Datasheet ADV202 Datasheet (Analog Devices)

Page 1
JPEG2000 Video Codec

FEATURES

Complete single-chip JPEG2000 compression and
decompression solution for video and still images
Patented SURF™ (spatial ultraefficient recursive filtering)
technology enables low power and low cost wavelet­based compression
Supports both 9/7 and 5/3 wavelet transforms with up to
6 levels of transform
Programmable tile/image size with widths up to 2048 pixels
in 3-component 4:2:2 interleaved mode, and up to
4096 pixels in single-component mode Maximum tile/image height: 4096 pixels Video interface directly supporting ITU.R-BT656,
SMPTE125M PAL/ NTSC, SMPTE274M, SMPTE293M (525p),
ITU.R-BT1358 (625p) or any video format with a maximum
input rate of 65 MSPS for irreversible mode or 40 MSPS for
reversible mode Two or more ADV202s can be combined to support full-
frame SMPTE274M HDTV (1080i) or SMPTE296M (720p) Interlaces temporally coherent frame-based SD video
sources for improved performance Flexible asynchronous SRAM-style host interface allows
glueless connection to most 16-/32-bit microcontrollers
and ASICs
2.5 V to 3.3 V I/O and 1.5 V core supply 12 mm × 12 mm 121-lead CSPBGA, speed grade 115 MHz, or
13 mm × 13 mm 144-lead CSPBGA, speed grade 135 MHz, or 13 mm × 13 mm 144-lead CSPBGA, speed grade 150 MHz
ADV202

APPLICATIONS

Networked video and image distribution systems Wireless video and image distribution Image archival/retrieval Digital CCTV and surveillance systems Digital cinema systems Professional video editing and recording Digital still cameras Digital camcorders

GENERAL DESCRIPTION

The ADV202 is a single-chip JPEG2000 codec targeted for video and high bandwidth image compression applications that can benefit from the enhanced quality and feature set provided by the JPEG2000 (J2K)—ISO/IEC15444-1 image compression standard. The part implements the computationally intensive operations of the JPEG2000 image compression standard as well as providing fully compliant code-stream generation for most applications.
The ADV202’s dedicated video port provides glueless connection to common digital video standards such as ITU.R­BT656, SMPTE125M, SMPTE293M (525p), ITU.R-BT1358 (625p), SMPTE274M(1080i), or SMPTE296M(720p). A variety of other high speed synchronous pixel and video formats can also be supported using the programmable framing and validation signals.
FUNCTIONAL BLOCK DIAGRAM
ADV202
PIXEL I/F
HOST I/F
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
PIXEL I/F
EXTERNAL DMA CTRL
PIXEL
FIFO
CODE
FIFO
ATTRIBUTE
FIFO
ANCILLARY
FIFO
WAVELET
ENGINE
INTERNAL BUS AND DMA ENGINE
EMBEDDED RISC
PROCESSOR
SYSTEM
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2005 Analog Devices, Inc. All rights reserved.
EC1 EC2 EC3
(continued on Page 3)
MEMORY
SYSTEM
04723-001
www.analog.com
Page 2
ADV202
TABLE OF CONTENTS
General Description......................................................................... 3
Video Interface (VDATA Bus) .................................................. 26
JPEG2000 Feature Support.......................................................... 3
Specificatons...................................................................................... 4
Supply Voltages and Current....................................................... 4
Input/Output Specifications........................................................ 4
Clock and
RESET
Specifications ................................................ 5
Normal Host Mode—Read Operation ...................................... 6
Normal Host Mode—Write Operation..................................... 7
DREQ/DACK
DREQ/DACK
DMA Mode—Single FIFO Write Operation .. 8
DMA Mode—Single FIFO Read Operation.10
External DMA Mode—FIFO Write, Burst Mode................... 12
External DMA Mode—FIFO Read, Burst Mode.................... 13
Streaming Mode (JDATA)—FIFO Read/Write ......................15
VDATA Mode Timing............................................................... 15
Raw Pixel Mode Timing ............................................................ 17
SPI Port Timing.......................................................................... 18
Pin BGA Assignments and Function Descriptions.................... 19
Pin BGA Assignments ............................................................... 19
Pin Function Descriptions ........................................................ 22
Theory of Operation ...................................................................... 25
Wave l et En g in e ........................................................................... 25
Entropy Codecs........................................................................... 25
Embedded Processor System .................................................... 25
Memory System ..........................................................................25
Internal DMA Engine ................................................................25
Host Interface (HDATA Bus) ................................................... 26
Direct and Indirect Registers.................................................... 26
Control Access Registers ........................................................... 27
Pin Configuration and Bus Sizes/Modes ................................ 27
Stage Register.............................................................................. 27
JDATA Mode............................................................................... 27
External DMA Engine............................................................... 27
SPI Port ........................................................................................ 27
Internal Registers ............................................................................ 28
Direct Registers........................................................................... 28
Indirect Registers........................................................................ 29
PLL ............................................................................................... 30
Hardware Boot............................................................................ 31
Video Input Formats ...................................................................... 32
Applications..................................................................................... 34
Encode—Multichip Mode......................................................... 34
Decode—Multichip Master/Slave............................................ 35
Digital Still Camera/Camcorder .............................................. 35
Encode/Decode SDTV Video Application.............................. 36
ASIC Application (32-Bit Host/32-Bit ASIC)......................... 37
HIPI (Host Interface—Pixel Interface) ................................... 38
JDATA Interface ......................................................................... 38
Outline Dimensions....................................................................... 39
Ordering Guide .......................................................................... 40
ADV202 Interface........................................................................... 26
REVISION HISTORY
1/05—Rev. A to Rev. B
Updated Outline Dimensions....................................................... 39
Rev. B | Page 2 of 40
12/04—Rev. 0 to Rev. A
Changes to Features ..........................................................................1
Changes to Table 2.............................................................................4
Changes to Table 16 ....................................................................... 24
Changes to Table 23 ....................................................................... 32
7/04—Revision 0: Initial Version
Page 3
ADV202
GENERAL DESCRIPTION
(continued from Page 1)
The ADV202 can process images at a rate of 40 MSPS in reversible mode and at higher rates when used in irreversible mode. The ADV202 contains a dedicated wavelet transform engine, three entropy codecs, an on-board memory system, and an embedded RISC processor that can provide a complete JPEG2000 compression/decompression solution.
The wavelet processor supports the 9/7 irreversible wavelet transform and the 5/3 wavelet transform in reversible and irreversible modes. The entropy codecs support all features in the JPEG2000 Part 1 specification, except Maxshift ROI.
The ADV202 operates on a rectangular array of pixel samples called a tile. A tile can contain a complete image, up to the maximum supported size, or some portion of an image. The maximum horizontal tile size supported depends on the wavelet transform selected and the number of samples in the tile. Images larger than the ADV202’s maximum tile size can be broken into individual tiles and then sent sequentially to the chip while still maintaining a single, fully compliant JPEG2000 code stream for the entire image.

JPEG2000 FEATURE SUPPORT

The ADV202 supports a broad set of features that are included in Part 1 of the JPEG2000 standard (ISO/IEC 15444). See Getting Started with ADV202 for information on the JPEG2000 features that the ADV202 currently supports.
Depending on the particular application requirements, the ADV202 can provide varying levels of JPEG2000 compression support. It can provide raw code-block and attribute data output, which allows the host software to have complete control over the generation of the JPEG2000 code stream and other aspects of the compression process such as bit-rate control. Otherwise, the ADV202 can create a complete, fully compliant JPEG2000 code stream (.j2c) and enhanced file formats such as .jp2, .jpx, and .mj2 (Motion JPEG2000). See Getting Started with ADV202 for information on the formats that the ADV202 currently supports.
Rev. B | Page 3 of 40
Page 4
ADV202

SPECIFICATONS

SUPPLY VOLTAGES AND CURRENT

Table 1.
Parameter Description Min Typ Max Unit
VDD DC Supply Voltage, Core 1.425 1.5 1.575 V IOVDD DC Supply Voltage, I/O 2.375 3.3 3.63 V PLLVDD DC Supply Voltage, PLL 1.425 1.5 1.575 V V
Input Range −0.3 V
Input
Temp Operating Ambient Temperature Range in Free Air −40 +25 +85 °C IDD Static Current1 300 mA Dynamic Current, Core (JCLK Frequency = 150 MHz)
2
570 mA Dynamic Current, Core (JCLK Frequency = 108 MHz) 420 mA Dynamic Current, Core (JCLK Frequency = 81 MHz) 325 mA Dynamic Current, I/O 20 mA Dynamic Current, PLL 2.6 mA
1
No clock or I/O activity.
2
ADV202-150 only.

