for each s witching section. During the soft-start phase the internal current limit increases from 25% to 100%, in increments of 25%, to avoid the inductor current reaching too high a value.
17/29
Page 18
Test setup and performance summary AN2566

Figure 8. Section 1 soft-start waveforms

OUT1
I_L
EN1

Figure 9. Section 2 soft-start waveforms

OUT2
I_L
EN2
Driving the SHDN pin below the SHDN device “off” threshold will cause the device to enter shutdown mode. In this case the switching outputs are connected to ground through an internal 12
power MOSFET and are discharged softly, (discharge mode). When the output
voltages reach 0.3 V, the low side MOSFETs are t urned on, quickly discharging them to ground.
18/29
Page 19
AN2566 Test setup and performance summary

Figure 10. Section 1 shutdown waveforms

OUT1
Lgate1
EN1

Figure 11. Section 2 shutdown waveforms

OUT2
Lgate2
EN2EN2

10.4 1.5 V and 1.05 V output efficiency vs. load current

Figure 12 and Figure 13 show the efficiency versus load current for different input voltage
values in PWM mode, skip mo de and no-audible skip mode.
19/29
Page 20
Test setup and performance summary AN2566
%
%

Figure 12. 1.5 V SMPS efficiency

1. 5 V OUTPUT EFFI CIENCY
100
90 80 70 60 50 40
EFFICIENCY [
30 20 10
0
0.01 0.1 1 10
vs LOAD CURRENT
A: SKIP, VIN=10.8V B: SKIP, VIN=14.4V C: PWM, VIN=10.8V D: PWM, VIN=14.4V E: NO AUD., VIN=10.8V
LOAD CURRENT [A]

Figure 13. 1.05 V SMPS efficiency

1.05 V OUTPUT EFFICI ENCY
100
90 80 70 60 50 40
EFFICIE NCY [
30 20 10
0
0.01 0.1 1 10
vs LOAD CURRENT
A: SKIP, VIN=10.8V B: SKIP, VIN=14.4V C: PWM, VIN=10.8V D: PWM, VIN=14.4V E: NO AUD., VIN=10.8V
LOAD CURRENT [A]

10.5 Power consumption analysis

To measure the device consumption under real working conditions, an external power supply of +5 V is connected to EXT5V.
The two traces on figures that f ollo w show the dif f erentiation bet ween the tw o input currents . Once the internal linear regulator is turned on, device consumption will increase as a consequence.
Figure 14 shows the input current consumption measured at V
input device current consumption measured at the VCC pin. Both switching sections are working in forced PWM mode. No load is applied on the outputs.
20/29
+ (includes ISHDN) and the
IN
Page 21
AN2566 Test setup and performance summary

Figure 14. Input current vs. input voltage

Figure 15 shows the input current consumption measured at V
+ (includes ISHDN) and the
IN
input device current consumption measured at the VCC pin(IEXT5V). Both switching sections are working in SKIP mode. No load is applied.

Figure 15. Input current vs. input voltage

21/29
Page 22
Test setup and performance summary AN2566
Figure 16 shows the input current consumption measured at VIN+ (includes ISHDN) and the
input device current consumption measured at the VCC pin(IEXT5V). Both switching sections are working in NO-AUDIBLE SKIP mode. No load is applied.

Figure 16. Input current vs. input voltage

In the following il lustr ations , the device current consumption is measured in shutdown mode and standby mode. In shutdown mode all outputs are off (SHDN pin low). In standby mode only the linear regulator output is on (V5SW = SGND, SHDN pin high, EN5 and EN3 pins low).

Figure 17. Device current consumption vs. input voltage

SHUTDO WN M ODE INPU T BAT TE RY CU RRENT
25.00
20.00
15.00
10.00
5.00
INPUT CURRENT [uA]
0.00 8 10121416182022242628
vs INPUT VOLT AGE
INPUT VOLTA GE [V]
22/29
Page 23
AN2566 Test setup and performance summary

Figure 18. Device current consumption vs. input voltage

STANDBY MO DE INPUT BATTERY CURRENT
184 182 180 178 176 174
INPUT CURRENT [uA]
172
8 10121416182022242628
vs INPUT VOLTAGE
INPUT VOLTAGE [V]

10.6 Switching frequency vs. load current

Figure 19 and Figure 20 show the switching frequency variation with the load current in
PWM mode, skip mode and no-audible skip mode. 12 V is applied at the V points.
+ and VIN- test
IN

Figure 19. 1.5 V output switching frequency vs. load current

1. 5V SW ITCHING FREQ UENCY
250
PWM
200
150
100
50
FREQUENCY [kHz]
NO AUD. SKIP SKIP
0
0.01 0.1 1 10
vs LOAD CURRENT
LOAD CURRENT [A ]
23/29
Page 24
Test setup and performance summary AN2566

Figure 20. 1.05 V output switching frequenc y vs. load current

1.05V SWITCHING FREQUENCY
350 300
PWM
250 200 150 100
FREQUENCY [kHz]
50
NO AUD. SKIP
SKIP
0
0.01 0.1 1 10
vs LOAD CURRENT
LOAD CURRENT [A]

10.7 Linear regulator output voltages vs. output current

Figure 21 shows the load regulation for the internal linear regulator LDO5. Both switching
sections are disabled and 12 V is applied at V
+ and VIN- test points.
IN

Figure 21. LDO5 output vs. load current

LDO5 vs . O UTPUT CURRENT
4.9890
4.9880
4.9870
4.9860
4.9850
4.9840
[V]
4.9830
4.9820
4.9810
4.9800
LIN E AR OU P UT VOLTA GE
4.9790 0 102030405060708090100

10.8 Load transient responses

The following figures show the load transient response from 1 A to 4 A for both switching outputs. In each of these cases the PM6680 w orks in forced PWM mode (the SKIP pin is high).
LOAD CURRENT [m A]
24/29
Page 25
AN2566 Test setup and performance summary

Figure 22. SMPS 1.5 V load transient response

OUT1
I_L
Vphase

Figure 23. SMPS 1.05 V load transient response

Vphase
OUT2
I_L
25/29
Page 26
Representatives waveforms AN2566

11 Representatives waveforms

The following illustrations show the relevant waveforms of a switching section and are provided to underline the behavior of the device in pulse skip mode, no-audible skip mode and forced PWM mode working conditions.

Figure 24. SMPS pulse skip mode

Figure 25. SMPS no-audible skip mode

26/29
Page 27
AN2566 Representatives waveforms

Figure 26. SMPS PWM mode

27/29
Page 28
Revision history AN2566

12 Revision history

Table 10. Document revision history

Date Revision Changes
20-Aug-2007 1 Initial release
– Changed: Figure 1, 2, 3, 14, and 16
05-Mar-2008 2
07-Apr-2008 3 – Modified: Introduction
– Modified: Table 1 – Minor text changes
28/29
Page 29
AN2566
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely res ponsibl e fo r the c hoic e, se lecti on an d use o f the S T prod ucts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relati ng to the choice, selection or use o f the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third pa rty p ro duc ts or se rv ices it sh all n ot be deem ed a lice ns e gr ant by ST fo r t he use of su ch thi r d party products or services, or any intellectua l property c ontained the rein or consi dered as a warr anty coverin g the use in any manner whats oever of suc h third party products or servi ces or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICUL AR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJ URY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST fo r the ST pro duct or serv ice describe d herein and shall not cr eate or exten d in any manne r whatsoever , any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document su persedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of compan ie s
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - I taly - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
29/29
Loading...