Datasheet AM79C984AKCW, AM79C984AJC Datasheet (AMD Advanced Micro Devices)

T w
PRELIMINARY
Am79C984A
enhanced Integrated Multiport Repeater (eIMR™)

DISTINCTIVE CHARACTERISTICS

Repeater functions comply with IEEE 802.3 Repeater Unit specifications
Four integral 10BASE-T transceivers with on­chip filtering that eliminate the need for external filter modules on the 10BASE-T transmit-data (TXD) and receive-data (RXD) lines
One Reversible Attachment Unit Interface (RAUI™) port that can be used either as a standard IEEE-compliant AUI port for connection to a Medium Attachment Unit (MAU), or as a reversed port for direct connection to a Media Access Controller (MAC)
Low cost suitable for non-managed multiport repeater designs
Expandable to increase number of repeater ports with support for up to seven eIMR devices without the need for an external arbiter
All ports can be individually isolated (partitioned) in response to excessive collision conditions or fault conditions.
Full LED support for individual port status LEDs and network utilization LEDs
Programmable extended distance mode on the RXD lines, allowing connection to cables longer than 100 meters
Twisted Pair Link Test capability conforming to the 10BASE-T standard. The Link Test function and the transmission of Link Test pulses can be optionally disabled through the control port to allow devices that do not implement the Link Test function to work with the eIMR device.
Programmable option of automatic polarity detection and correction permits automatic recovery due to wiring errors
Full amplitude and timing regeneration for retransmitted waveforms
CMOS device with a single +5-V supply

GENERAL DESCRIPTION

The enhanced Integrated Multiport Repeater (eIMR) device is a VLSI integrated circuit that provides a sys­tem-level solution to designing non-managed multiport repeaters. The device integr ates the repeater functions specified in Section 9 of the IEEE 802.3 standard and Twisted Pair Transceiver functions complying with the 10BASE-T standard.
his document contains information on a product under development at Advanced Micro Devices. The
information is intended to help you evaluate this product. AMD reserves the right to change or discontinue
ork on this proposed product without notice.
The eIMR device provides four Twisted Pair (TP) ports and one RAUI port for direct connection to a MAC. The total number of ports per repeater unit can be in­creased by connecting multiple eIMR devices through their expansion ports, hence, minimizing the total cost per repeater port.
The device is fabricated in CMOS technology and requires a single +5-V supply.
P R E L I M I N A R Y
ORDERING INFORMATION Standard Products
AMD standard products are available in se v eral packages and oper ating ranges. The order number (Valid Combination) is f ormed by a combination of the elements below.
Am79C984A
CJ
\W
ALTERNATE PACKAGING OPTION
\W = Trimmed and formed in a tray
TEMPERATURE RANGE
C = Commercial (0˚C to +70˚C)
P ACKA GE TYPE
J = 84-Pin Plastic Leaded Chip Carrier (PL 084) K = 100-Pin Plastic Quad Flat Pack (PQR100)
SPEED OPTION
Not Applicable
DEVICE NUMBER/DESCRIPTION
Am79C984A enhanced Integrated Multiport Repeater (eIMR)
Valid Combinations
Am79C984A JC, KC\W
2 Am79C984A
Valid Combinations
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

BLOCK DIAGRAM

P R E L I M I N A R Y
DAT
JAM
COL
ACK
SELI[1:0]
TX
MUX
Preamble
Jam Sequence
SELO
LDA[4:0], LDB[4:0]
LDGA, LDGB
LDC[2:0]
LED
Interface
Expansion Port
ACT[7:0]
SI
SO
SCLK
Test
and
AMODE
Port
Control
20650B-1
20650A-1
FIFO
Decoder
Manchester
RX
RX
AUI
Port
DI±
CI±
MUX
MUX
DO±
Lock
Phase
FIFO
CONTROL
Loop
TP
RXD±
0
Port
TXD±
Encoder
Manchester
Control
eIMR Chip
3
TP
Port
RXD±
TXD±
Link T est
Partitioning
Reset
RST
Clock
Timers
Gen
CLK
Am79C984A 3

RELATED AMD PRODUCTS

P R E L I M I N A R Y
Part No.
Am7990 Am7992B Serial Interface Adapter (SIA)
Am7996 IEEE 802.3/Ethernet/Cheapernet Transceiver Am79C90 CMOS Local Area Network Controller for Ethernet (C-LANCE) Am79C98 Twisted Pair Ethernet Transceiver (TPEX) Am79C100 Twisted Pair Ethernet Transceiver Plus (TPEX+) Am79C981 Integrated Multiport Repeater Plus (IMR+™) Am79C982 basic Integrated Multiport Repeater (bIMR™) Am79C987 Hardware Implemented Management Information Base (HIMIB™) Am79C988 Quad Integrated Ethernet Transceiver (QuIET™) Am79C900 Integrated Local Area Communications Controller (ILACC™) Am79C940 Media Access Controller for Ethernet (MACE™) Am79C960 PCnet™-ISA Single-Chip Ethernet Controller (for ISA bus) Am79C961 PCnet™-ISA+ Single-Chip Ethernet Controller for ISA (with Microsoft® Plug n’ Play® Support) Am79C961A PCnet™-ISA II Full Duplex Single-Chip Ethernet Controller for ISA Am79C965 PCnet™-32 Single-Chip 32-Bit Ethernet Controller Am79C970 PCnet™-PCI Single-Chip Ethernet Controller (for PCI bus) Am79C970A PCnet™-PCI II Full Duplex Single-Chip Ethernet Controller (for PCI bus) Am79C974 PCnet™-SCSI Combination Ethernet and SCSI Controller for PCI Systems Am79C983 Integrated Multiport Repeater 2 (IMR2™) Am79C985 enhanced Integrated Multiport Repeater Plus (eIMR+™)
Description
Local Area Network Controller for Ethernet (LANCE)
4 Am79C984A

TABLE OF CONTENTS

DISTINCTIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-29
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-30
STANDARD PRODUCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30
BLOCK DIAGRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31
RELATED AMD PRODUCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-32
CONNECTION DIAGRAM (PL 084) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-35
CONNECTION DIAGRAM (PQR100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-36
LOGIC SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-37
LOGIC DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-37
PIN DESIGNATIONS (PL 084). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38
Listed by Pin Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38
PIN DESIGNATIONS (PQR100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-39
Listed by Pin Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39
PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40
AUI Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40
Twisted Pair Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40
Expansion Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40
Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-41
LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-41
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43
Basic Repeater Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-43
Repeater Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-43
Signal Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-43
Jabber Lockup Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43
Collision Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43
Fragment Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43
Auto Partitioning/Reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-43
Detailed Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-44
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-44
AUI Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-44
TP Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44
Twisted Pair Transmitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44
Twisted Pair Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44
Link Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-45
Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45
Visual Status Monitoring (LED) Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45
Network Activity Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-46
Expansion Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-48
Internal Arbitration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-48
IMR+ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-48
Control Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-49
Command/Response Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-50
Control Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-50
SET (Write Commands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52
P R E L I M I N A R Y
Chip Programmable Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Alternate AUI Partitioning Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Alternate TP Partitioning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
AUI Port Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
AUI Port Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
TP Port Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
TP Port Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Disable Link Test Function (Per TP port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Enable Link Test Function (Per TP port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Disable Link Pulse (Per TP Port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Am79C984A 5
P R E L I M I N A R Y
Enable Link Pulse (Per TP Port). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-52
Disable Automatic Receiver Polarity Reversal (Per TP Port). . . . . . . . . . . . . . . . .1-53
Enable Automatic Receiver Polarity Reversal (Per TP Port) . . . . . . . . . . . . . . . . .1-53
Disable Receiver Extended Distance Mode (Per TP Port). . . . . . . . . . . . . . . . . . .1-53
Enable Receiver Extended Distance Mode (Per TP Port) . . . . . . . . . . . . . . . . . . .1-53
Disable Software Override of LEDs 5
(Per Port - AUI and TP, Global) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-53
Enable Software Override of Bank A LEDs (Per Port - AUI and TP, Global). . . . .1-53
Enable Software Override of Bank B LEDs (Per Port - AUI and TP, Global). . . . .1-54
Software Override of LED Blink Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-54
GET (Read Commands). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54
AUI Port(s) Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-54
Alternate AUI Port(s) Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-54
TP Port Partitioning Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-54
Bit Rate Error Status of TP Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-54
Link Test Status of TP ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
Receive Polarity Status of TP Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
MJLP Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
SYSTEMS APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
eIMR to TP Port Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
Twisted Pair Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55
Twisted Pair Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-55
MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57
Internal Arbitration Mode Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-57
IMR+ Mode External Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57
Visual Status Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-59
ABSOLUTE MAXIMUM RATINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60
OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-60
DC CHARACTERISTICS over operating ranges unless otherwise specified . . . . . . . . . . . . . . . . .1-60
SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-62
KEY TO SWITCHING WAVEFORMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-64
SWITCHING WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-64
SWITCHING TEST CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-69
6 Am79C984A
P R E L I M I N A R Y
CONNECTION DIAGRAM (PL 084)
REXT AVSS
DI+ DI–
VDD
CI+ CI–
AVSS
DO+
DO–
AMODE
VDD
DVSS
VDD
VDD
VDD RST
CLK
DVSS SELI_0 SELI_1
12 13 14 15 16 17 18
19 20 21
23 24
25
26
27 28 29 30 31 32
RXD3–
102211
33
34
SELO
RXD3+
RXD2–
8
9
35
36
COL
DVSS
RXD1–
RXD2+
7
6
38
37
DAT
ACK
RXD0–
RXD1+
5
39
JAM
VDD
TXD3–
VDD
RXD0+
3
4
2
eIMR
Am79C984A
41
42
40
SI
NC
DVSS
1
43
SO
AVSS
TXD3+
84
83
45
44
SCLK
TXD2+
TXD2–
81
82
46
47
VDD
ACT0
VDD
80
48
ACT1
TXD1–
TXD1+
78
79
50
49
ACT2
DVSS
TXD0–
AVSS
77
51
ACT4
ACT3
TXD0+
76
52
ACT5
75
53
VDD
74
73 72 71 70 69 68 67
66
65 64
63
62
61
60
59
58
57 56
55
54
ACT6
LDC2 LDC1 LDC0 VDD LDGB LDGA LDB4
DVSS LDA4 LDB3 LDA3 DVSS LDB2
LDA2
VDD
LDB1 LDA1 DVSS LDB0 LDA0 ACT7
20650A-2
20650B-2
Am79C984A 7
CONNECTION DIAGRAM (PQR100)
RXD3+
RXD2–NCRXD2+
RXD1–
RXD1+
99
98
97969594939291908988878685
RXD3–
NC NC
NC REXT AVSS
DI+ DI–
VDD
CI+ CI–
AVSS
DO+ DO–
AMODE
VDD
DVSS
VDD VDD VDD
RST
NC
CLK
DVSS SELI_0 SELI_1
NC NC NC
SELO
100
1 2 3
4
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31323334353637383940414243444546474849
P R E L I M I N A R Y
RXD0–
RXD0+
VDD
TXD3–
TXD3+
AVSS
TXD2–
TXD2+
VDD
TXD1–
TXD1+
848281
eIMR
Am79C984A
AVSS
TXD0–
83
TXD0+
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52
51
50
VDD NC NC NC LDC2 LDC1 LDC0 VDD LDGB LDGA LDB4 DVSS LDA4 LDB3 LDA3 DVSS LDB2 LDA2 VDD LDB1 LDA1 NC DVSS LDB0 LDA0 ACT7 NC NC NC ACT6
COL
NC
DVSS
ACK
DAT
VDD
JAM
NC
SI
DVSS
SO
VDD
SCLK
ACT0
ACT1
8 Am79C984A
ACT2
DVSS
ACT3
ACT4
ACT5
20650B-3