INPUT/OUTPUT SPECIFICATIONS

Table 2.
Parameter Description Test Conditions Min Typ Max Unit
V
High Level Input Voltage VDD = max 2.2 V
IH (3.3 V)
V
IH (2.5 V)
V
IL (3.3 V, 2.5 V)
V
OH (3.3 V)
V
High Level Output Voltage VDD = min, IOH = −0.5 mA 2.0 V
OH (2.5 V)
V
OL (3.3 V, 2.5 V)
IIH High Level Input Current VDD = max, VIN = VDD 1.0 µA IIL Low Level Input Current VDD = max, VIN = 0V 1 µA I
High Level Three-State Leakage Current VDD = max, VIN = VDD 1.0 µA
OZH
I
Low Level Three-State Leakage Current VDD = max, VIN = 0
OZL
CI Input Pin Capacitance 8 pF CO Output Pin Capacitance 8 pF
High Level Input Voltage VDD = max 1.9 V
Low Level Input Voltage VDD = min 0.6 V
High-Level Output Voltage VDD = min, IOH = −0.5 mA 2.4 V
Low Level Output Voltage VDD = min, IOL = 2 mA 0.4 V
V
1.0 µA
+ 0.3 V
DDI/O
Rev. B | Page 4 of 40
Page 5
ADV202
CLOCK AND RESET SPECIFICATIONS
Table 3.
Parameter Description Min Typ Max Unit
t
MCLK
t
MCLK Width Low 6 ns
MCLKL
t
MCLK Width High 6 ns
MCLKH
t
VCLK
t
VCLKL
t
VCLKH
t
RST
1
For a definition of MCLK, see the section. PLL
MCLK Period 13.3 100 ns
VCLK Period 13.4 50 ns VCLK Width Low 5 ns VCLK Width High 5 ns RESET Width Low
MCLK
t
MCLKL
t
VCLKL
t
MCLK
t
VCLK
t
MCLKH
t
VCLKH
5 MCLK cycles
1
VCLK
Figure 2. Input C lock
04723-010
Rev. B | Page 5 of 40
Page 6
ADV202
A

NORMAL HOST MODE—READ OPERATION

Table 4.
Parameter Description Min Typ Max Unit
t
[dir]
ACK
t
[indir]
ACK
t
[dir] Read Access Time, Direct Registers 5 ns 1.5 × JCLK + 7.0 ns
DRD
t
[indir] Read Access Time, Indirect Registers 10.5 × JCLK 15.5 × JCLK + 7.0 ns
DRD
t
HZRD
t
SC
RD to ACK, Direct Registers and FIFO Accesses
RD to ACK, Indirect Registers
Data Hold 2 8.5 ns
CS to RD Setup tSA Address Setup 2 ns tHC t
HA
CS Hold
Address Hold 2 ns tRH Read Inactive Pulse Width 2.5 JCLK tRL Read Active Pulse Width 2.5 JCLK t
Read Cycle Time, Direct Registers 5.0 JCLK
RCYC
1
For a definition of JCLK, see the section. PLL
5 ns 1.5 × JCLK + 7.0 ns
10.5 × JCLK 15.5 × JCLK + 7.0 ns
0 ns
0 ns
1
ADDR
ACK
HDAT
CS
RD
t
SA
t
SC
t
RL
t
ACK
t
DRD
VALID
t
HA
t
HC
t
RCYC
t
RH
t
HZRD
04723-011
Figure 3. Normal Host Mode—Read Operation
Rev. B | Page 6 of 40
Page 7
ADV202
A

NORMAL HOST MODE—WRITE OPERATION

Table 5.
Parameter Description Min Typ Max Unit
t
(Direct)
ACK
t
(Indirect)
ACK
WE to ACK, Direct Registers and FIFO Accesses
WE to ACK, Indirect Registers
tSD Data Setup 3.0 ns tHD Data Hold 1.5 ns tSA Address Setup 2 ns t
HA
tSC tHC t
WH
Address Hold 2 ns CS to WE Setup CS Hold
Write Inactive Pulse Width (Minimum Time until Next WE Pulse) tWL Write Active Pulse Width 2.5 JCLK t
WCYC
Write Cycle Time 5 JCLK
1
For a definition of JCLK, see the section. PLL
5 1.5 × JCLK + 7.0 ns ns
5 2.5 × JCLK + 7.0 ns ns
0 ns 0 ns
2.5 JCLK
1
ADDR
ACK
HDAT
CS
WE
t
SA
t
SC
t
WL
t
ACK
t
SD
VALID
t
HA
t
HC
t
WCYC
t
WH
t
HD
04723-012
Figure 4. Normal Host Mode—Write Operation
Rev. B | Page 7 of 40
Page 8
ADV202
A
A
/
DREQ
Table 6.
Parameter Description Min Typ Max Unit
DREQ
PULSE1
t
DREQ
t
SU
WE
t
SU
tHD DACK
LO
DACK
HI
t
HD
WE
WFSRQ WE Assert to FSRQ Deassert (FIFO Full) t
RTN
DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1 <14:11> is programmed to a value that is not 0. Pulse width depends on the value programmed.
2
For a definition of JCLK, see the PLL section.
DMA MODE—SINGLE FIFO WRITE OPERATION
DACK
DREQ Pulse Width
DACK Assert to Subsequent DREQ Delay
WE to DACK Setup
Data to DACK Deassert Setup Data to
DACK Deassert Hold DACK Assert Pulse Width DACK Deassert Pulse Width
WE Hold after DACK Deassert
DACK to DREQ Deassert (DR × PULS = 0)
DREQ
DREQ
DACK
HDAT
WE
PULSE
t
WESU
Figure 5. Single Write for
t
DREQ
DACK
DACK
LO
t
SU
HI
t
HD
DREQ/DACK
(EDMOD0/EDMOD1 <14:11> NOT Programmed to a Value of 0000)
1 15 JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
2 ns 2 ns 2 JCLK cycles 2 JCLK cycles
0 ns
1.5 2.5 × JCLK + 7.5 ns JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
DMA Mode for Assigned DMA Channel
t
WEHD
3210
04723-013
2
t
DREQRTN
DREQ
DACK
HI
t
HD
0 1 2
DREQ/DACK
DMA Mode for Assigned DMA Channel
t
WEHD
04723-014
DACK
HDAT
WE
DACK
LO
t
WESU
t
SU
Figure 6. Single Write for
(EDMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)
Rev. B | Page 8 of 40
Page 9
ADV202
A
DREQ
DREQ
DACK
WEFB
HDAT
PULSE
t
WESU
Figure 7. Fly-By DMA Mode —Single Write Cycle (
t
DREQ
DACK
DACK
LO
t
SU
HI
t
HD
0 1 2
DREQ
t
WEHD
Pulse Width Is Programmable)
04723-015
FSC0
WE
WFSRQ
FSRQ0
HDATA
FIFO NOT FULL
0 1 2
Figure 8. DCS DMA Mode—Single Write Access (Rev. 0.1 and Higher)
FIFO FULL
NOT WRITTEN TO FIFO
04723-016
Rev. B | Page 9 of 40
Page 10
ADV202
A
A
DREQ/DACK DMA MODE—SINGLE FIFO READ OPERATION
Table 7.
Parameter Description Min Typ Max Unit
DREQ t
DREQ
t
RD
tRD
DREQ Pulse Width
PULSE
DACK Assert to Subsequent DREQ Delay
SU
RD to DACK Setup
DACK to Data Valid
tHD Data Hold 1.5 ns DACK DACK t
HD
RD
LO
HI
DACK Assert Pulse Width DACK Deassert Pulse Width RD Hold after DACK Deassert
RDFSRQ RD Assert to FSRQ Deassert (FIFO Empty) t
DREQ
RTN
DACK to DREQ Deassert (DR × PULS = 0)
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1 <14:11> is programmed to a nonzero value.
2
For a definition of JCLK, see the section. PLL
DREQ
DREQ
1
PULSE
DACK
t
DREQ
LO
DACK
1 15 JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
2.5 11 ns
2 JCLK cycles 2 JCLK cycles 0 ns
1.5
2.5
HI
2.5 × JCLK + 7.5 ns
3.5 × JCLK + 7.5 ns
JCLK cycles JCLK cycles
2
DACK
t
RDHD
04723-018
HDAT
RD
t
RDSU
t
RD
0 1 2
Figure 9. Single Read for
t
HD
DREQ/DACK
DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1 <14:11> NOT Programmed to a Value of 0000)
t
DREQRTN
DREQ
DACK
HI
t
HD
0 1 2
DREQ/DACK
DMA Mode for Assigned DMA Channel
t
RDHD
04723-019
DACK
HDAT
RD
DACK
LO
t
RDSU
t
RD
Figure 10. Single Read for
(EDMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)
Rev. B | Page 10 of 40
Page 11
ADV202
A
A
DREQ
DACK
RDFB
HDAT
DREQ
t
RDSU
PULSE
t
DREQ
DACK
DACK
LO
t
RD
HI
t
HD
0 1 2
t
RDHD
04723-020
Figure 11. Fly-By DMA Mode—Single Read Cycle
DREQ
Pulse Width Is Programmable)
(
FCS0
RD
RDFSRQ
FIFO NOT EMPTY
FSRQ0
FIFO EMPTY
HDAT
0 1
04723-021
Figure 12. DCS DMA Mode—Single Read Access (Rev. 0.1 and Higher)
Rev. B | Page 11 of 40
Page 12
ADV202
A
A

EXTERNAL DMA MODE—FIFO WRITE, BURST MODE

Table 8.
Parameter Desription Min Typ Max Unit
DREQ t
DREQ
t
DACK
DREQ Pulse Width
PULSE
RTN
SU
DACK to DREQ Deassert (DR × Pulse = 0)
DACK to WE Setup
tSU Data Setup 2.5 ns tHD Data Hold 2 ns WE
WE t
DREQ
LO
HI
WAIT
WE Assert Pulse Width WE Deassert Pulse Width DACK Deassert to Next DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1 <14:11> is programmed to a value that is not 0. Pulse width depends on the value programmed.
2
For a definition of JCLK, see the section. PLL
3
If sufficient space is available in FIFO.
DREQ
DACK
1
DREQ
PULSE
1 15 JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
1.5 JCLK cycles
1.5 JCLK cycles
2.5 4.5 × JCLK + 7.5 ns
t
DREQWAIT
3
JCLK cycles
2
HDAT
DREQ
DACK
HDAT
WE
WE
t
DACKSU
t
HD
t
SU
0 1 13 14 15
Figure 13. Burst Write Cycle for
WE
LO
DREQ
/DMA Mode for Assigned DMA Channel
WE
HI
(EDMOD0/EDMOD1 <14:11> NOT Programmed to a Value of 0000)
t
DREQRTN
t
DACKSU
t
HD
t
SU
0 1 13 14 15
Figure 14. Burst Write Cycle for
WE
LO
DREQ
/DMA Mode for Assigned DMA Channel
WE
HI
(EDMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)
t
DREQWAIT
04723-022
04723-023
Rev. B | Page 12 of 40
Page 13
ADV202
A
A
t
DREQ
DACK
WEFB
HDAT
DREQRTN
t
DACKSU
t
HD
t
SU
0 1 13 14 15
WE
LO
WE
HI
t
DREQWAIT
04723-024
Figure 15. Burst Write Cycle for Fly-By DMA Mode
DREQ
Pulse Width Is Programmable)
(