LOGIC SYMBOL

Expansion
Port
Test and
Control
Port
DAT JAM
ACK COL SELO SELI[1:0]
SI SO SCLK AMODE
CLK
RST
P R E L I M I N A R Y
V
DD
Am79C984
LDA[4:0], LDB[4:0]
TXD+
TXD– RXD+ RXD–
DO+
DO–
DI+ DI– CI+ CI–
LDGA, LDGB
LDC[2:0] ACT[7:0]
Twisted Pair
Ports
(4 Ports)
AUI
LED
Interface

LOGIC DIAGRAM

LED Port
Control
Port
DV
SS
AV
AUI
Repeater
State
Machine
SS
20650A-4
20650B-4
Expansion
Port
Twisted Pair
Port 0
Twisted Pair
Port 3
20650A-5
20650B-5
Am79C984A 9
PIN DESIGNATIONS (PL 084) Listed by Pin Number
P R E L I M I N A R Y
Pin No .
1 2 TXD3- 23 VDD 44 SCLK 65 LDB3 3 VDD 24 DVSS 45 VDD 66 LDA4 4 RXD0+ 25 VDD 46 ACT0 67 DVSS 5 RXD0- 26 VDD 47 ACT1 68 LDB4 6 RXD1+ 27 VDD 48 ACT2 69 LDGA 7 RXD1- 28 RST 49 DVSS 70 LDGB 8 RXD2+ 29 CLK 50 ACT3 71 VDD
9 RXD2- 30 DVSS 51 ACT4 72 LDC0 10 RXD3+ 31 SELI_0 52 ACT5 73 LDC1 11 RXD3- 32 SELI_1 53 ACT6 74 LDC2 12 REXT 33 SELO 54 ACT7 75 VDD 13 AVSS 34 COL 55 LDA0 76 TXD0+ 14 DI+ 35 DVSS 56 LDB0 77 TXD0­15 DI- 36 ACK 57 DVSS 78 AVSS 16 VDD 37 DAT 58 LDA1 79 TXD1+ 17 CI+ 38 VDD 59 LDB1 80 TXD1­18 CI- 39 JAM 60 VDD 81 VDD 19 AVSS 40 NC 61 LDA2 82 TXD2+ 20 DO+ 41 DVSS 62 LDB2 83 TXD2­21 DO- 42 SI 63 DVSS 84 AVSS
Pin Name
TXD3+ 22 AMODE 43 SO 64 LDA3
Pin No .
Pin Name
Pin No .
Pin Name
Pin No. Pin Name
10 Am79C984A
PIN DESIGNATIONS (PQR100) Listed by Pin Number
P R E L I M I N A R Y
Pin No .
1
2 NC 27 NC 52 NC 77 NC
3 NC 28 NC 53 NC 78 NC
4 NC 29 NC 54 NC 79 NC
5 REXT 30 SELO 55 ACT7 80 VDD
6 AVSS 31 COL 56 LDA0 81 TXD0+
7 DI+ 32 DVSS 57 LDB0 82 TXD0-
8 DI- 33 NC 58 DVSS 83 AVSS
9 VDD 34 ACK 59 NC 84 TXD1+ 10 CI+ 35 DAT 60 LDA1 85 TXD1­11 CI- 36 VDD 61 LDB1 86 VDD 12 AVSS 37 JAM 62 VDD 87 TXD2+ 13 DO+ 38 NC 63 LDA2 88 TXD2­14 DO- 39 DVSS 64 LDB2 89 AVSS 15 AMODE 40 SI 65 DVSS 90 TXD3+ 16 VDD 41 SO 66 LDA3 91 TXD3­17 DVSS 42 SCLK 67 LDB3 92 VDD 18 VDD 43 VDD 68 LDA4 93 RXD0+ 19 VDD 44 ACT0 69 DVSS 94 RXD0­20 VDD 45 ACT1 70 LDB4 95 RXD1+ 21 RST 46 ACT2 71 LDGA 96 RXD1­22 NC 47 DVSS 72 LDGB 97 RXD2+ 23 CLK 48 ACT3 73 VDD 98 NC 24 DVSS 49 ACT4 74 LDC0 99 RXD2­25 SELI_0 50 ACT5 75 LDC1 100 RXD3+
Pin Name
RXD3- 26 SELI_1 51 ACT6 76 LDC2
Pin No .
Pin Name
Pin No .
Pin Name
Pin No. Pin Name
Notes:
1. Pin 40 has a bonding option depending on internal device name.
2. NC = No Connection.
Am79C984A 11
P R E L I M I N A R Y
DI ±
DO ±
CI ±
PIN DESCRIPTION AUI Port
DI+, DI– Data In Differential Input
are differential, Manchester receiver pins. The sig-
nals comply with IEEE 802.3, Section 7.
DO+, DO– Data Out Differential Output
are differential, Manchester output driver pins. The
signals comply with IEEE 802.3, Section 7.
CI+, CI– Collision Input Differential Input/Output
are differential, Manchester I/O signals. As an input, CI is a collision-receive indicator . As an output, CI gen­erates a 10-MHz signal if the eIMR device senses a collision.
Twisted Pair Ports
TXD+ Transmit Data
Differential Output
TXD ± are 10BASE-T port differential drivers (4 ports).
RXD+ Receive Data
Differential Input
RXD ± are 10BASE-T port differential receive inputs (4 ports).
0-3
0-3
, TXD–
, RXD–
0-3
0-3
Expansion Bus
DAT Data Input/Output/3-State
If the SELO collision conditions, the eIMR device drives NRZ data onto the DAT line, regenerating the preamble if neces­sary. During a collision, when JAM is HIGH, D A T is used to differentiate between single-port (DAT=1) and multi­port (DAT=0) collisions. DAT is an output when ACK is asserted and the eIMR device’s ports are active; DAT is an input when ACK is asserted and the ports are inactive. If ACK is not asserted, DAT is in the high-im­pedance state. It is recommended that DAT be pulled up or down via a high value resistor.
JAM Jam Input/Output/3-State
The active eIMR device drives JAM HIGH, if it detects a collision condition on one or more of its ports. The
and ACK pins are asserted during non-
state of the DAT pin is used in conjunction with JAM to indicate a single port (DA T =1) or multiport (DAT=0) col­lision. J AM is in the high-impedance state if neither the SEL
nor ACK signal is asserted. It is recommended that
JAM be pulled up or down via a high value resistor.
SELI
0-1
Select In Input, Active LOW
When the expansion bus is configured f or Internal Arbi­tration mode, these signals indicate that another eIMR device is active; SELI the upstream device. At reset, SELI
or SELI
0
is driven by SELO from
1
selects between
0
the Internal Arbitration mode and the IMR+ mode of the expansion bus; a HIGH selects the Internal Arbitration mode and a LOW selects the IMR+ mode.
SELI_1 SELI_0
X 1 Internal X 0 IMR+
Arbitration
Mode
SELO Select Out Output, Active LOW
If the expansion bus is configured f or Internal Arbitration mode, an eIMR device drives this pin LOW when it is active or when either of its SELI
pins is LOW. An
0-1
active eIMR device is defined as having one or more ports receiving or colliding and/or is still transmitting data from the internal FIFO, or extending a pack et to the minimum of 96 bit times. When the expansion bus is configured for IMR+ mode, SELO
is active when the
eIMR device is active (acquiring the functionality of the
pin on the Am79C971 IMR+ device).
REQ
ACK Acknowledge Input/Output, Active LOW, Open Drain
This signal is asserted to indicate that an eIMR device is active. It also signals to the other eIMR devices the presence of a valid collision status on the JAM line and valid data on the DAT line. When the eIMR device is configured for Internal Arbitration mode, ACK is an I/O, and must be pulled to VDD via a minimum equivalent resistance of 1 k for IMR+ mode, A
When the eIMR device is configured
Ω.
CK is an input driven by an external
arbiter.
COL Collision Input/Output, Active LOW, Open Drain
When asserted, COL indicates that more than one eIMR device is active. Each eIMR device generates the Col­lision Jam sequence independently . When the eIMR de­vice is configured for Internal Arbitration mode, COL is
12 Am79C984A
P R E L I M I N A R Y
an I/O and must be pulled to VDD via a minimum equiv­alent resistance of 1 k sion port is configured for IMR+ mode, COL
Ω.
When the eIMR device expan-
is an input
driven by an external arbiter.
Control Port
AMODE AUI Mode Input
At reset, this pin sets the AUI port to either normal or reversed mode. If AMODE is LOW at the rising edge of
, the AUI port is set to the normal mode; if AMODE
RST is HIGH, the AUI port is set to the reversed mode.
SCLK Serial Clock In Input
Serial data (input or output) is clocked (in or out) on the rising edge of the signal on this pin. SCLK is asynchro­nous to CLK and can operate at frequencies up to 10 MHz.
SI Serial In Input
The SI pin is used as a test/control serial input port. Control commands are clocked in on this pin synchro­nous to SCLK input.
At reset, SI sets the state of the Automatic P olarity Re­versal function. If SI is HIGH at the rising edge of RST Automatic Polarity Reversal is disabled. If SI is LOW at the rising edge of RST, Automatic Polar ity Reversal is enabled.
SO Serial Out Output
The SO pin is used as a control command serial output port. Responses to control commands are clocked out on this pin synchronous to the SCLK input.
LED Interface
LDA LED Drivers
Output, Open Drain
LDA respectively. LDA AUI port; LDA four TP ports. The port attributes monitored by LDA and LDB
LDGA Global LED Driver, Bank A Output, Open Drain
LDGA is the Global LED driver for LED Bank A. The signal represents global CRS or COL conditions. In a
, LDB
0-4
0-4
0-4
and LDB
are programmed by three pins, LDC
0-4
drive LED Bank A and LED Bank B,
0-4
and LDB
0
and LDB
1-4
indicate the status of the
0
indicate the status of the
1-4
0-2
0-4
.
multiple-eIMR configuration, LDGA from each of the eIMR devices can be tied together to drive a single glo­bal LED in Bank A.
LDGB Global LED Driver, Bank B Output, Open Drain
LDGB is the Global LED driver for LED Bank B. The signal represents global CRS or JAB conditions. In a multiple eIMR configuration, LDGB from each of the eIMR devices can be tied together to drive a single glo­bal LED in Bank B.
LDC
0-2
LED Control Input
These pins select the attributes that will be displayed on LDA
0-4
, LDB
, LDGA, and LDGB. If an LED is pro-
0-4
grammed to display two attributes , the attribute associ­ated with the periodic blink takes precedence.
ACT
0-7
Activity Display Output
These signals drive the activity LEDs, which indicate the percentage of network utilization. The displa y is up­dated every 250 ms.
Miscellaneous Pins
RST
,
Reset Input, Active LOW
When RST is LOW , the eIMR device resets to its def ault state. On the rising (trailing) edge of RST , the eIMR also monitors the state of the SELI to configure the operating mode of the device. In multi­ple eIMR systems, the falling (leading) edge of the RST signal must be synchronized to CLK.
CLK Master Clock In Input
This pin is a 20-MHz clock input.
REXT External Reference Input
This pin is used for an internal current reference. It must be tied to VDD via a 13-k resistor with 1% tolerance.
VDD Power Power Pin
This pin supplies power to the device.
, SI, and AMODE pins,
0-1
Am79C984A 13
P R E L I M I N A R Y
AVSS Analog Ground Ground Pin
This pin is the ground reference for the differential receivers and drivers.
DVSS Digital Ground Ground Pin
This pin is the ground reference for all the digital logic in the eIMR device.
14 Am79C984A
P R E L I M I N A R Y

FUNCTIONAL DESCRIPTION

The Am79C984A eIMR device is a single-chip imple­mentation of an IEEE 802.3/Ethernet repeater (or hub). It is offered with four integr al 10BASE-T ports plus one RAUI port comprising the basic repeater. The eIMR de­vice is also expandable, enab ling the implementation of high port count repeaters based on several eIMR de­vices.
The eIMR chip complies with the full set of repeater basic functions as defined in Section 9 of ISO 8802.3 (ANSI/IEEE 802.3c). The basic repeaters functions are summarized in the paragraphs below.
Basic Repeater Functions
The Am79C984A chip implements the basic repeater functions as defined by Section 9.5 of the ANSI/IEEE
802.3 specification.
Repeater Function
If any single network port senses the start of a valid packet on its receive lines , the eIMR device will retrans­mit the received data to all other enabled network ports (except when contention exists among an y of the ports or when the receive port is partitioned). To allow multi­ple eIMR device configurations, the data will also be re­peated on the expansion bus data line (DAT).
Signal Regeneration
When retransmitting a packet, the eIMR device en­sures that the outgoing packet complies with the IEEE
802.3 specification in terms of preamble structure and timing characteristics. Specifically, data packets re­peated by the eIMR device will contain a minimum of 56 preamble bits before the Start-of-Frame Delimiter. In addition, the eIMR restores the voltage amplitude of the repeated waveform to levels specified in the IEEE
802.3 specification. Finally, the eIMR device restores signal symmetry to repeated data packets, removing jit­ter and distortion caused by the network cabling. Jitter present at the output of the AUI port will be better than
0.5 ns; jitter at the TP outputs will be better than 1.5 ns . The start-of-packet propagation delay for a repeater set
is the time delay between the first edge transition of a data packet on its input port to the first edge transition of the repeated packet on its output ports. The start-of­packet propagation delay for the eIMR is within the specification given in Section 9.5.5.1 of the IEEE 802.3 standard.
Jabber Lockup Protection
The eIMR device implements a built-in jabber protec­tion scheme to ensure that the network is not disabled by the transmission of excessively long data packets. This protection scheme causes the eIMR device to in­terrupt transmission for 96 bit-times if the device has been transmitting continuously for more than 65,536 bit
times. This is referred to as MAU Jabber Lockup Pro­tection (MJLP). The MJLP status for the eIMR device can be read through the Control Port, using the Get MJLP Status command.
Collision Handling
The eIMR device will detect and respond to collision conditions as specified in the IEEE 802.3 specification. Repeater configurations consisting of multiple eIMR devices also comply with the IEEE 802.3 specification, using status signals provided by the expansion bus. In particular, a repeater based on one or more eIMR de­vices will handle the transmit collision and one-port-left collision conditions correctly, as specified in Section 9 of the IEEE 802.3 specification.
Fragment Extension
If the total packet length received is less than 96 bits, including preamble, the eIMR device will e xtend the re­peated packet length to 96 bits by appending a J am se­quence to the original fragment.
Auto Partitioning/Reconnection
Any of the TP ports or the A UI port can be partitioned if the duration or frequency of collisions becomes exces­sive. The eIMR device will continue to transmit data packets to a partitioned port, but will not respond, as a repeater, to activity on the partitioned port’s receiver. The eIMR device will monitor the port and reconnect it once certain criteria are met. The criteria for reconnec­tion are specified by the IEEE 802.3 standard. In addi­tion to the standard reconnection algorithm, the eIMR device implements an alternative reconnection algo­rithm, which provides a more robust partitioning func­tion for the TP ports and/or AUI port. The eIMR device partitions each TP port and the AUI port separately and independently of other network ports.
The eIMR device will partition an enabled network port if either of the following conditions occurs at that port:
a. A collision condition exists continuously for more
than 2048 bit times. (AUI port—SQE signal active; TP port—simultaneous transmit and receive).
b. A collision condition occurs during each of 32 con-
secutive attempts to transmit to that port.
In the AUI port, a collision condition is indicated by an active SQE signal. In a TP port, a collision condition is indicated when the port is simultaneously attempting to transmit and receive.
Once a network port is partitioned, the eIMR device will reconnect that port, according to the selected recon­nection algorithm, as follows:
a. Standard reconnection algorithm—A data packet
longer than 512-bit times (nominal) is transmitted or received by the partitioned port without a collision.
Am79C984A 15
P R E L I M I N A R Y
b. Alternative reconnection algorithm—A data packet
longer than 512-bit times (nominal) is transmitted by the partitioned port without a collision.
A partitioned port can also be reconnected by disab ling and re-enabling the port.
All TP ports use the same reconnection algorithm; ei­ther they must all use the standard algorithm, or they must all use the alternative reconnection algorithm. Howev er, the reconnection algorithm for the A UI port is programmed independently from that of the TP ports.
Detailed Functions
Reset
The eIMR device enters the reset state when the reset (RST) pin is driven LOW. After the initial application of power, the RST pin must be held LOW for a minimum
power is maintained to the eIMR device, a reset dura­tion of only 4 µs is required. This allows the eIMR de­vice to reset its internal logic. During reset, the eIMR registers are set to their default values. Also during re­set, the eIMR device sets the output signals to their in­active state; that is, all analog outputs are placed in their idle state, no bidirectional signals are driven, all active-HIGH signals are driven LOW and all active­LOW signals are driven HIGH. In a multiple eIMR sys­tem, the reset signal must be synchronized to CLK. See Figure 10 in the
Systems Applications
section.
The eIMR device also monitors the state of the SELI SI, and AMODE pins on the rising (trailing) edge of RST to configure the operating mode of the device.
Table 1 summarizes the state of the eIMR chip following reset.
of 150 µs. If the RST pin is subsequently asserted while
Table 1. eIMR States after Reset
Function State after Reset Pull Up/Pull Down
Active-LOW Outputs HIGH No Active-HIGH Outputs LOW No SO Output HIGH No DAT, JAM HIGH IMPEDANCE Either Transmitters (TP and AUI) IDLE No Receivers (TP and AUI) ENABLED Terminated AUI Partitioning/Reconnection Algorithm STANDARD ALGORITHM N/A TP Partitioning/Reconnection Algorithm STANDARD ALGORITHM N/A Link Test Functions for TP Ports ENABLED, TP PORTS IN LINK FAIL N/A Automatic Receiver Polarity Reversal Function DISABLED IF SI PIN IS HIGH
ENABLED IF SI PIN IS LOW
N/A
0-1
,
AUI Port
The AUI Port is fully compatible with the IEEE 802.3, Section 7 requirement for an A UI port. It has the signals associated with an AUI port: DO, DI, and CI.
The AUI port has two modes of operation: normal and reverse. When configured for normal operation, the functionality is that of an AUI port on a MAC (CI is an input). When configured f or rev erse operation, the func­tionality is that of an AUI on a MAU (CI is an output). The mode of the AUI port is set during the trailing (ris­ing) edge of the reset pulse, by the state of the AMODE pin. A LO W sets the AUI port to its normal mode (CI In­put) and a HIGH sets the AUI port to its reversed (CI Output) mode.
The eIMR device can be connected directly to a MAC through the AUI port. This requires that the AUI port be configured for reverse operation. Refer to the
Applications
section for more details.
Systems
TP Port Interface
Twisted Pair Transmitters
TXD is a differential twisted-pair driver. When properly terminated, TXD will meet the electrical requirements for 10BASE-T transmitters as specified in IEEE 802.3, Section 14.3.1.2.
The TXD signal is filtered on the chip to reduce har­monic content per IEEE 802.3, Section 14.3.2.1 (10BASE-T). Since filtering is perf ormed in silicon, TXD can connect directly to a standard transformer, thereb y, eliminating the need for external filtering modules. Proper termination is shown in the
tions
Twisted Pair Receivers
RXD is a differential twisted-pair receiver. When prop­erly terminated, RXD will meet the electrical require­ments for 10BASE-T receivers as specified in IEEE
802.3, Section 14.3.1.3. The receivers do not require
16 Am79C984A
Systems Applica-
section.
P R E L I M I N A R Y
external filter modules. Proper termination is shown in the
Systems Applications
section.
The receiver’ s threshold voltage can be programmed to an extended-distance mode. In this mode, the diff eren­tial receiver’s threshold is reduced to allow a longer cable than the 100 meters specified in the IEEE 802.3 standard. For programming details, refer to the
Commands
section.
Control
Link Test
The integrated TP ports implement the Link Test func­tion, as specified in the IEEE 802.3 10BASE-T stan­dard. The eIMR device will transmit Link Test pulses to any TP port after that port’s transmitter has been inac­tive for more than 8 ms to 17 ms. Conversely, if a TP port does not receive any data packets or Link Test pulses for more than 65 ms to 132 ms and the Link Test function is enabled for that port, then that port will enter the link-fail state. The eIMR device will disable a port in link-fail state (i.e., disable repeater tr ansmit and receive functions) until it receives either four consecutive Link Test pulses or a data packet.
The Link Test function can be disabled via the eIMR control port on a por t-by-port basis, to allow the eIMR device to operate with pre-10BASE-T networks that do not implement the Link Test function. When the Link Test function is disabled, the eIMR device will not allow the TP port to enter link-fail state, even if no Link Test pulses or data packets are being received. Note, how­ever , that the eIMR de vice will always tr ansmit Link Test pulses to all TP ports, regardless of whether or not the port is enabled, partitioned, in link-fail state, or has its Link Test function disabled. Separate control com­mands exist for enab ling and disabling the transmission of Link Test pulses on a port-by-port basis.