EXTERNAL DMA MODE—FIFO READ, BURST MODE

Table 9.
Parameter Description Min Typ Max Unit
DREQ t
DREQ
t
DACK
tRD
DREQ Pulse Width
PULSE
RTN
SU
DACK to DREQ Deassert (DR × PULS = 0)
DACK to RD Setup
DACK to Data Valid
tHD Data Hold 2.5 ns RD RD t
DREQ
LO
HI
WAIT
RD
Assert Pulse Width
RD
Deassert Pulse Width
DACK Deassert to Next DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1 <14:11> is programmed to a value that is not 0. Pulse width depends on the value programmed.
2
For a definition of JCLK, see the section. PLL
3
If sufficient data is available in FIFO.
1
1 15 JCLK cycles2
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
2.5 9.7 ns
1.5 JCLK cycles
1.5 JCLK cycles
2.5 3.5 × JCLK + 7.5 ns
3
JCLK cycles
DREQ
DACK
HDAT
RD
DREQ
PULSE
t
DACKSU
t
HD
0 1 13 14 15
t
RD
Figure 16. Burst Read Cycle for
(EMOD0/EDMOD1 <14:11> NOT Programmed to a Value of 0
RD
LO
DREQ/DACK
DMA Mode for Assigned DMA Channel
Rev. B | Page 13 of 40
RD
t
DREQWAIT
HI
04723-025
Page 14
ADV202
A
A
t
DREQ
DACK
HDAT
RD
DREQRTN
t
DACKSU
t
HD
0 1 13 14 15
t
RD
Figure 17. Burst Read Cycle for
RD
DREQ/DACK
RD
LO
HI
DMA Mode for Assigned DMA Channel
t
DREQWAIT
04723-026
( EMOD0/EDMOD1 <14:11> Programmed to a Value of 0000)
t
DREQ
DACK
RDFB
DREQRTN
t
DACKSU
t
HD
t
DREQWAIT
HDAT
0 1 13 14 15
t
RD
Figure 18. Burst Read Cycle, Fly-By DMA Mode
DREQ
Pulse Width Is Programmable)
(
04723-027
Rev. B | Page 14 of 40
Page 15
ADV202

STREAMING MODE (JDATA)—FIFO READ/WRITE

Table 10.
Parameter Description Min Typ Max Unit
JDATATD MCLK to JDATA Valid 1.5 2.5 × JCLK + 7.0 ns JCLK cycles1 VALID
TD
HOLDSU HOLD Setup to Rising MCLK 3 ns HOLDHD HOLD Hold from Rising MCLK 3 ns JDATASU JDATA Setup to Rising MCLK 3 ns JDATAHD JDATA Hold from Rising MCLK 3 ns
1
For a definition of JCLK, see the section. PLL
MCLK to VALID Assert/ Deassert 1.5 2.5 × JCLK + .7.0 ns JCLK cycles
MCLK
JDATA
JDATA
HD
SU
JDATA
VALID
JDATA
VALID
TD
TD
HOLD
HOLD
SU
HOLD
HD
04723-028
Figure 19. Streaming Mode Timing—Encode Mode JDATA Output
MCLK
JDATA
HD
HOLD
HOLD
SU
HD
04723-029
JDATA
VALID
HOLD
JDATA
VALID
SU
TD
Figure 20. Streaming Mode Timing—Decode Mode JDATA Input

VDATA MODE TIMING

Table 11.
Parameter Description Min Typ Max Unit
VDATATD VCLK to VDATA Valid Delay (VDATA Output) 12 ns VDATASU VDATA Setup to Rising VCLK (VDATA Input) 4 ns VDATAHD VDATA Hold from Rising VCLK (VDATA Input) 4 ns HSYNCSU HSYNC Setup to Rising VCLK 3 ns HSYNC
HD
HSYNC
TD
VSYNC
SU
VSYNCHD VSYNC Hold from Rising VCLK 4 ns VSYNCTD VCLK to VSYNC Valid Delay 12 ns FIELD
SU
HSYNC Hold from Rising VCLK 4 ns VCLK to HSYNC Valid Delay 12 ns VSYNC Setup to Rising VCLK 3 ns
FIELD Setup to Rising VCLK 4 ns
Rev. B | Page 15 of 40
Page 16
ADV202
V
)
V
)
V
)
Parameter Description Min Typ Max Unit
FIELDHD FIELD Hold from Rising VCLK 3 ns FIELD
TD
SYNC DELAY Decode Data Sync Delay for HD Input with EAV/SAV Codes 7 VCLK cycles Decode Data Sync Delay for SD Input with EAV/SAV Codes 9 VCLK cycles Decode Data Sync Delay for DUAL_LANE (Extended) Input 7 VCLK cycles
VCLK to FIELD Valid 12
Decode Data Sync Delay for HVF Input (from First Rising VCLK after
10 VCLK cycles
HSYNC Low to First Data Sample)
VCLK
VDATA(IN)
VCLK
DATA(OUT
VCLK
DATA(OUT
VCLK
DATA(OUT
HSYNC
VSYNC
VCLK
VDATA
HD
VDATA
VDATA
TD
VDATA
SU
TD
SYNC DELAY
TD
SYNC DELAY
Cb Y Cr Y
HSYNCHD*
VSYNCHD*
Cr Y Cb Y FF EAV FF SAV Cb Y Cr
ENCODE CCIR-656 LINE
Cr Y Cb Y FF EAV FF SAV Cb Y Cr
DECODE MASTER CCIR-656 LINE
VDATA
CrY Y Cb Y FF EAV FF SAV Cb Y
DECODE SLAVE CCIR-656 LINE
Cb Y Cr Y Cb CbY
DECODE SLAVE HVF MODE
VDATA(IN)
HSYNC
VSYNC
ENCODE HVF MODE *HSYNC AND VSYNC DO NOT HAVE TO BE APPLIED SIMULTANEOUSLY
CrY Y Cb Y Cr Y Cb Y YCrYCb Cb
HSYNC
VSYNC
SU
SU
HSYNC
VSYNC
HD
HD
04723-030
Figure 21. Video Mode Timing
Rev. B | Page 16 of 40
Page 17
ADV202
V

RAW PIXEL MODE TIMING

Table 12.
Parameter Description Min Typ Max Unit
VDATATD VCLK to PIXELDATA Valid Delay (PIXELDATA Output) 12 ns VDATASU PIXELDATA Setup to Rising VCLK (PIXELDATA Input) 4 ns VDATAHD PIXELDATA Hold from Rising VCLK (PIXELDATA Input) 4 ns VRDY
TD
VFRMSU VFRM Setup to Rising VCLK (VFRAME Input) 3 ns VFRMHD VFRM Hold from Rising VCLK (VFRAME Input) 4 ns VFRM
TD
VSTRB
SU
VSTRBHD VSTRB Hold from Rising VCLK 3 ns
VCLK to VRDY Valid Delay 12 ns
VCLK to VFRM Valid Delay (VFRAME Output) 12 ns VSTRB Setup to Rising VCLK 4 ns
VCLK
VDATA
HD
VDATA
PIXEL
DATA(IN)
VFRM(IN)
N–1 N 0 1 2
VFRM
SU
VFRM
HD
SU
VRDY
VSTRB
VCLK
PIXEL
DATA
FRM(OUT)
VRDY
TD
VSTRB
HD
VSTRB
SU
VDATA
TD
NN 0 1 2
VRFM
TD
Figure 22. Raw Pixel Mode Timing
04723-031
Rev. B | Page 17 of 40
Page 18
ADV202

SPI PORT TIMING

Table 13.
Parameter Description Min Typ Max Unit
SCLK
FALL
SCLK
RIS
SCLK_hi SCLK high time 75 ns SCLK_lo SCLK Low Time 75 ns Data_su Data Setup Time 6.5 ns Data_hd Data Hold Time 6.5 ns CSEL_SU Active Setup Time 135 ns CSEL_HD Active Hold Time 155 ns DV_SCLK SCLK to Output Data Valid 2 ns DV_CS
SCLK SCLK Period 150 ns
S_CLK Fall Time 5 ns S_CLK Rise Time 5 ns
CS to Output Data Valid
36 ns
S_CLK
S_MO
S_MI
S_CSEL
SCLK_HI
CSEL
SCLK_LO
MSB LSB DV_SCLK
MSB LSB
SU
DC_CS
SCLK
RISE
SCLK
FALL
DATA
SU
DATA
HD
CSEL
HD
04723-032
Figure 23. SPI Port—Input Timing
Rev. B | Page 18 of 40
Page 19
ADV202