Polarity Reversal
The TP ports can be programmed to receive data if a wiring error results in a data packet being received at a TP port with reversed polarity. This function will be en­abled upon reception of a negative End Transmit Delim­iter (ETD) or negative pulses and allows subsequent packets to be received with the correct polarity. The po­larity-reversal function is executed once following reset or link-fail and can be programmed via the control port to be enabled or disabled on a port-by-port basis. The function may be enabled or disabled, following a reset, depending on the level of the SI signal on the rising edge of the RST
pulse.
Visual Status Monitoring (LED) Support
The eIMR status port can be connected to LEDs to fa­cilitate the visual monitoring of repeater port status. The status port has twelve output signals, LDA LDB
, LDGA, and LDGB. LDA
0-4
and LDB
0-4
0-4
0-4
, and
repre­sent the four TP ports and AUI port. LDGA and LDGB are global indicators. Attributes that may be monitored are Carrier Sense (CRS), Collision (COL), Partition (PAR), Link Status (LINK), Loopback (LB), Port Dis­abled (DIS), and Jabber (JAB). Three control bits,
, select the particular attributes to be displayed
LDC
0-2
on the LEDs. Table 2 shows how the programming combinations for LDC
control the attributes that will
0-2
be monitored. Each LED drive pin (LDGA, LDGB, LDA
, and LDB
0-4
0-4
has two states: Off and LOW. When none of the se­lected attributes are true, the driver is off and the diode is unlit. When an attribute is true, the driver is LO W , and the corresponding LEDs in Bank A or Bank B will be lit.
Some of the settings (LDC2 = 1) include a blink func­tion. This allows tw o attributes to be selected for a giv en state on the pin. As an example when LDC
= 110,
0-2
the LDA outputs relating to TP ports will be solidly lit when there is a link established at that port. However, whenever there is activity on a port, the corresponding LDA pin will switch on (LOW) and off at a period of 130 ms. Note that a partition on that port will also cause the pin to go LOW.
On LDC settings that have two attributes for a state on a pin (blink or solid-on), the attribute causing the output to blink has priority. (Those attributes are shown in Table 2 with a blink period specified next to it.) If an at­tribute has no blink period specified, the LED indicates the attribute by being solidly lit.
The LEDs can also be controlled via the control port. The Enable Software Override commands turn the LEDs on regardless of the attributes selected for dis­play through the LDC setting. Enable Software Over­ride of Bank A LEDs causes the LDA
and LDGA pins
0-4
to be driven LOW, and Enable Software Override of Bank B LEDs causes the LDB
and LDGB pins to be
0-4
driven LOW. The blink r ate is set b y the Softw are Ov er­ride LED Blink Rate command. The periods are off, 512 ms, 1560 ms, or solid on.
)
Am79C984A 17
P R E L I M I N A R Y
Table 2. LED Attribute-Monitoring Program Options
LED Control Global LEDs TP LEDs AUI LEDs
LDC2LDC1LDC
0 0 0 CRS COL LINK (Note 2) PAR LB PAR 0 0 1 CRS COL LINK CRS LB CRS 0 1 0 Reserved (Note 5) 0 1 1 Reserved (Note 5) 1 0 0
1 0 1 COL JAB LINK (Note 3)
1 1 0 CRS COL LINK
1 1 1 CRS COL LINK (Note 4)
0
Notes:
1. CRS = Carrier Sense, COL = Collision, JAB = Jabber, LINK = Link, LB = Loop Back, PAR = Partition, DIS = Port Disabled, blk = Blink (Number = period of Blink).
2. For the LDC
setting of 000: If the port is partitioned, the LINK LED is off.
0-2
3. All LEDs blink 16 times at 260 ms per blink after reset.
4. All LEDs are on for approximately 4 seconds after reset.
5. LDC
= ‘010’ and ‘011’ are undefined.
0-2
LDGA LDGB LDA
CRS 260-ms blk COL 260-ms blk
1-4
LINK
CRS 260-ms blk
CRS 512-ms blk
CRS 130-ms blk
PAR 1.56-s blk
LDB
1-4
PAR
COL 260-ms blk CRS 260-ms blk
PAR (Note 3) (Note 3)
PAR or DIS
COL (Note 4) (Note 4)
LDA
0
CRS 512-ms blk
CRS 130-ms blk
PAR 1.56-s blk
LDB
0
PAR
COL 260-ms blk
PAR (Note 3)
PAR or DIS
PAR (Note 4)
LED software override is executed in two stages, by first issuing the blink rate (Software Override of LED Blink Rate) and then issuing the command to enable the particular por t LEDs (Enable Software Override of Bank A/B LEDs). All port combinations selected for software override control will reference the blink rate last issued by the Software Override of the LED Blink Rate command.
LDA
0-4
, LDB
, LDGA, and LDGB are open drain out-
0-4
put drivers that sink 12 mA of current to turn on the LEDs. In a multiple eIMR configuration, the outputs from the global LED drivers (LDGA and LDGB) of each chip can be tied together to drive a single pair of global status LEDs.
CRS and COL are extended to make it easier f or visual recognition; that is, they will remain active for some time even if the corresponding condition has expired. Once carrier sense is active, CRS will remain active f or a minimum of 4 ms. Once a collision is detected, COL is active for at least 4 ms. The exception to this rule is for selection LDC
= 111. For this selection, COL is
0-2
stretched to 100 µs. When LDC
= 000 or LDC
0-2
= 001, the loopback at-
0-2
tribute (LB) for the A UI port is display ed on LDA0. LB is true when DO on the MAU is successfully looped back to DI on the AUI port. LB is f alse (off) if a loopbac k error is detected, or if the AUI port is disabled or in the re­verse mode. Transmit carrier sense is sampled at the end of packet to determine the state of LB. The state of LB remains latched until carrier sense is sampled again for the next pac ket. The default/power-up state f or LB is false (off).
Figure 1 shows the recommended connection of LEDs. When LDA
0-4
, LDB
, LDGA, or LDGB are LOW, the
0-4
LED lights.
V
DD
eIMR LED Interface
R
LDA[4:0] LDB[4:0]
LDGA LDGB
Typical
20650B-6
20650A-6
Figure 1. Visual Monitoring Application—Direct
LED Drive
Network Activity Display
The eIMR status port can drive up to eight LEDs to in­dicate the network-utilization level as a percentage of bandwidth. The status por t uses eight dedicated out­puts (ACT
) to drive a series of LEDs. The number of
0-7
LEDs in the series that will be lit increases as the amount of network activity increases. ACT0 represents the lowest level of activity; ACT7 represents the high­est. ACT
are open-drain outputs that typically sink
0-7
12 mA of current to turn on the LEDs. See Figure 2.
18 Am79C984A
eIMR LED Interface
ACT[0] ACT[1] ACT[2] ACT[3] ACT[4] ACT[5] ACT[6] ACT[7]
P R E L I M I N A R Y
Figure 2. Network Activity Display
V
DD
20650A-7
Table 3 shows ACT
as a function of the percentage
0-7
of network utilization. The table uses a scale that is more sensitive at low utilization levels. 100% utilization represents the maximum number of events that could occur in a given window of time.
The update rate and corresponding internal sampling window for ACT[7:0] is 250 ms. During this sampling window , a counter is used to count the number of times repeater transmit activity is TRUE. The counter uses a free-running clock which has the granularity to detect the minimum packet size of 96 bit times.
Figure 3 shows the timing relationship between the sampling window, counting clock, and transmit activity.
counter is active
Sampling
Window
Counting
Clock
Xmit
Activity
Number of LEDs
Lit by ACT
latch data; update display; clear counter
next counting cycle
Table 3. Network Utilization
Percentage Utilization
7-0
8 >80% 7 >64% 6 >32% 5 >16% 4 >8% 3 >4% 2 >2% 1 >1%
20650B-8
Figure 3. Activity Sampling
Am79C984A 19
P R E L I M I N A R Y
Expansion Bus Interface
The eIMR device expansion bus allows multiple eIMR devices to be interconnected.
The expansion bus supports two modes of operation: internal arbitration mode and IMR+ mode. The internal arbitration mode uses a modified daisy-chain scheme to eliminate the need for any external arbitration cir­cuitry. The IMR+ mode maintains the full functionality of the IMR+ (Am79C981) expansion bus and benefits from minimum delays. In this mode, the eIMR device requires external circuitry to handle arbitration for con­trol of the bus.
The eIMR arbitration mode is determined at reset. This occurs on the trailing edge of RST state of SELI
, as illustrated in Figure 4.
0-1
Internal Arbitration Mode
The internal arbitration mode uses a daisy-chain (cas­cade) configuration. SELI
are arbitration inputs and
0-1
SELO is the arbitration output. SELO goes LOW when there is activity on one or more of the eIMR ports, or a SELI input is LOW. The SEL lines are connected as shown in Figure 5. This technique allo ws activity indica­tion to propagate down the chain to the end device. All unused SELI inputs must be tied to VDD.
ACK and COL are global activity I/O pins. When the eIMR device senses activity, it drives ACK LOW.
.
RST
SELI_0
SELI_1 SELI_0
X 1 Internal X 0 IMR+
Mode Selection
Figure 4. Expansion Bus Mode Selection
An eIMR device drives COL LO W when it senses more than one device is active; that is, if the device has an active port AND a SELI input is LOW , OR both SELI in­puts are LOW . In Boolean notation, the f ormula for COL is:
COL = (Active port & (SELI1 + SELI0))+
(SELI1 & SELI0)
where
& represents the Boolean AND operation + represents the Boolean OR operation
according to the
Arbitration
Mode
20650B-9
A
CK and COL are mutually exclusive. If an eIMR driv­ing ACK senses COL LOW, the device will deassert ACK.
DAT and JAM are synchronized to CLK. D AT is the rep­etition of data from any connected port (either TP or AUI port) encoded in NRZ format. JAM is an internal collision indicator. If JAM is HIGH, the active eIMR de­vice has detected an internal collision across one or more of its ports. When this occurs , the DAT signal dis­tinguishes between single-port collisions and multiport collisions. DAT = 1 indicates a single port collision; DAT = 0 indicates a multiport collision.
The drive capabilities of the I/O signals on the expan­sion bus (DAT, JAM, A
CK, and COL) are sufficient to allow seven eIMR devices to be connected together without the use of external transceivers or buffers.
The maximum number of eIMR devices that can be daisy chained is limited by the propagation delay of the eIMR devices. In practice, the depth of the cascade is limited to three eIMR devices, thus allowing a maxi­mum of seven eIMR devices connected together via this expansion bus as shown in Figure 5.
The active device will not drive the data line, DAT, until one bit time (100 ns) after SELO goes LOW. This is to avoid a situation where two devices drive DAT simultaneously.
IMR+ Mode
In IMR+ mode, the expansion bus requires an external arbiter. The arbiter allows only one eIMR device to con­trol the expansion bus. If more than one device at­tempts to take control, the arbiter terminates all access and signals a collision condition.
In IMR+ mode, DAT and JAM retain the same function­ality as in internal arbitration mode, but ACK and COL are inputs to the eIMR device, driven b y the external ar­biter. The arbiter should drive ACK LOW when exactly one eIMR device is active. It should drive COL when more than one eIMR device is active. SELO is an out­put from the eIMR device. It indicates that the eIMR de­vice has an active port and is requesting access to the bus.
When ACK is HIGH, DAT and JAM are in the high­impedance state. DAT and JAM go active when ACK goes LOW. Refer to the
Systems Applications
section (Figure 13) for the configuration of IMR+ mode of operation.
Note: The IMR+ mode is recommended when arbitrating between multiple boards.
.
20 Am79C984A
P R E L I M I N A R Y
V
DD
1k
SELI_0 SELI_1
DAT
SELI_0 SELI_1
DAT
SELI_0 SELI_1
DAT
JAM
JAM
JAM
ACK
ACK
ACK
SELO
COL
SELO
COL
SELO
COL
SELI_0 SELI_1
DAT
SELI_0 SELI_1
DAT
JAM
JAM
ACK
ACK
SELO
COL
SELO
COL
SELI_0 SELI_1
DAT
JAM
ACK
SELO
COL
SELI_0 SELI_1
DAT
JAM
ACK
SELO
COL
Figure 5. Internal Arbitration—eIMR Devices in Cascade
Control Functions
The eIMR device receives control commands in the form of byte-length data on the serial input pin, SI. If the eIMR device is expected to pro vide data in response to the command, it will send byte-length data to the serial­output pin, SO. Both the input and output data streams are clocked with the rising edge of the SCLK signal. The byte-length data is in RS232 serial-data format; that is, one start bit followed by eight data bits. The ex­ternally generated clock at the SCLK pin may be either
Am79C984A 21
20650A-10
20650B-10
a free-running clock synchronized to the input bit pat­terns, or a series of individual transitions meeting the setup-and-hold times with respect to the input bit pat­tern. If the latter method is used, 20 SCLK clock transi­tions are required for control commands that produce SO data, and 14 SCLK clock transitions are required for control commands that do not produce SO data.
P R E L I M I N A R Y
Command/Response Timing
Figure 6 shows the command/response timing. At the
.
SCLK
SI
SO
ST D0 D1 D2 D3 D4 D5 D6 D7
ST D0 D1 D2 D3 D4 D5 D6 D7
Figure 6. Control Get Command/Response
Control Commands
The following section details the operation of each con­trol commands available in the eIMR device. In all cases, the individual bits in each command are shown with the most-significant bit (bit 7) on the left and the least-significant bit (bit 0) on the right. Table 4 and Table 5 show a summary of default states and a summary of control commands, respectively.
Note: Data is transmitted and received on the serial data lines least-significant bit first and most-significant bit last.
end of a GET command, the eIMR device waits two SCLK cycles and then transmits the response on SO.
20650A-11
20650B-11
Table 4. Summary of Default States after Reset
eIMR Programmable Option—S Off AUI Partitioning Algorithm Normal TP Partitioning Algorithm Normal AUI/TP Port Enabled Link Test Enabled Link Pulse Enabled Automatic Receiver Polarity
Reversal
State of SI at reset
Extended Distance Mode Disabled Blink Rate Off Software Override of LEDs Disabled
22 Am79C984A
P R E L I M I N A R Y
Table 5. Control Port Command Summary
Commands
SI Data SO Data
Set (Write Commands)
eIMR Chip Programmable Options
0000 10S0 Alternate AUI Partitioning Algorithm 0001 1111 Alternate TP Partitioning Algorithm 0001 0000 AUI Port Disable 0010 1111 AUI Port Enable 0011 1111 TP Port Disable 0010 00## TP Port Enable 0011 00## Disable Link Test Function (per TP port) 0100 00## Enable Link Test Function (per TP port) 0101 00## Disable Link Pulse (per TP port) 0100 10## Enable Link Pulse (per TP port) 0101 10## Disable Automatic Receiver Polarity Reversal
0110 00## (per TP port)
Enable Automatic Receiver Polarity Reversal
0111 00## (per TP port)
Disable Receiver Extended Distance Mode
0110 10## (per TP port)
Enable Receiver Extended Distance Mode
0111 10## (per TP port)
Disable Software Override of LEDs
1001 #### (per Port - AUI & TP)
Enable Software Override of Bank A LEDs
1011 #### (per Port - AUI & TP, Global)
Enable Software Override of Bank B LEDs
1100 #### (per Port - AUI & TP, Global)
Software Override LED Blink Rate 1110 1###
Get (Read Commands)
AUI Port Status (B, S, and L Cleared)
1000 1111 PBSL 0000 AUI Port Status (B Cleared) 1000 1101 PBSL 0000 AUI Port Status (S, L, Cleared) 1000 1011 PBSL 0000 AUI Port status (None Cleared) 1000 1001 PBSL 0000 TP Port Partitioning Status 1000 0000 0000 C3..C0 Bit Rate Error Status of TP Ports 1010 0000 0000 E3..E0 Link Test Status of TP Ports 1101 0000 0000 L3..L0 Receive Polarity Status of TP Ports 1110 0000 0000 P3..P0 MJLP Status 1111 0000 M000 0000 Version 1111 1111 0000 0011
Am79C984A 23
P R E L I M I N A R Y
SET (Write Commands)
Chip Prog
SI Data 0000 10S0 SO Data None
The eIMR chip programmable option can be enabled (or disabled) by setting (or resetting) the S bit in the command string.
rammable Option
S AUI SQE Test Mask
Setting this bit allows the eIMR chip to ignore activity on the CI signal pair, during the SQE test window , follo wing a transmission on the AUI port. Enabling this function does not prevent the reporting of this condition by the eIMR device. The two functions oper ate independently.
The SQE Test Window, as defined in IEEE 802.3 (Sec­tion 7.2.2.2.4) is from 6 bit times to 34 bit times (0.6 µ s to 3.4 µ s). This includes the delay introduced by a 50­meter AUI. CI activity that occurs outside this windo w is not ignored and is treated as a true collision.
nate AUI Partitioning Algorithm
Alter
SI Data 0001 1111 SO Data None
Invoking this command sets the partition/reconnection scheme for the A UI port to the alternate (transmit-only) reconnection algorithm. To return the AUI port to the standard (transmit or receive) reconnection algorithm, it is necessary to reset the eIMR device. The standard partitioning algorithm is selected on reset.
nate TP Partitioning Algorithm
Alter
SI Data 0001 0000 SO Data None
Invoking this command sets the partition/reconnection scheme for the TP ports to the alternate (transmit-only) reconnection algorithm. To return the TP ports to the standard (transmit or receive) reconnection algorithm, it is necessary to reset the eIMR device. The standard partitioning algorithm is selected on reset.
UI Port Disable
A
SI 0010 1111 SO Data None
This command disables the AUI port. Subsequently , the eIMR chip will ignore all inputs to this port and will not transmit a DAT or JAM pattern on the AUI port. Disab ling the AUI port also sets the partitioning state machine of the AUI port to the idle state. Therefore, a partitioned port can be reconnected by first disabling the AUI port and then enabling the AUI port.
UI Port Enable
A
SI 0011 1111 SO Data None
This command enables the AUI port.
ort Disable
TP P
SI Data 0010 00## SO Data None
This command disables the TP port designated by the two least-significant bits of the command byte. Subse­quently, the eIMR chip will ignore all inputs to the des­ignated port and will not transmit a DAT or JAM pattern on that port. Disabling the TP port also sets the parti­tioning state machine of that port to the idle state. There­fore, a partitioned port can be reconnected by first disabling the port and then enabling it.
ort Enable
TP P
SI Data 0011 00## SO Data None
This command enables the TP port designated by the two least-significant bits of the command byte.
le Link Test Function (Per TP port)
Disab
SI Data 0100 00## SO Data None
This command disables the Link Test function of the TP port designated by the two least-significant bits of the command data. As a consequence of this, the port will no longer be disconnected if it fails the Link Test. If a port has the Link Test disabled, reading the Link Test Status indicates a ‘Link Pass’.
le Link Test Function (Per TP port)
Enab
SI Data 0101 00## SO Data None
This command enables the Link Test function of the TP port designated by the two least-significant bits of the command data. As a consequence of this, the port is disconnected if it fails the Link Test.
le Link Pulse (Per TP Port)
Disab
SI Data 0100 10## SO Data None
This command disables the transmission of the Link pulse on the TP port designated by the two least­significant bits of the command byte.
le Link Pulse (Per TP Port)
Enab
SI Data 0101 10## SO Data None
This command enables the transmission of the Link pulse on the TP port designated by the two least­significant bits of the command byte.
24 Am79C984A
P R E L I M I N A R Y
le Automatic Receiver Polarity Reversal (Per TP
Disab Port)
SI Data 0110 00## SO Data None
This command disables the Automatic Receiv er Polarity Reversal function f or the TP port designated by the two least-significant bits in the command byte. If this func­tion is disabled on a TP port receiving with reversed polarity (due to a wiring error), the TP port will fail the Link Test due to the incorrect polarity of the received Link pulses.
The state of Automatic P olarity Re versal function is set by SI on reset. If SI is HIGH at the rising edge of RST the eIMR device disables Automatic Polarity Reversal. If SI is LOW at the rising edge of RST, the eIMR device enables Automatic Polarity Reversal.
le Automatic Receiver Polarity Reversal (Per TP
Enab Port)
SI Data 0111 00## SO Data None
This command enables the Automatic Receiv er Polarity Reversal function f or the TP port designated by the two least-significant bits in the command byte. If enabled in a TP port, the eIMR chip will automatically invert the polarity of that port’s receiver circuitry if the TP port is detected as having reversed polarity (due to wiring er­ror). After reversing the receiver polarity, the TP port could then receive subsequent (reverse polarity) packets correctly.
le Receiver Extended Distance Mode (Per TP
Disab Port)
SI Data 0110 10## SO Data None
This command disables the Receiver Extended Distance Mode and restores the RXD circuit of the trans­ceiver to normal squelch levels for the TP port driver designated by the two least-significant bits of the com­mand data.
le Receiver Extended Distance Mode (P er TP Port)
Enab
SI Data 0111 10## SO Data None