PIN BGA ASSIGNMENTS AND FUNCTION DESCRIPTIONS

PIN BGA ASSIGNMENTS

Table 14. Pin BGA Assignments for 121-Lead Package
Pin No. Pin Location Pin Description
1 A1 DGND 2 A2 HDATA[2] 3 A3 VDD 4 A4 DGND 5 A5 HDATA[0] 6 A6 HDATA[1] 7 A7 VDATA[1] 8 A8 VDD 9 A9 DGND 10 A10 VDATA[0] 11 A11 DGND 12 B1 HDATA[3] 13 B2 HDATA[4] 14 B3 HDATA[5] 15 B4 HDATA[7] 16 B5 HDATA[8] 17 B6 IOVDD 18 B7 VDATA[6] 19 B8 VDATA[5] 20 B9 VDATA[4] 21 B10 VDATA[2] 22 B11 VDATA[3] 23 C1 DGND 24 C2 HDATA[6] 25 C3 HDATA[9] 26 C4 HDATA[10] 27 C5 HDATA[11] 28 C6 IOVDD 29 C7 VDATA[9] 30 C8 IOVDD 31 C9 VDATA[8] 32 C10 VDATA[7] 33 C11 DGND 34 D1 HDATA[12] 35 D2 HDATA[13] 36 D3 HDATA[14] 37 D4 HDATA[15] 38 D5 IOVDD 39 D6 DGND 40 D7 VDD 41 D8 VSYNC 42 D9 HSYNC 43 D10 VDATA[10] 44 D11 VDATA[11] 45 E1 DGND 46 E2 HDATA[18]_VDATA[14] 47 E3 HDATA[17]_VDATA[13] 48 E4 HDATA[16]_VDATA[12] 49 E5 DGND
Pin No. Pin Location Pin Description
50 E6 DGND 51 E7 DGND 52 E8 IOVDD 53 E9 VCLK 54 E10 FIELD 55 E11 DGND 56 F1 DGND 57 F2 HDATA[19]_VDATA[15] 58 F3 HDATA[20]_VDATA[16] 59 F4 HDATA[21]_VDATA[17] 60 F5 DGND 61 F6 DGND 62 F7 DGND 63 F8
64 F9 65 F10 66 F11 DGND 67 G1 DGND 68 G2 HDATA[22]_VDATA[18] 69 G3 HDATA[23]_VDATA[19] 70 G4 HDATA[24]_VDATA[20]_JDATA[0] 71 G5 DGND 72 G6 DGND 73 G7 DGND 74 G8 IOVDD 75 G9 76 G10 77 G11 DGND 78 H1 HDATA[28]_JDATA[4] 79 H2 HDATA[27]_VDATA[23]_JDATA[3] 80 H3 HDATA[26]_VDATA[22]_JDATA[2] 81 H4 HDATA[25]_VDATA[21]_JDATA[1] 82 H5 IOVDD 83 H6 DGND 84 H7 VDD 85 H8 86 H9 87 H10 ADDR[1] 88 H11 ADDR[3] 89 J1 DGND 90 J2 HDATA[31]_JDATA[7] 91 J3 HDATA[30]_JDATA[6] 92 J4 HDATA[29]_JDATA[5] 93 J5 IOVDD 94 J6 TEST1 95 J7 96 J8 97 J9 ADDR[0]
DREQ0 DACK0 DREQ1
DACK1 IRQ
ACK RD
WE CS
Rev. B | Page 19 of 40
Page 20
ADV202
Pin No. Pin Location Pin Description
98 J10 TEST3 99 J11 DGND 100 K1 SCOMM[4] 101 K2 SCOMM[3] 102 103 K4 SCOMM[1] 104 K5 IOVDD 105 K6 IOVDD 106 K7 IOVDD 107 K8 ADDR[2] 108 K9 TEST2 109 K10 TEST5
Table 15. Pin BGA Assignments for 144-Lead Package
Pin No. Pin Location Pin Description
1 A1 DGND 2 A2 HDATA[2] 3 A3 HDATA[1] 4 A4 HDATA[0] 5 A5 DGND 6 A6 DGND 7 A7 DGND 8 A8 DGND 9 A9 VDATA[2] 10 A10 VDATA[1] 11 A11 VDATA[0] 12 A12 DGND 13 B1 HDATA[5] 14 B2 HDATA[4] 15 B3 HDATA[3] 16 B4 IOVDD 17 B5 DGND 18 B6 VDD 19 B7 VDD 20 B8 DGND 21 B9 IOVDD 22 B10 VDATA[5] 23 B11 VDATA[4] 24 B12 VDATA[3] 25 C1 HDATA[8] 26 C2 HDATA[7] 27 C3 HDATA[6] 28 C4 IOVDD 29 C5 DGND 30 C6 VDD 31 C7 VDD 32 C8 DGND 33 C9 IOVDD 34 C10 VDATA[8] 35 C11 VDATA[7] 36 C12 VDATA[6] 37 D1 HDATA[11]
K3 SCOMM[0]
Pin No. Pin Location Pin Description
110 K11 DGND 111 L1 DGND 112 L2 SCOMM[7] 113 L3 SCOMM[6] 114 L4 SCOMM[5] 115 L5 SCOMM[2] 116 L6 TEST4 117 L7 118 L8 DGND 119 L9 MCLK 120 L10 PLLVDD 121 L11 DGND
Pin No. Pin Location Pin Description
38 D2 HDATA[10] 39 D3 HDATA[9] 40 D4 IOVDD 41 D5 DGND 42 D6 VDD 43 D7 VDD 44 D8 DGND 45 D9 IOVDD 46 D10 VDATA[11] 47 D11 VDATA[10] 48 D12 VDATA[9] 49 E1 HDATA[14] 50 E2 HDATA[13] 51 E3 HDATA[12] 52 E4 DGND 53 E5 DGND 54 E6 DGND 55 E7 DGND 56 E8 DGND 57 E9 FIELD 58 E10 VSYNC 59 E11 HSYNC 60 E12 VCLK 61 F1 HDATA[18]_VDATA[14] 62 F2 HDATA[17]_VDATA[13] 63 F3 HDATA[16]_VDATA[12] 64 F4 HDATA[15] 65 F5 DGND 66 F6 DGND 67 F7 DGND 68 F8 DGND 69 F9
70 F10 71 F11 72 F12 73 G1 HDATA[22]_VDATA[18]
RESET
DACK1 DREQ1 DACK0 DREQ0
Rev. B | Page 20 of 40
Page 21
ADV202
Pin No. Pin Location Pin Description
74 G2 HDATA[21]_VDATA[17] 75 G3 HDATA[20]_VDATA[16] 76 G4 HDATA[19]_VDATA[15] 77 G5 DGND 78 G6 DGND 79 G7 DGND 80 G8 DGND 81 G9 DGND 82 G10 83 G11
84 G12 85 H1 HDATA[26]_VDATA[22]_JDATA[2]
86 H2 HDATA[25]_VDATA[21]_JDATA[1] 87 H3 HDATA[24]_VDATA[20]_JDATA[0] 88 H4 HDATA[23]_VDATA[19] 89 H5 DGND 90 H6 DGND 91 H7 DGND 92 H8 DGND 93 H9 DGND 94 H10 95 H11
96 H12 ADDR[0] 97 J1 HDATA[30]_JDATA[6] 98 J2 HDATA[29]_JDATA[5] 99 J3 HDATA[28]_JDATA[4] 100 J4 HDATA[27]_VDATA[23]_JDATA[3] 101 J5 DGND 102 J6 VDD 103 J7 VDD 104 J8 DGND 105 J9 DGND 106 J10 ADDR[1] 107 J11 ADDR[2] 108 J12 ADDR[3] 109 K1 SCOMM[1]
IRQ ACK RD
WR CS
Pin No. Pin Location Pin Description
110 K2 SCOMM[0] 111 K3 HDATA[31]_JDATA[7] 112 K4 IOVDD 113 K5 DGND 114 K6 VDD 115 K7 VDD 116 K8 DGND 117 K9 IOVDD 118 K10 TEST3 119 K11 TEST2 120 K12 TEST1 121 L1 SCOMM[4] 122 L2 SCOMM[3] 123 L3 SCOMM[2] 124 L4 IOVDD 125 L5 DGND 126 L6 VDD 127 L7 VDD 128 L8 DGND 129 L9 IOVDD 130 L10 TEST5 131 L11
132 L12 MCLK 133 M1 DGND 134 M2 SCOMM[7] 135 M3 SCOMM[6] 136 M4 SCOMM[5] 137 M5 DGND 138 M6 DGND 139 M7 DGND 140 M8 DGND 141 M9 TEST4 142 M10 PLLVDD 143 M11 DGND 144 M12 DGND
RESET
Rev. B | Page 21 of 40
Page 22
ADV202