This command modifies the RXD circuit of the trans­ceiver for the TP port driver designated by the two least­significant bits of the command data. The RXD squelch­threshold value is lowered to accommodate signal at­tenuation associated with lines longer than 100 meters. At reset, Receiver Extended Distance Mode is disabled and the RXD circuit defaults to normal squelch-thresh­old values.
le Software Override of LEDs
Disab (Per Port - AUI and TP, Global)
SI Data 1001 #### SO Data None
This command disables Software Override of the Port LEDs.
Individual LEDs and combinations of LEDs can be selected via the lower four bits of the command b yte as follows:
####
Port(s) affected
0000-0011 TP0 - TP3
,
0100-0111 Reserved 1000 AUI port 1001 Reserved 1010 Reserved 1011 All TP ports 1100 All ports 1101 Global 1110 Reserved 1111 Reserved
Following command e x ecution, the attributes displa y ed on the LEDs will be determined by LDC Override of LEDs is disabled after reset.
le Software Override of Bank A LEDs (Per Port -
Enab AUI and TP, Global)
SI Data 1011 #### SO Data None
This command forces the LEDs in Bank A to blink. In­dividual LEDs and combinations of LEDs can be select­ed via the lower four bits of the command b yte as follows:
####
Port(s) affected
0000-0011 TP0 - TP3 0100-0111 Reserved 1000 AUI port 1001 Reserved 1010 Reserved 1011 All TP ports 1100 All ports 1101 Global 1110 Reserved 1111 Reserved
The designated LED driver(s) will switch between LO W and ‘off’ at the rate set by the Software Override Blink Rate command. Enable Software Override of Bank A LEDs references the blink rate last issued and o verrides any other attribute specified by LDC
. Softw are Over-
0-2
ride of LEDs is disabled after reset.
. Software
0-2
Am79C984A 25
P R E L I M I N A R Y
le Software Override of Bank B LEDs (Per Port -
Enab AUI and TP, Global)
SI Data 1100 #### SO Data None
This command forces the LEDs in Bank B to blink. In­dividual LEDs and combinations of LEDs can be select­ed via the lower four bits of the command b yte as follows:
####
0000-0011 TP0 - TP3 0100-0111 Reserved 1000 AUI port 1001 Reserved 1010 Reserved 1011 All TP ports 1100 All ports 1101 Global 1110 Reserved 1111 Reserved
The designated LED driver(s) will switch between LO W and ‘off’ at the rate set by the Softw are Override of LED Blink Rate command. Enable Software Override of Bank B LEDs references the blink rate last issued and overrides any other attribute specified by LDC ware Override of LEDs is disabled after reset.
are Override of LED Blink Rate
Softw
SI Data 1110 1### SO Data None
This command sets the blink period of the LEDs with Software Override enabled. The duty cycle is 50%. This command defaults to ‘off’ at reset.
Setting
1110 1000 Off 1110 1001 512 ms 1110 1010 1560 ms 1110 1011 Solid On
These settings apply to the blink rate for both Bank A and Bank B. This command must precede the Enable Software Override of Bank A/B LEDs command. All LED combinations selected for Software Override will refer­ence the blink rate last issued.
Port(s) affected
Blink Period
0-2
. Soft-
GET (Read Commands)
UI Port(s) Status
A
SI Data 1000 1111 SO Data PBSL 0000
The combined AUI status of the eIMR device allows a single instruction to be used to monitor the AUI port. The four local status bits are:
P Partitioning Status
This bit is ‘0’ if the AUI port is par titioned and ‘1’ if the AUI port is connected.
B Bit Rate Error
This bit is set to ‘1’ if there is an instance of FIFO overflo w or underflow. The bit is cleared when the eIMR device is read.
S SQE Test Status
This bit is set to ‘1’ if the SQE test error is detected by the eIMR chip. The bit is cleared when the status is read.
L Loopback Error
The MAU attached to the AUI port is required to loop­back data transmitted to DO onto the DI circuit. If the loopback carrier is not detected by the eIMR device, this bit is set to ‘1’. This bit is cleared when the status is read.
nate AUI Port(s) Status
Alter
There are three further variations of the AUI Port Status Command allowing selective clearing of a combination of B,S, and L bits. These are the following:
Alternate 1: B is not cleared, S and L are Cleared
SI Data 1000 1011 SO Data PBSL 0000
Alternate 2: S and L are not cleared, B is Cleared
SI Data 1000 1101 SO Data PBSL 0000
Alternate 3: None of S, B, and L are Cleared
SI Data 1000 1001 SO Data PBSL 0000
ort Partitioning Status
TP P
SI Data 1000 0000 SO Data 0000 P3..P0
P
n
= 0 TP Port Partitioned
P
n
= 1 TP port Connected
where
n
is a port number in the range 0–3.
The response to this command gives the partitioning status of all four TP ports. If a port is disabled, reading its partitioning status will indicate that it is connected.
Bit Rate Error Status of
SI Data 1010 0000 SO Data 0000 E3..E0
E
n
= 0 No Error
E
n
= 1 FIFO Overflow
where
n
is a port number in the range 0–3.
The response to this command gives the bit-rate-over­flow or underflow (data rate mismatch) condition of all the TP ports. A 1 indicates that the FIFO has overflow ed or underflowed due to the amount of data received by the corresponding port.
TP Ports
26 Am79C984A
P R E L I M I N A R Y
Test Status of TP ports
Link
SI Data 1101 0000 SO Data 0000 L3..L0
L
n
= 0 TP Port n in Link Test Failed
L
n
= 1 TP port n in Link Test Passed
where
n
is a port number in the range 0–3.
The response to this command gives the Link Test sta­tus of all the TP ports. A disabled port continues to report Link Test status. Re-enabling the port causes the port to be placed in the Link Test Fail state.
e Polarity Status of TP Ports
Receiv
SI Data 1110 0000
SO Data 0000 P3......P0
P
n
= 0 TP Port n Polarity Correct
P
n
= 1 TP port n Polarity Reversed
where
n
is a port number in the range 0–3.
The response to this command gives the Received Po­larity status of all the TP ports. If the polarity is detected as reversed f or a TP port, then the eIMR device will set the appropriate bit in this command’s result only if the Polarity Reversal Function is enabled for that port.
MJLP Status
SI Data 1111 0000 SO Data M000 0000
Each eIMR device contains an independent MAU Jab­ber Lock Up Protection timer. The timer is designed to inhibit the transmit function of the eIMR device if it has been transmitting continuously for more than 65536 bit times. This bit remains set and is only cleared when the MJLP status is read using this command.
ersion
V
SI Data 1111 1111 SO Data 0000 0011
The response to this command gives the version of the eIMR device. 0011 was chosen to help distinguish the eIMR device from the IMR (Am79C980) and the IMR+ (Am79C981) devices.
SYSTEMS APPLICATIONS eIMR to TP Port Connection
The eIMR device provides a system solution to designing non-managed multiport repeaters. The eIMR device con­nects directly to AC coupling modules for a 10BASE-T hub. Figure 7 shows the simplified connection.
Twisted Pair Transmitters
TXD signals need to be properly terminated to meet the electrical requirement for 10BASE-T transmitters. Prop­er termination is shown in Figure 8 which consists of a 110- Ω resistor and a 1:1 transformer. The load is a twisted­pair cable that meets IEEE 802.3, Section 14.4 specifi­cations. The cable is terminated at the opposite end by 100 Ω .
Twisted Pair Receivers
RXD signals need to be properly terminated to meet the electrical requirements for 10BASE-T receivers. Proper termination is shown in Figure 9. Note that the receiv ers do not require external filter modules.
Am79C984A 27
P R E L I M I N A R Y
RST
CLK
eIMR
TXD0+ TXD0–
RXD0+
RXD0–
TXD1+ TXD1–
RXD1+
RXD1–
TXD2+ TXD2–
RXD2+
RXD2–
TXD3+ TXD3–
RXD3+
RXD3–
TP Connector
1:1
110
1:1
100
TP Connector
1:1
110
1:1
100
TP Connector
1:1
110
1:1
100
TP Connector
1:1
110
1:1
100
20650A-12
Figure 7. Simplified 10BASE-T Connection
TXD+
110
1:1
Twisted Pair
100
TXD-
20650A-13
20650B-13
Figure 8. TXD Termination
RXD+
1:1
100
RXD–
Twisted Pair
100
Figure 9. RXD Termination
28 Am79C984A
20650A-14
20650A-14
20650B-14
P R E L I M I N A R Y
MAC Interface
The eIMR device can be connected directly to a MAC through the AUI port. This requires that the AUI port be configured in the reverse mode and connected as shown in Figure 10a. Notice that DI is connected to DO
Am79C940 eIMR Am7996 eIMR
DO+ DO–
40
DI+ DI–
40
CI+ CI–
0.1 µF 0.1 µF
40
40
40
DI+ DI–
40
DO+ DO–
CI+ CI–
of the MAC and DO is connected to DI of the MAC, because the reverse configuration only affects CI. Where CI is an input in the normal mode, in the reverse mode, CI is an output. Figure 10b shows the normal AUI configuration for reference.
DI+
DI–
DO+
DO–
40
CI+
CI–
39 – 150
1:1
40
1:1
40
1:1
40
0.1 µF
DI+ DI–
40
DO+ DO–
0.1 µF
CI+ CI–
40
0.1 µF
a) Reverse Mode (with MAC) b) Normal Mode (with MAU)
Figure 10. AUI Port Interconnections
Internal Arbitration Mode Connection
The internal arbitration mode uses a modified daisy­chain scheme to eliminate the need for any external arbiter. In this mode, A up through a minimum resistance of 1 k Ω. The DAT and JAM pins also need to be pulled down via a high value resistor. Refer to Figure 11.
CK and COL need to be pulled
–9 V
20650B-15
20650A-16
IMR+ Mode External Arbitration
The IMR+ mode maintains the full functionality of AMD’s IMR+ (Am79C981) device’s expansion bus. In this mode, the eIMR device requires external circuitry to handle arbitration for control of the bus . Figure 12 shows the configuration for the IMR+ mode of operation.
Am79C984A 29
P R E L I M I N A R Y
V
DD
(Note: In a multiple eIMR system, the reset signal must be synchronized to CLK.)
RST
20 MHz
OSC
74LS74
D
Q
D
Q
P C
Q
P C
Q
Figure 11. eIMR Internal Arbitration Mode Connection
eIMR eIMR
SELI_0
SELO
SELI_1
DAT JAM ACK COL
SELI_0 SELI_1
RST CLK
DAT
JAM
ACK
SELI_0 SELI_1
RST
CLK
DAT
JAM
SELI_0
SELI_1
DAT JAM ACK COL
eIMR
SELO
COL
eIMR
SELO
ACK
COL
SELO
1 k
SELI_0 SELI_1
RST
CLK
DAT
JAM
SELI_0
SELI_1
DAT JAM ACK COL
eIMR
SELO
ACK
eIMR
COL
~1 k
SELO
~1 k
20650B-16
V
DD
V
DD
1 k
COL ACK SEL1 SEL2 SEL3
Figure 12. IMR+ Mode External Arbitration
30 Am79C984A
Arbiter
GCOL
20650B-17
P R E L I M I N A R Y
Visual Status Display
LDA/B[4:0] and LDGA/B provide visual status indicators for the eIMR. LDA/B[4:0] displays Link, Carrier Sense, Collision, and Partition information for the TP and AUI ports. LDGA/B display global Carrier Sense, Collision, and Jabber information.
In a multiple eIMR configuration, the global LED drivers (LDGA/B) from each chip can be tied together to drive a single pair of global status LEDs. The open dr ain out­put of these drivers facilitate this configuration. Refer to Figure 13.
LDA[4:0] LDB[4:0]
LDGA LDGB
LDA[4:0] LDB[4:0]
LDGA LDGB
VDD
20650B-18
20650A-19
Figure 13. Visual Status Display Connection
Am79C984A 31
µ
µ
µ
DI ±
V
µ
P R E L I M I N A R Y