PIN FUNCTION DESCRIPTIONS

Table 16.
Pins
Mnemonic
MCLK 1 L9 L12 I
RESET
HDATA<15:0> 16
ADDR<3:0> 4
CS
WE RDFB
RD WEFB
ACK
IRQ
DREQ0
FSRQ0
VALID
CFG<1> I
DACK0
Used
1 L7 L11 I
1 J8 H11 I
1 J7 H10 I Write Enable Used with the Host Interface. Read Enable when Fly-By DMA Is Enabled.
1 H9 G12 I Read Enable Used with the Host Interface. Write Enable when Fly-By DMA Is Enabled.
1 H8 G11 O
1 G10 G10 O
1 F8 F12 O
O
O
1 F9 F11 I
121-Pin Package
D4–D1, C5– C3, B5, B4, C2, B3–B1, A2, A6–A5
H11, K8, H10, J9
144-Pin Package
F4, E1–E3, D1–D3, C1– C3, B1–B3, A2, A3, A4
J12, J11, J10, H12
I/O Description
System Input Clock. For details, see the PLL section. Maximum input frequency on MCLK is 74.25 MHz.
Reset. Causes the ADV202 to immediately reset. DACK1, DREQ0, and DREQ1 must be held high when a RESET is applied.
I/O
Host Data Bus. With HDATA<23:16>, <27:24>, <31:28>, these pins make up the 32-bit wide host data bus. The async host interface is interfaced together with ADDR<3:0>, Unused HDATA pins should be pulled down via a 10 kΩ resistor.
Address Bus for the Host Interface.
I
Chip Select.This signal is used to qualify addressed read and write access to the ADV202 using the host interface.
Note: Simultaneous assertion of HDATA bus, even if the DMA channels are disabled.
Note: Simultaneous assertion of HDATA bus, even if the DMA channels are disabled.
Acknowledge. Used for direct register accesses. This signal indicates that the last register access was successful.
Note: Due to synchronization issues, control and status register accesses might incur an additional delay, so the host software should wait for acknowledgment from the ADV202.
Accesses to the FIFOs (external DMA modes), on the other hand, are guaranteed to occur immediately, provided that space is available, and should not wait for are observed.
If
ACK is shared with more than one device, ACK should be connected
to a pull-up resistor (10 kΩ) and the PLL_HI register, Bit 4, must be set to 1.
Interrupt. This pin indicates that the ADV202 requires the attention of the host processor. This pin can be programmed to indicate the status of the internal interrupt conditions within the ADV202. The interrupt sources are enabled via bits in register EIRQIE.
Data Request for external DMA Interface. Indicates that the ADV202 is ready to send/receive data to/from the FIFO assigned to DMA Channel 0.
Used in DCS-DMA Mode. Service request from the FIFO assigned to Channel 0 (asynchronous mode).
Valid Indication for JDATA Input/Output Stream. Polarity of this pin is programmable in the EDMOD0 register.
Boot Mode Configuration. This pin is read on reset to determine the boot configuration of the on-board processor. The pin should be tied to IOVDD or DGND through a 10 kΩ resistor.
Data Acknowledge for External DMA Interface. Signal from the host CPU, which indicates that the data transfer request ( acknowledged and data transfer can proceed. This pin must be held high at all times, if the DMA interface is not used, even if the DMA channels are disabled.
CS, RD, WE, DACK0,
CS, WE, RD, and ACK.
WE and DACK low activates the
RD and DACK low activates the
ACK, provided that the timing constraints
VALID is always an output.
DREQ0) has been
Rev. B | Page 22 of 40
Page 23
ADV202
Pins
Mnemonic
HOLD
FCS0
DREQ1
FSRQ1
CFG<2> I
DACK1
FCS1
HDATA<31:28> 4 J2–J4, H1 K3, J1–J3 I/O Host Expansion Bus. JDATA<7:4> I/O JDATA Bus (JDATA Mode). HDATA<27:24> 4 H2–H4, G4 J4, H1–H3 I/O Host Expansion Bus. JDATA<3:0> I/O JDATA Bus (JDATA Mode). VDATA<23:20> I/O Video Data Expansion Bus. HDATA<23:16> 8
VDATA<19:12> I/O
SCOMM<7> 8 L2 M2 I/O When not used, this pin should be tied low. SCOMM<6> L3 M3 I/O When not used, this pin should be tied low. SCOMM<5> L4 M4 I/O
SCOMM<4> K1 L1 O
SCOMM<3> K2 L2 O
SCOMM<2> L5 L3 O
SCOMM<1> K4 K1 I
SCOMM<0> K3 K2 O
VCLK 1 E9 E12 I
VDATA<11:0> 12
Used
I
I
1 F10 F10 O
O
1 G9 F9 I
I
121-Pin Package
G3, G2, F4, F3, F2 E2, E3, E4
D11, D10, C7, C9, C10, B7, B8, B9, B11, B10, A7, A10
144-Pin Package I/O Description
External Hold Indication for JDATA Input/Output Stream. Polarity is programmable in the EDMOD0 register. This pin is always an input.
Used in DCS-DMA Mode. Chip select for the FIFO assigned to Channel 0 (asynchronous mode).
Data Request for External DMA Interface. Indicates that the ADV202 is ready to send/receive data to/from the FIFO assigned to DMA Channel 1.
Used in DCS-DMA Mode. Service request from the FIFO assigned to Channel 1 (asynchronous mode).
Boot Mode Configuration. This pin is read on reset to determine the boot configuration of the on-board processor. The pin should be tied to IOVDD or DGND through a 10 kΩ resistor.
Data Acknowledge for External DMA Interface. Signal from the host CPU, which indicates that the data transfer request ( acknowledged and data transfer can proceed. This pin must be held high at all times unless a DMA or JDATA access is occurring. This pin must be held high at all times, if the DMA interface is not used, even if the DMA channels are disabled.
Used in DCS-DMA Mode. Chip select for the FIFO assigned to Channel 1 (asynchronous mode).
H4, G1–G4, F1–F3
D10–D12, C10–C12, B10–B12, A9–A11
I/O Host Expansion Bus.
Video Data Expansion Bus. Extended pixel interface mode. Used for video formats that use Y and CrCb on separate buses.
This pin must be used in multiple chip mode to align the outputs of two or more ADV202s. For details, see the Applications section and the ADV202 Multichip Application application note. When not used, this pin should be tied low.
LCODE Output in Encode Mode. When LCODE is enabled, the output on this pin indicates on a high transition that the last data-word for a field has been read from the FIFO. For an 8-bit interface, such as JDATA, LCODE is asserted for four consecutive bytes and is enabled by default.
SPI interface: S_CSEL. When not used, this pin should be tied low. Used only with boot mode 6.
SPI interface: S_MO. When not used, this pin should be tied low. Used only with boot mode 6.
SPI interface: S_MI. When not used, this pin should be tied low. Used only with boot mode 6.
SPI interface: S_CLK. When not used, this pin should be tied low. Used only with boot mode 6.
Video Data Clock. Must be supplied, if video data is input/output on the VDATA bus.
I/O Video Data. Unused pins should be pulled down via a 10 kΩ resistor.
DREQ1) has been
Rev. B | Page 23 of 40
Page 24
ADV202
Pins
Mnemonic
VSYNC 1 D8 E10 I/O Vertical Sync for Video Mode. VFRM
HSYNC 1 D9 E11 I/O Horizontal Sync for Video Mode. VRDY O Raw Pixel Mode Ready Signal. FIELD 1 E10 E9 I/O Field Sync for Video Mode. VSTRB I Raw Pixel Mode Transfer Strobe. TEST1 1 J6 K12 I This pin should be connected to ground via a pull-down resistor. TEST2 1 K9 K11 I This pin should be connected to ground via a pull-down resistor. TEST3 1 J10 K10 I This pin should be connected to ground via a pull-down resistor. TEST4 1 L6 M9 I This pin should be connected to ground via a pull-down resistor. TEST5 1 K10 L10 O No connect. VDD A3, A8, D7, H7
DGND
PLLVDD 1 L10 M10 V Positive Supply for PLL. IOVDD
Used
121-Pin Package
A1, A11, A4, A9, C1, C11, D6, E1, E5–E7, E11, F1, F5– F7, F11, G1, G5–G7, G11, H6, J1, J11, K11, L1, L8, L11
B6, C6, C8, D5, E8, G8, H5, J5, K5, K6, K7
144-Pin Package I/O Description
Raw Pixel Mode Framing Signal. Indicates first sample of a tile when asserted high.
B6, B7, C6, C7, D6, D7, J6, J7, K6, K7, L6, L7
A1, A5–A8, A12, B5, B8, C5, C8, D5, D8, E4–E8, F5–F8, G5–G9, H5– H9, J5, J8–J9, K5, K8, L5, L8, M1, M5–M8, M11, M12
B4, B9, C4, C9, D4, D9, K4, K9, L4, L9
V Positive Supply for Core.
GND Ground.
V Positive Supply for I/O.
Rev. B | Page 24 of 40
Page 25
ADV202

THEORY OF OPERATION

The input video or pixel data is passed on to the ADV202’s pixel interface, where samples are de-interleaved and passed on to the wavelet engine, where each tile or frame is decomposed into subbands using the 5/3 or 9/7 filters. The resultant wavelet coefficients are then written to internal memory. The entropy codecs then code the image data so that it conforms to the JPEG2000 standard. An internal DMA provides high bandwidth memory-to-memory transfers, as well as high performance transfers between functional blocks and memory.

WAVELET ENGINE

The ADV202 provides a dedicated wavelet transform processor based on the Analog Devices proven and patented SURF™ technology. This processor can perform up to six wavelet decomposition levels on a tile. In encode mode, the wavelet transform processor takes in uncompressed samples, performs the wavelet transform and quantization, and writes the wavelet coefficients in all frequency subbands to internal memory. Each of these subbands is then further broken down into code blocks. The code-block dimensions can be user-defined, and are used by the wavelet transform processor to organize the wavelet coefficients into code blocks when writing to internal memory. Each completed code block is then entropy coded by one of the entropy codecs.
In decode mode, wavelet coefficients are read from internal memory and recomposed into uncompressed samples.

ENTROPY CODECS

The entropy codec block performs context modeling and arithmetic coding on a code block of the wavelet coefficients. Additionally, this block also performs the distortion metric calculations during compression that are required for optimal rate and distortion performance. Because the entropy coding process is the most computationally intensive operation in the JPEG2000 compression process, three dedicated hardware entropy codecs are provided on the ADV202.

EMBEDDED PROCESSOR SYSTEM

The ADV202 incorporates an embedded 32-bit RISC processor. This processor is used for configuration, control, and manage­ment of the dedicated hardware functions, as well as for parsing and generation of the JPEG2000 code stream. The processor system includes ROM and RAM for both program and data memory, an interrupt controller, standard bus interfaces, and other hardware functions such as timers and counters.

MEMORY SYSTEM

The memory system’s main function is to manage wavelet coefficient data, interim code-block attribute data, and temporary work space for creating, parsing, and storing the JPEG2000 code stream. The memory system can also be used for program and data memory for the embedded processor.

INTERNAL DMA ENGINE

The internal DMA engine provides high bandwidth memory­to-memory transfers, as well as high performance transfers between memory and functional blocks. This function is critical for high speed generation and parsing of the code stream.
Rev. B | Page 25 of 40
Page 26
ADV202

ADV202 INTERFACE

There are several possible modes to interface to the ADV202 using the VDATA bus and the HDATA bus or the HDATA bus alone.