ABSOLUTE MAXIMUM RATINGS

Storage Temperature . . . . . . . . . .–65 ° C to +150 ° C
Ambient Temperature Under Bias . . . . 0 ° C to +70 ° C
Supply Voltage referenced to AV
or DV
SS
Stresses above those listed under ABSOLUTE MAXI-
SS
(AV
DD
, DV
). . . . . . . –0.3 V to +6.0 V
DD

OPERATING RANGES

Commercial (C) Devices
Temperature (T Supply Voltages (V
Operating ranges define those limits between which the functionality of the device is guaranteed.
). . . . . . . . . . . . . . . . . 0 ° C to +70 ° C
A
) . . . . . . . . . . . . . . . . . +5 V ± 5%
DD
MUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Ex­posure to Absolute Maximum Ratings for e xtended pe­riods may affect reliability . Programming conditions ma y differ .
DC CHARACTERISTICS over operating ranges unless otherwise specified
Parameter
Symbol
Digital I/O
V V V
V
I
ILSTR
V
OLOD
Input LOW Voltage
IL
Input HIGH Voltage
IH
Output LOW Voltage
OL
Output HIGH Voltage
OH
I
Input Leakage Current
IL
Input Leakage Current for STR pin Open Drain Output LOW Voltage (LED pins)
AUI Ports
I
IAXD
V V
AICM AIDV
Input Current at DI ±
, CI ± Open Circuit Input Voltage Range
Differential Mode Input Voltage Range (DI, CI)
V
V V
V
ASQ ATH AOD AOC
DI, CI Squelch Threshold DI Switching Threshold Differential Output Voltage  (DO+) – (DO)  Differential Output Voltage  (CI+) – (CI–) 
(Reverse Mode) DO Differential Output Voltage Imbalance
DO Differential Idle Output Voltage R
OFF
DO Differential Idle Output Current R
OFF
DO+, DO- Common Mode Output Voltage
V
I
AOD
V
AOD
V
AOCM
AODI
Twisted Pair Ports
I
IRXD
Input Current at RXD ±
and CI ± Pairs R V
RXD
TIVB
RXD Differential Input
RXD+, RXD– Open Circuit
Input V oltage (bias)
V
TID
Differential Mode Input
Range (RXD)
Parameter Description
and CI ± Pairs
Test Conditions
Min
V
SS
V
SS
I
= 4.0 mA
OL
= –0.4 mA
I
OH
V
<V
SS
<V
V
SS
I
OLOD
<V
V
SS
I
IN
V
DD
= 0.0 V = 0.0 V
<V
IN
<V
IN
= 12 mA
<V
IN
DD
= 0
= 5.0 V
DD DD
–0.5 0.8 V
2.0 0.5 + V – 0.4 V
2.4 V – – – 0.4 V
–500
V
DD
– 3.0
V
DD
–2.5 +2.5 V
–275 –160 mV
(Note 1) -35 +35 mV
R
= 78 Ω
L
= 78 Ω
R
L
= 78 Ω
R
L
= 78 Ω
L
= 78 Ω (Note 1)
L
R
= 78 Ω
L
<V
SS
<V
IN
AV
DD
620 620
–25 –40
–1.0 +1.0 mA
2.5
–500
(Note 1) 10 k Ω
V
DD
= 5.0 V
V
– 3.0
DD
–3.1 +3.1 V
V
Max
DD
Unit
10 50
500
– 1.0
1100 mV 1100 mV
+25 mV +40 mV
V
DD
500
– 1.5
DD
V
A A
A
V
A
V
32 Am79C984A
P R E L I M I N A R Y
DC CHARACTERISTICS (continued)
Parameter
Symbol
Parameter Description
Test Conditions
Twisted Pair Ports (Continued)
V
TSQ+
V
TSQ–
V
THS+
V
THS–
V
LTSQ+
V
LTSQ–
V
LTHS+
V
LTHS–
V
RXDTH
RXD Positive Squelch Threshold (peak)
RXD Negative Squelch Threshold (peak)
RXD Post-Squelch Positive Threshold (peak)
RXD Post-Squelch Negative Threshold (peak)
RXD Positive Squelch Threshold (peak) - Extended Distance Mode
RXD Negative Squelch Threshold (peak) - Extended Distance Mode
RXD Post-Squelch Positive Threshold - Extended Distance Mode
RXD Post-Squelch Negative Threshold - Extended Distance Mode
RXD Switching Threshold
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
Sinusoid 5 MHz<f<10 MHz
(Note 1) –60 60 mV
Power Supply Current
I
DD
Power Supply Current (Idle) (Note 2)
Power Supply Current (Transmitting)
CLK = 20 MHz V
= +5.25V
DD
CLK = 20 MHz V
= +5.25V
DD
Notes:
1. Parameter not tested.
2. LED current not included. Maximum current rating on LED drivers is 12 mA.
Min
Max
Unit
300 520 mV
–520 –300 mV
150 293 mV
–293 –150 mV
180 365 mV
–365 –180 mV
90 175 mV
–175 –90 mV
100 mA
350 mA
Am79C984A 33