VIDEO INTERFACE (VDATA BUS)

The video interface can be used in applications in which uncompressed pixel data is on a separate bus from compressed data. For example, it is possible to use the VDATA bus to input uncompressed video while using the HDATA bus to output the compressed data. This interface is ideal for applications requiring very high throughput such as live video capture.
Optionally, the ADV202 interlaces ITU.R-BT656 resolution video on the fly prior to wavelet processing, which yields significantly better compression performance for temporally coherent frame-based video sources. Additionally, high definition digital video such as SMPTE274M (1080i) is supported using two or more ADV202 devices.
The video interface can support video data or still image data input/output, 8-, 10-, and 12-bit single or multiplexed components, and dual-lane 8-, 10-, and 12-bit components. The VDATA interface supports digital video in YCbCr format in single input mode or Y and CbCr in dual-lane input mode. YCbCr data must be in 4:2:2 format.
Video data can be input/output in several different modes on the VDATA bus, as described in Table 17. In all these modes, the pixel clock must be input on the VCLK pin.
Table 17. Video Input/Output Modes
Mode Description
EAV/SAV
HVF
Extended
Raw video
HDTV

HOST INTERFACE (HDATA BUS)

The ADV202 can connect directly to a wide variety of host processors and ASICs using an asynchronous SRAM-style interface, DMA accesses, or streaming mode (JDATA) interface. The ADV202 supports 16- and 32-bit buses for control and 8-, 16-, and 32-bit buses for data transfer.
Accepts video with embedded EAV/SAV codes, where the YCbCr data is interleaved onto a single bus.
Accepts video data accompanied with separate H, V, and F signals where YCbCr data is interleaved onto a single bus.
Y and CrCb are on separate buses accompanied by EAV/SAV codes.
Used for still picture data and nonstandard video. VFRM, VSTRB, and VRDY are used to program the dimensions of the image.
For applications in which video data is clocked into the part at higher rates than 27 MHz.
The control and data channel bus widths can be specified independently, which allows the ADV202 to support applications that require control and data buses of different widths.
The host interface is used for configuration, control, and status functions, as well as for transferring compressed data streams. It can be used for uncompressed data transfers in certain modes. The host interface can be shared by as many as four concurrent data streams in addition to control and status communications. The data streams are
Uncompressed tile data (for example, still image data)
Fully encoded JPEG2000 code stream (or unpackaged code
blocks)
Code-block attributes
Ancillary data
The ADV202 uses big endian byte alignment for 16- and 32-bit transfers. All data is left-justified (MSB).

Pixel Input on the Host Interface

Pixel input on the host interface supports 8-, 10-, 12-, 14-, and 16-bit raw pixel data formats. It can be used for pixel (still image) input/output or compressed video output. Because there are no timing codes or sync signals associated with the input data on the host interface, dimension registers and internal counters are used and must be programmed to indicate the start and end of the frame. See the ADV202 in HIPI Mode technical note for details on how to use the ADV202 in this mode.

Host Bus Configuration

For maximum flexibility, the host interface provides several configurations to meet particular system requirements. The default bus mode uses the same pins to transfer control, status, and data to and from the ADV202. In this mode, the ADV202 can support 16- and 32-bit control transfers and 8-, 16-, and 32-bit data transfers. The size of these buses can be selected independently, allowing, for example, a 16-bit microcontroller to configure and control the ADV202 while still providing 32-bit data transfers to an ASIC or external memory system.

DIRECT AND INDIRECT REGISTERS

To minimize pin count and cost, the number of address pins has been limited to four, which yields a total direct address space of 16 locations. These locations are most commonly used by the external controller and are, therefore, accessible directly. All other registers in the ADV202 can be accessed indirectly through the IADDR and IDATA registers.
Rev. B | Page 26 of 40
Page 27
ADV202

CONTROL ACCESS REGISTERS

With the exception of the indirect address and data registers (IADDR and IDATA), all control/status registers in the ADV202 are 16 bits wide and are half-word (16-bit) addressable only. When 32-bit host mode is enabled, the upper 16 bits of the HDATA bus are ignored on writes and return all zeros on reads of 16-bit registers.

PIN CONFIGURATION AND BUS SIZES/MODES

The ADV202 provides a wide variety of control and data configurations, which allows it to be used in many applications with little or no glue logic. The following modes are configured using the BUSMODE register. In the following descriptions, host
CS/RD
refers to normal addressed accesses ( data refers to external DMA accesses (
32-Bit Host/32-Bit Data
In this mode, the HDATA<31:0> pins provide full 32-bit wide data access to PIXEL, CODE, ATTR, and ANCL FIFOs. The expanded video interface (VDATA) is not available in this mode.
16-Bit Host/32-Bit Data
This mode allows a 16-bit host to configure and communicate with the ADV202 while still allowing 32-bit accesses to the PIXEL, CODE, ATTR, and ANCL FIFOs u sing the external DMA capability.
All addressed host accesses are 16 bits and, therefore, use only the HDATA<15:0> pins. The HDATA<31:16> pins provide the additional 16 bits necessary to support the 32-bit external DMA transfers to and from the FIFOs only. The expanded video interface (VDATA) is not available in this mode.
16-Bit Host/16-Bit Data
This mode uses 16-bit transfers, if used for host or external DMA data transfers. This mode allows for the use of the extended pixel interface modes.
16-Bit Host/8-Bit Data (JDATA Bus Mode)
This mode provides separate data input/output and host control interface pins. Host control accesses are 16 bits and use HDATA<15:0>, while the dedicated data bus uses JDATA<7:0>.
/WR/ADDR) and
DREQ/DACK
).
has been provided to allow 16-bit hosts to access these registers and memory locations using the stage register (STAGE). STAGE is accessed as a 16-bit register using HDATA[15:0]. Prior to writing to the desired register, the stage register must be written with the upper (most significant) half-word.
When the host subsequently writes the lower half-word to the desired control register, HDATA is combined with the previously staged value to create the required 32-bit value that is written. When a register is read, the upper (most significant) half-word is returned immediately on HDATA and the lower half-word can be retrieved by reading the stage register on a subsequent access. For details on using the stage register, see the ADV202 User’s Guide.
Note: The stage register does not apply to the four data channels (PIXEL, CODE, ATTR , or ANC L). These channels are always accessed at the specified data width and do not require the use of the stage register.

JDATA MODE

JDATA mode is typically used only when the dedicated video interface (VDATA) is also enabled. This mode allows code stream data (compressed data compliant with JPEG2000) to be input or output on a single dedicated 8-bit bus (JDATA<7:0>). The bus is always an output during compression operations, and is an input during decompression.
A 2-pin handshake is used to transfer data over this synchronous interface. VALID is used to indicate that the ADV202 is ready to provide or accept data and is always an output. HOLD is always an input and is asserted by the host if it cannot accept/provide data. For example, JDATA mode allows real-time applications, in which pixel data is input over the VDATA bus while the compressed data stream is output over the JDATA bus.

EXTERNAL DMA ENGINE

The external DMA interface is provided to enable high bandwidth data I/O between an external DMA controller and the ADV202 data FIFOs. Two independent DMA channels can each be assigned to any one of the four data stream FIFOs (PIXEL, CODE, ATTR , or ANC L).
JDATA uses a valid/hold synchronous transfer protocol. The direction of the JDATA bus is determined by the mode of the ADV202. If the ADV202 is encoding (compression), then JDATA<7:0> is an output. If the ADV202 is decoding (decompression), then JDATA<7:0> is an input. Host control accesses remain asynchronous. See also JDATA section below.

STAGE REGISTER

Because the ADV202 contains both 16-bit and 32-bit registers and its internal memory is mapped as 32-bit data, a mechanism
Rev. B | Page 27 of 40
The controller supports asynchronous DMA using a Data-Request/Data-Acknowledge ( either single or burst access modes. Additional functionality is provided for single address compatibility (fly-by) and dedicated chip select (DCS) modes.
DREQ/DACK
) protocol in

SPI PORT

The SPI port provides serial communication to and from the ADV202. The ADV202 is always the SPI master.
Page 28
ADV202

INTERNAL REGISTERS

This section describes the internal registers of the ADV202.

DIRECT REGISTERS

The ADV202 has 16 direct registers, as listed in Table 18. The direct registers are accessed over the ADDR [3–0], HDATA[31…0],
Table 18. Direct Registers
Address Name Description
0x00 PIXEL Pixel FIFO Access Register 0x01 CODE Compressed Code Stream Access Register 0x02 ATTR Attribute FIFO Access Register 0x03 ANCL Ancillary FIFO Access Register 0x04 CMDSTA Command Stack 0x05 EIRQIE External Interrupt Enabled 0x06 EIRQFLG External Interrupt Flags 0x07 SWFLAG Software Flag Register 0x08 BUSMODE Bus Mode Configuration Register 0x09 MMODE Miscellaneous Mode Register 0x0A STAGE Staging Register 0x0B IADDR Indirect Address Register 0x0C IDATA Indirect Data Register 0x0D BOOT Boot Mode Register 0x0E PLL_HI PLL Control Register—High Byte 0x0F PLL_LO PLL Control Register—Low Byte
CS, RD, WR
, and
ACK
pins.
The host must first initialize the direct registers before any application-specific operation can be implemented.
For additional information on accessing and configuring these registers, see the ADV202 User’s Guide.
Rev. B | Page 28 of 40
Page 29
ADV202