SWITCHING CHARACTERISTICS

P R E L I M I N A R Y
Parameter
Symbol
Parameter Description
Clock and Reset Timing
t
CLK
t
CLKH
t
CLKL
t
CLKR
t
CLKF
t
PRST
t
RST
t
RSTSET
CLK Clock Period CLK Clock High CLK Clock Low CLK Rise Time CLK Fall Time Reset Pulse Width after Power On 150 – Reset Pulse Width Reset HIGH Setup Time with respect to
CLK
t
RSTHLD
t
XRS
Reset LOW Hold Time 0 ns AMODE, SELI
to Rising Edge of RST
t
XRH
AMODE,SELI from Rising Edge of RST
AUI Port Timing
t
DOTD
t
DOTR
t
DOTF
t
DORM
t
DOETD
t
PWODI
t
PWKDI
CLK Rising Edge to DO Toggle DO+, DO– Rise Time (10% to 90%) 7.0 ns DO+, DO– Fall Time (90% to 10%) 7.0 ns DO+, DO– Rise and Fall Time Mismatch 1.0 ns DO± End of Transmission 275 375 ns DI Pulse Width Accept/Reject Threshold |VIN|>|V DI Pulse Width Not to Turn-off Internal
Carrier Sense
t
PWOCI
t
PWKCI
t
CITR
t
CITF
t
CIRM
CI Pulse Width Accept/Reject Threshold |VIN|>|V CI Pulse Width Not to Turn-off Threshold |VIN|>|V CI Rise Time (In Reverse Mode) 7.0 ns CI Fall Time (In Reverse Mode) 7.0 ns CI+, CI– Rise and Fall Time Mismatch
(AUI in Reverse Mode)
Expansion Bus Timing
t
CLKHRL
t
CLKHRH
t
CLKHDR
t
CLKHDZ
t
DJSET
t
DJHOLD
t
CASET
t
CAHLD
t
SCLKHLD
CLK HIGH to SELO Driven LOW CL = 50 pF 15 30 ns CLK HIGH to SELO Driven HIGH CL = 50 pF 15 30 ns CLK HIGH to DAT/JAM Driven CL = 100 pF 14 30 ns CLK HIGH to DAT/JAM Not Driven CL = 100 pF 14 30 ns DAT/JAM Setup Time to CLK 10 ns DAT/JAM Hold Time from CLK 9 ns COL/ACK Setup Time to CLK 10 ns COL/ACK Hold Time from CLK 9 ns SI, SCLK Hold Time 50 ns
, and SI_D Setup Time
0
, and SI_D Hold Time
0
Test Conditions
ASQ
|VIN|>|V
ASQ
ASQ ASQ
Min
Max
Unit
49.995 50.005 ns 20 30 ns 20 30 ns
10 ns – 10 ns
µ
4
µ
15 ns
0 ns
400 ns
30 ns
| (Note 2) 15 45 ns | (Note 3) 136 200 ns
| (Note 4) 10 26 ns | (Note 5) 75 160 ns
1.0 ns
s s
34 Am79C984A
P R E L I M I N A R Y
SWITCHING CHARACTERISTICS (continued)
Parameter
Symbol
Parameter Description
Twisted Pair Port Timing
t
TXTD
t
TETD
t
PWKRD
CLK Rising Edge to TXD± Transition Delay 50 ns Transmit End of Transmission 250 375 ns RXD Pulse Width Maintain/Turn-off
Threshold
t
PERLP
t
PWLP
Idle Signal Period 8 24 ms Idle Link Test Pulse Width 75 120 ns
Control Port Timing
t
SCLK
t
SCLKH
t
SCLKL
t
SCLKR
t
SCLKF
t
SISET
t
SIHLD
t
SODLY
SCLK Clock Period 100 ns SCLK Clock HIGH 30 ns SCLK Clock LOW 30 ns SCLK Clock Rise Time 10 ns SCLK Clock Fall Time 10 ns SI Input Setup Time to SCLK Rising Edge 10 ns SI Input Hold Time from SCLK Rising Edge 10 ns SO Output Delay from SCLK Rising Edge CL = 100 pF 40 ns
Notes:
1. Parameter not tested.
2. DI pulses narrower than t
3. DI pulses narrower than t
PWODI PWKDI
carrier sense off.
4. CI pulses narrower than t
5. CI pulses narrower than t
PWOCI PWKCI
carrier sense off.
6. RXD pulses narrower than t RXD carrier sense off.
Test Conditions
|VIN|>|V
(min) will be rejected; pulses wider than t
| (Note 6) 136 200 ns
THS
(max) will turn internal DI carrier sense on.
PWODI
(min) will maintain internal DI carrier on; pulses wider than t
(min) will be rejected; pulses wider than t
(max) will turn internal CI carrier sense on.
PWOCI
(min) will maintain internal CI carrier on; pulses wider than t
(min) will maintain internal RXD carrier sense on; a pulse wider than t
PWKRD
Min
Max
(max) will turn internal DI
PWKDI
(max) will turn internal CI
PWKCI
(max) will turn
PWKRD
Unit
Am79C984A 35

KEY TO SWITCHING WAVEFORMS

WAVEFORM INPUTS OUTPUTS
P R E L I M I N A R Y

SWITCHING WAVEFORMS

Must be Steady
May Change from H to L
May Change from L to H
Don’t Care, Any Change Permitted
Does Not Apply
Will be Steady
Will be Changing from H to L
Will be Changing from L to H
Changing, State Unknown
Center Line is High­Impedance “Off” State
KS000010-PAL
CLK
t
CLKR
t
CLK
t
CLKH
t
CLKF
t
CLKL
Figure 14. Clock Timing
20650A-20
20650B-19
36 Am79C984A
P R E L I M I N A R Y
SWITCHING WAVEFORMS (continued)
t
SCLK
SCLK
t
SCLKH
SI
t
SODLY
SO
Figure 15. Control Port Timing
t
SCLKL
t
SISET
t
SCLKR
t
SIHLD
t
SCLKF
20650B-20
20650A-21
CLK
t
RSTHLD
RST
t
RST
TCLK
or t
PRST
Note: TCLK represents internal eIMR timing
Figure 16. Reset Timing
AMODE, SELI_0
RST
t
XRS
t
RSTSET
t
XRH
20650B-21
20650A-22
Figure 17. Mode Initialization
Am79C984A 37
20650B-22
P R E L I M I N A R Y
SWITCHING WAVEFORMS (continued)
CLK
TCLK
SELO
ACK
COL
DAT/JAM
Note: TCLK represents internal eIMR timing
Figure 18. Expansion Bus Input Timing
CLK
TCLK
t
CLKHRH
t
SELO
ACK
COL
t
CASET
t
CLKHDR
t
CLKHRL
t
DJSET
CAHLD
IN
t
DJHOLD
t
CLKHDZ
t
CASET
20650B-23
DAT/JAM
Note: TCLK represents internal eIMR timing
Figure 19. Expansion Bus Output Timing
38 Am79C984A
OUT
20650B-24
P R E L I M I N A R Y
SWITCHING WAVEFORMS (continued)
CLK
TCLK
SELO
t
CLKHRL
ACK
COL
t
CLKHRH
t
CASET
t
CASET
t
CAHLD
DAT/JAM
Note: TCLK represents internal eIMR timing
Figure 20. Expansion Bus Collision Timing
CLK
t
DOTD
t
DOTR
DO+
DO–
Figure 21. AUI Timing Diagram
t
PWKDI
(t
)
PWKCI
t
DOTF
t
PWKDI
(t
PWKCI
t
DOETD
)
ININ
20650B-25
20650A-26
20650B-26
DI+ (CI±)
t
PWODI
(t
PWOCI
V
ASQ
)
20650A-28
20650B-27
Figure 22. AUI Receive Diagram
Am79C984A 39
P R E L I M I N A R Y
SWITCHING WAVEFORMS (continued)
1 0 1 1 1 0 1 0 ETD
01
CLK
t
TXETD
TXD+
TXD–
Figure 23. TP Ports Output Timing Diagram
t
TXETD
20650A-29
20650B-28
RXD+/–
V
TSQ–
V
TSQ+
t
PWLP
t
PERLP
Figure 24. TP Idle Link Test Pulse
t
PWKRD
t
PWKRD
Figure 25. TP Receive Timing Diagram
t
PWKRD
V V
THS+ THS–
40 Am79C984A

SWITCHING TEST CIRCUIT

P R E L I M I N A R Y
V
DD
Pin
Test Point
V
SS
Figure 26. Switching Test Circuit
20650A-32
20650B-31
Am79C984A 41
P R E L I M I N A R Y
PHYSICAL DIMENSIONS PL 084 84-Pin Plastic LCC (measured in inches)
.062
1.185
1.195
1.150
1.156
.042 .056
.083
1.185
1.195
1.150
1.156
.026 .032
Pin 1 I.D.
TOP VIEW
.050 REF
.007 .013
.090 .130
.165 .180
SIDE VIEW
1.090
1.130
1.000 REF
.013 .021
SEATING PLANE
16-038-SQ PL 084 DF79 8-1-95 ae
42 Am79C984A
P R E L I M I N A R Y
PHYSICAL DIMENSIONS PQR100 100-Pin Plastic Quad Flat Pack
17.00
17.40
Pin 80
18.85 REF
19.90
20.10
23.00
23.40
Pin 100
12.35 REF
Pin 1 I.D.
13.90
14.10
Pin 30
0.25 MIN
2.70
2.90
0.65 BASIC
Pin 50
3.35 MAX
SEATING PLANE
16-038-PQR-2 PQR100 DA92 8-2-94 ae
Am79C984A 43
Trademarks
Copyright © 1998 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Am186, Am386, Am486, Am29000,
PCnet-
FAST
, PCnet-
FAST
Micro Devices, Inc. Microsoft is a registered trademark of Microsoft Corporation. Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
+, PCnet-Mobile, QFEX, QFEXr, QuASI
b
IMR, eIMR, eIMR+, GigaPHY, HIMIB, ILACC, IMR, IMR+, IMR2, ISA-HUB, MACE, Magic Packet, PCnet,
,
QuEST , QuIET, T AXIchip, TPEX, and TPEX Plus are trademarks of Advanced
Loading...