INDIRECT REGISTERS

The indirect registers, listed in Table 19, are accessed by both the host system and the internal 32-bit embedded processor, via the ESF or the firmware.
Both 32-bit and 16-bit hosts can access the indirect registers. 32-bit hosts use the IADDR and IDATA registers, while the 16 bit hosts use IADDR, IDATA, and the stage register.
In certain modes, such as custom-specific input format or HIPI mode, indirect registers must be accessed by the user through the use of the IADDR and IDATA registers. The indirect
For additional information on accessing and configuring these registers, see the ADV202 User’s Guide.
register address space starts at Internal Address 0xFFFF0000.
Table 19. Indirect Registers
Address Name Description
0xFFFF0400 PMODE1 Pixel/Video Format 0xFFFF0404 COMP_CNT_STATUS Horizontal Count 0xFFFF0408 LINE_CNT_STATUS Vertical Count 0xFFFF040C XTOT Total Samples per Line 0xFFFF0410 YTOT Total Lines per Frame 0xFFFF0414 F0_START Start Line of Field 0 [F0] 0xFFFF0418 F1_START Start Line of Field 1 [F1] 0xFFFF041C V0_START Start of Active Video Field 0 [F0] 0xFFFF0420 V1_START Start of Active Video Field 1 [F1] 0xFFFF0424 V0_END End of Active Video Field 0 [F0] 0xFFFF0428 V1_END End of Active Video Field 1 [F1] 0xFFFF042C PIXEL_START Horizontal Start of Active Video 0xFFFF0430 PIXEL_END Horizontal End of Active Video 0xFFFF0440 MS_CNT_DEL Master/Slave Delay 0xFFFF0444 LINE_CNT_INTERRUPT Line Count Interrupt 0xFFFF0448 PMODE2 Pixel Mode 2 0xFFFF044C VMODE Video Mode 0xFFFF1408 EDMOD0 External DMA Mode Register 0 0xFFFF140C EDMOD1 External DMA Mode Register 1 0xFFFF1410 FFTHRP FIFO Threshold for Pixel FIFO 0xFFFF1414 FFCNTP FIFO Full/Empty Count for Pixel FIFO 0xFFFF1418 FFMODE FIFO Mode Register 0xFFFF141C FFTHRC FIFO Threshold for Code FIFO 0xFFFF1420 FFTHRA FIFO Threshold for ATTR FIFO 0xFFFF1424 FFTHRN FIFO Threshold for ANCL FIFO 0xFFFF1428 FFCNTC FIFO Full/ Empty Count for CODE FIFO 0xFFFF142C FFCNTA FIFO Full/Empty Count for ATTR FIFO 0xFFFF1430 FFCNTN FIFO Full/Empty Count for ANCL FIFO 0xFFFF1434 to 0xFFFF14FC Reserved Reserved
Rev. B | Page 29 of 40
Page 30
ADV202
PLL
The ADV202 uses the PLL_HI and PLL_LO direct registers to configure the PLL. Any time the PLL_LO register is modified, the host must wait at least 20 µs before reading or writing any other register. If this delay is not implemented, erratic behavior might result.
The maximum burst frequency for external DMA modes is
≤ 0.36 JCLK.
For MCLK frequencies greater than 50 MHz, the input clock
divider must be enabled, that is, IPD set to 1.
The PLL can be programmed to have any possible final multiplier value as long as
JCLK > 50 MHz and < 150 MHz (144-pin version).
IPD cannot be enabled for MCLK frequencies below 20 MHz.
To achieve the lowest power consumption, an MCLK frequency of 27 MHz is recommended for a standard definition CCIR656 input. The PLL circuit is recommended to have a multiplier of 3.
JCLK > 50 MHz and < 135 MHz (144-pin version).
JCLK > 50 MHz and < 115 MHz (121-pin version).
HCLK < 115 MHz.
This sets JCLK and HCLK to 81 MHz.
MCLK
IPD
÷
2
PHASE
DETECT
BYPASS
LPF
VCO
JCLK
JCLK ≥ 2 × VCLK for single-component input.
HCLK
JCLK ≥ 2 × VCLK for YCrCb [4:2:2] input.
In JDATA mode (JDATA), JCLK must be 4 × MCLK or
higher.
÷
÷
LFB
Figure 24. PLL Architecture and Control Functions
PLLMULT
2
÷2
HCLKD
04723-009
Table 20. Recommended PLL Register Settings
IPD LFB PLLMULT HCLKD HCLK JCLK
0 0 N 0 N × MCLK N × MCLK 0 0 N 1 N × MCLK/2 N × MCLK 0 1 N 0 2 × N × MCLK 2 × N × MCLK 0 1 N 1 N × MCLK 2 × N × MCLK 1 0 N 0 N × MCLK/2 N × MCLK/2 1 0 N 1 N × MCLK/4 N × MCLK/2 1 1 N 0 N × MCLK N × MCLK 1 1 N 1 N × MCLK/2 N × MCLK
Table 21. Recommended Values for PLL_HI and PLL_LO Registers
Video Standard CLKIN Frequency on MCLK PLL_HI PLL_LO
SMPTE125M or ITU-R.BT656 (NTSC or PAL) 27 MHz 0x0008 0x0004 SMPTE293M (525p) 27 MHz 0x0008 0x0004 ITU-R.BT1358 (625p) 27 MHz 0x0008 0x0004 SMPTE274M (1080i) 74.25 MHz 0x0008 0x0084
Rev. B | Page 30 of 40
Page 31
ADV202

HARDWARE BOOT

The boot mode can be configured via hardware using the CFG pins or via software (see the ADV202 User’s Guide). The first boot mode after power-up is set by the CFG pins.
Table 22. Hardware Boot Modes
Boot Mode Settings Description
Hardware Boot
Mode 2
Hardware Boot
Mode 4
Hardware Boot
Mode 6
CFG<1> tied high, CFG<2> tied low
CFG<1> tied low, CFG<2> tied high
CFG<1> and <2>
tied high
No-Boot Host Mode. ADV202 does not boot, but all internal registers and memory are accessible through normal host I/O operations.
For details, see the ADV202 User’s Guide and the Getting Started with the ADV202 application note. SoC boot mode. The embedded software framework (ESF) takes control and establishes
communications with the host. SPI boot mode. Boot firmware over SPI from external flash memory.
Only boot modes 2, 4, and 6, described in Table 22, are available via hardware.
Rev. B | Page 31 of 40
Page 32
ADV202

VIDEO INPUT FORMATS

The ADV202 supports a wide variety of formats for uncompressed video and still image data. The actual interface and bus modes selected for transferring uncompressed data dictates the allowed size of the input data and the number of samples transferred with each access.
The host interface can support 8-, 10-, 12-, 14-, and 16-bit data formats. The video interface can support video data or still image data input/output. Supported formats are 8-, 10-, 12-, or 16-bit single or 2 × 8-bit, 2 × 10-bit, 2 × 12-bit multiplexed
Table 23. Maximum Pixel Data Input Rates
Input Rate Limit
Interface
Compression Mode
Input Format
Active Resolution
1
(MSPS)
144-PIN PACKAGE
HDATA Irreversible 8-bit data 45 [40] 130 200 Irreversible 10-bit data 45 [40] 130 200 Irreversible 12-bit data 45 [40] 130 200 Irreversible 16-bit data 45 [40] 130 200 Reversible 8-bit data 40 [36] 130 200 Reversible 10-bit data 32 [28] 130 200 Reversible 12-bit data 27 [24] 130 200 Reversible 14-bit data 23 [20] 130 200 VDATA Irreversible 8-bit data 65 [55] 130 200 Irreversible 10-bit data 65 [55] 130 200 Irreversible 12-bit data 65 [55] 130 200 Reversible 8-bit data 40 [34] 130 200 Reversible 10-bit data 32 [28] 130 200 Reversible 12-bit data 27 [23] 130 200
121-PIN PACKAGE
HDATA Irreversible 8-bit data 34 98 150 Irreversible 10-bit data 34 98 150 Irreversible 12-bit data 34 98 150 Irreversible 16-bit data 34 98 150 Reversible 8-bit data 30 98 150 Reversible 10-bit data 24 98 150 Reversible 12-bit data 20 98 150 Reversible 14-bit data 17 98 150 VDATA Irreversible 8-bit data 48 98 150 Irreversible 10-bit data 48 98 150 Irreversible 12-bit data 48 98 150 Reversible 8-bit data 30 98 150 Reversible 10-bit data 24 98 150 Reversible 12-bit data 20 98 150
1
Input rate limits for HDATA might be less for certain applications depending on input picture size and content, host interface settings, and DMA transfer settings.
Values in brackets refer to the 135 MHz speed grade version of the ADV202.
2
Minimum peak output rate or guaranteed sustained output rate.
3
Maximum output rate, or output rate above this value is not possible.
formats. See the ADV202 User’s Guide for details. All formats can support less precision than provided by specifying the actual data width/precision in the PMODE register.
The maximum allowable data input rate is limited by using irreversible or reversible compression modes and the data width (or precision) of the input samples. Use Table 23 and Table 24 to determine the maximum data input rate.
Approx Min Peak Output Rate, Compressed Data (Mbps)
Approx Max Output Rate,
2
Compressed Data (Mbps)
3
Rev. B | Page 32 of 40
Page 33
ADV202
Table 24. Maximum Supported Tile Width for Data Input on HDATA and VDATA Buses
Compression Mode Input Format Tile/Precinct Maximum Width
9/7i Single-component 2048 9/7i Two-component 1024 each 9/7i Three-component 1024 (Y) 5/3i Single-component 4096 5/3i Two-component 2048 (each) 5/3i Three-component 2048 (Y) 5/3r Single-component 4096 5/3r Two-component 2048 5/3r Three-component 1024
Rev. B | Page 33 of 40
Page 34
ADV202

APPLICATIONS

This section describes typical video applications for the ADV202 JPEG2000 video processor.

ENCODE—MULTICHIP MODE

Due to the data input rate limitation (see Table 23), an 1080i application requires at least two ADV202s to encode or decode full-resolution 1080i video. In encode mode, the ADV202 accepts Y and CbCr data on separate buses. The input data must be in EAV/SAV format. An encode example is shown in Figure 25.
In decode mode, a master/slave configuration (as shown in Figure 26) or a slave/slave configuration can be used to synchronize the outputs of the two ADV202s. See the ADV202 Multichip Application application note for details on how to configure the ADV202s in a multichip application.
Applications that have two separate VDATA outputs sent to an FPGA or buffer before they are sent to an encoder do not require synchronization at the ADV202 outputs.
32-BIT HOST CPU
DATA[31:0] HDATA[31:0]
ADDR[3:0] ADDR[3:0]
CS CS
RD RD
WR WE
ACK ACK
IRQ
DREQ DREQ DACK DACK
G I/O SCOMM[5]
CS
RD
WR
ACK
IRQ
DREQ DACK
ADV202
_1_SLAVE
VCLK
IRQ
ADV202
_2_SLAVE
HDATA[31:0] ADDR[3:0]
CS RD WE ACK IRQ
DREQ DACK SCOMM[5]
MCLK
VDATA[11:2]
FIELD VSYNC HSYNC
MCLK
HSYNC VSYNC
FIELD
VDATA[11:2]
Y
CbCr
VCLK
CbCr
Figure 25. Encode—Multichip Application
ADV7402
10-BIT SD/HD
VIDEO
DECODER
LLC
Y[9:0]
C[9:0]
1080i VIDEO OUT
04723-002
Rev. B | Page 34 of 40
Page 35
ADV202

DECODE—MULTICHIP MASTER/SLAVE

In a master/slave configuration, it is expected that the master HVF outputs are connected to the slave HVF inputs and that each SCOMM[5] pin is connected to the same GPIO on the host.
In a slave/slave configuration, the common HVF for both ADV202s is generated by an external house sync and each SCOMM[5] is connected to the same GPIO output on the host.
SWIRQ1, Software Interrupt 1 in the EIRQIE register, must be unmasked on both devices to enable multichip mode.
32-BIT HOST CPU
DATA[31:0] HDATA[31:0]
ADDR[3:0] ADDR[3:0]
CS CS
RD RD
WR WE
ACK ACK
IRQ
DREQ DREQ DACK DACK
G I/O SCOMM[5]
CS
RD
WR
ACK
IRQ
DREQ DACK
ADV202
_1_MASTER
IRQ
ADV202
_2_SLAVE
HDATA[31:0] ADDR[3:0]
CS RD WE ACK IRQ
DREQ DACK SCOMM[5]
VCLK
MCLK
VDATA[11:2]
FIELD VSYNC HSYNC
VCLK
MCLK
HSYNC VSYNC
FIELD
VDATA[11:2]
74.25MHz OSC
YY
CbCr
CbCr
ADV730xA
10-BIT SD/HD
VIDEO
DECODER
CLKIN
Y[9:0]
C[9:0]
1080i VIDEO OUT
04723-003
Figure 26. Decode —Multichip Master/Slave Application

DIGITAL STILL CAMERA/CAMCORDER

Figure 27 is a typical configuration for a digital camera or camcorder.
AD9843A FPGA
10
D[9:0]
SDATA SERIAL DATA
SCK SERIAL CLK
SL SERIAL EN
DATA INPUTS[9:0]
Figure 27. Digital Still Camera/Camcorder Application
Rev. B | Page 35 of 40
ADV202
MCLK VCLK
VFRM VRDY VSTRB VDATA[11:2]
DATA[15:0]HDATA[15:0] ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK IRQIRQ
16-BIT
HOST CPU
04723-004
Page 36
ADV202

ENCODE/DECODE SDTV VIDEO APPLICATION

Figure 28 shows two ADV202 chips using 10-bit CCIR656 in normal host mode.
ENCODE MODE
32-BIT
HOST CPU
DECODE MODE
32-BIT
HOST CPU
HDATA[31:0]DATA[31:0] IRQINTR ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
HDATA[31:0]DATA[31:0] IRQINTR ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
ADV202
ADV202
VCLK
MCLK
MCLK
27MHz
OSC
P[19:10]VDATA[11:2]
LLC1
ADV7301A
P[9:0]VDATA[11:2] CLKINVCLK
ADV7189
10-BIT VIDEO
DECODER
10-BIT VIDEO
ENCODER
Figure 28. Encode/Decode—SDTV Video Application
VIDEO IN
VIDEO OUT
04723-005
Rev. B | Page 36 of 40
Page 37
ADV202

ASIC APPLICATION (32-BIT HOST/32-BIT ASIC)

Figure 29 shows two ADV202 chips using 10-bit CCIR656 in normal host mode.
ASIC
32-BIT
HOST CPU
DATA[31:0]
ASIC
31 -BIT
HOST CPU
DATA[31:0]
ADV7189
DECODER
P[19:10]
LLC1
ADV730xA
ENCODER
P[9:0]VDATA[11:2] CLKINVCLK
DREQ0DREQ0 DACK0DACK0
HDATA[31:0]DATA[31:0]
IRQIRQ ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
DREQ0DREQ0 DACK0DACK0
HDATA[31:0]DATA[31:0]
IRQIRQ ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
ADV202
VDATA[11:2]
ADV202
VCLK
MCLK
MCLK
27MHz
OSC
Figure 29. Encode/Decode ASIC Application
10-BIT VIDEO
ENCODE MODE
10-BIT VIDEO
DECODE MODE
VIDEO IN
VIDEO OUT
04723-006
Rev. B | Page 37 of 40
Page 38
ADV202

HIPI (HOST INTERFACE—PIXEL INTERFACE)

Figure 30 is a typical configuration using HIPI mode.
32-BIT HOST
DATA<31:0>
CS
RD RD
WR WE
ACK ACK
IRQ IRQ
DREQ DREQ0 DACK DACK0
DREQ DREQ1 DACK DACK1
Figure 30. Host Interface—Pixel Interface mode
74.25MHz
HDATA<31>Y0/G0<MSB> HDATA<30>Y0/G0<6> HDATA<29>Y0/G0<5> HDATA<28>Y0/G0<4> HDATA<27>Y0/G0<3> HDATA<26>Y0/G0<2> HDATA<25>Y0/G0<1> HDATA<24>Y0/G0<0> HDATA<23>Cb0/G1<MSB> HDATA<22>Cb0/G1<6> HDATA<21>Cb0/G1<5> HDATA<20>Cb0/G1<4> HDATA<19>Cb0/G1<3> HDATA<18>Cb0/G1<2> HDATA<17>Cb0/G1<1> HDATA<16>Cb0/G1<0> HDATA<15>Y1/G2<MSB> HDATA<14>Y1/G2<6> HDATA<13>Y1/G2<5> HDATA<12>Y1/G2<4> HDATA<11>Y1/G2<3> HDATA<10>Y1/G2<2> HDATA<9>Y1/G2<1> HDATA<8>Y1/G2<0> HDATA<7>Cr0/G3<MSB> HDATA<6>Cr0/G3<6> HDATA<5>Cr0/G3<5> HDATA<4>Cr0/G3<4> HDATA<3>Cr0/G3<3> HDATA<2>Cr0/G3<2> HDATA<1>Cr0/G3<1> HDATA<0>Cr0/G3<0>
CS
MCLK
ADV202
RAW PIXEL DATAPATH
COMPRESSED DATAPATH
04723-007

JDATA INTERFACE

Figure 31 shows a typical configuration using JDATA with a dedicated JDATA output, 16-bit host, and 10-bit CCIR656.
ASIC
16-BIT
HOST CPU
ADV202
JDATA[7:0] HOLD VALID
HSYNC
VCLK
HDATA[15:0]DATA[15:0] IRQIRQ ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
MCLK
Figure 31. JDATA Application
Rev. B | Page 38 of 40
YCrCb
P[19:10]VDATA[11:2] FIELDFIELD
VSVSYNC HS
LLC1
ADV7189
VIDEO IN
04723-008
Page 39
ADV202
A
R
*

OUTLINE DIMENSIONS

1 CORNE
INDEX AREA
6
5
4
DETAILA
SEATING PLANE
A1 CORNER
INDEX AREA
9
5
BOTTOM VIEW
SEATING PLANE
3
4
1
2
321
A B C
D
E
F
G H J
K
L
*
1.31
1.21
1.11
0.20 NOM COPLANARITY
A B C
D
E F G
H J K
L
M
*
1.32
1.21
1.11
COPLANARITY
0.20 MAX
*
1.85
1.71
1.40
MAX
1.85
12.20
12.00 SQ
11.80
BALL A1 INDICATOR
TOP VIEW
DETAIL A
*
COMPLIANT WITH JEDEC STANDARDS MO-192-ABD-1 WITH EXCEPTION TO PACKAGE HEIGHT AND PACKAGE THICHNESS.
10.00
BSC SQ
0.50 NOM
0.30 MIN
9
1087
11
1.00 BSC BOTTOM VIEW
0.70
0.60
0.50
BALL DIAMETER
Figure 32. 121-Lead Chip Scale Package Ball Grid Array [CSPBGA]
(BC-121)
Dimensions shown in millimeters
13 .00
BSC SQ
BALL A1 INDICATOR
TOP VIEW
DETAIL A
BCS SQ
1.00 BSC
121110 876
11.00
DETAILA
0.53
0.43
0.70
0.60
0.50
BALL DIAMETER
*
COMPLIANT WITH JEDEC STANDARDS MO-192-AAD-1
WITH EXCEPTION TO PACKAGE HEIGHT AND PACKAGE THICHNESS.
Figure 33. 144-Lead Chip Scale Package Ball Grid Array [CSPBGA]
(BC-144-3)
Dimensions shown in millimeters
Rev. B | Page 39 of 40
Page 40
ADV202

ORDERING GUIDE

Temperature
Model
Range
ADV202BBC-115 –40°C to +85°C 115 MHz 1.5 V internal, 2.5 V or 3.3 V I/O 121-Lead CSPBGA BC-121 ADV202BBCZ-1151–40°C to +85°C 115 MHz 1.5 V internal, 2.5 V or 3.3 V I/O 121-Lead CSPBGA BC-121 ADV202BBC-135 –40°C to +85°C 135 MHz 1.5 V internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202BBCZ-1351 –40°C to +85°C 135 MHz 1.5 V internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202BBC-150 –40°C to +85°C 150 MHz 1.5 V internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202BBCZ-1501 –40°C to +85°C 150 MHz 1.5 V internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202-HD-EB High Definition Evaluation Board ADV202-SD-EB
1
Z = Pb-free part.
Speed Grade Operating Voltage Package Description
Standard Definition Evaluation
Board
Package Option
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
D04723–0–1/05(B)
Rev. B | Page 40 of 40
Loading...