Datasheet ADuM1100 Datasheet (Analog Devices)

Page 1
a
iCoupler® Digital Isolator
ADuM1100
FEATURES High Data Rate: DC to 100 Mbps (NRZ) Compatible with 3.3 V and 5.0 V Operation/
Level Translation 125C Max Operating Temperature Low Power Operation
5 V Operation
1.0 mA Max @ 1 Mbps
4.5 mA Max @ 25 Mbps
16.8 mA Max @ 100 Mbps
3.3 V Operation
0.4 mA Max @ 1 Mbps
3.5 mA Max @ 25 Mbps
7.1 mA Max @ 50 Mbps 8-Lead SOIC Package (lead-free version available) High Common-Mode Transient Immunity: >25 kV/␮s Safety and Regulatory Information
UL Recognized
2500 V rms for 1 Minute per UL 1577 CSA Component Acceptance Notice No. 5A VDE Certificate of Conformity
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003–01
DIN EN 60950 (VDE 0805): 2001–12; EN 60950: 2000
= 560 V
V
IORM
PEAK
APPLICATIONS Digital Fieldbus Isolation Opto-Isolator Replacement Computer-Peripheral Interface Microprocessor System Interface General Instrumentation and Data Acquisition

Applications

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADuM1100 is a digital isolator based on Analog Devices’ iCoupler technology. Combining high speed CMOS and mono­lithic air core transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as optocoupler devices.
Configured as a pin compatible replacement for existing high speed optocouplers, the ADuM1100 supports data rates as high as 25 Mbps and 100 Mbps.
The ADuM1100 operates with either voltage supply ranging from
3.0 V to 5.5 V, boasts a propagation delay of <18 ns and edge asymmetry of <2 ns, and is compatible with temperatures up to 125°C. It operates at very low power, less than 0.9 mA of quiescent current (sum of both sides), and a dynamic current of less than 160 µA per Mbps of data rate. Unlike other optocoupler alter­natives, the ADuM1100 provides dc correctness with a patented refresh feature that continuously updates the output signal.
The ADuM1100 is offered in three grades. The ADuM1100AR and ADuM1100BR can operate up to a maximum temperature of 105°C and support data rates up to 25 Mbps and 100 Mbps, respectively. The ADuM1100UR can operate up to a maximum temperature of 125°C and supports data rates up to 100 Mbps.
V
DD1
(DATA IN)
V
DD1
GND
V
I
1
FOR PRINCIPLES OF OPERATION, SEE METHOD OF OPERATION, DC CORRECTNESS, AND MAGNETIC FIELD IMMUNITY SECTION.
UPDATE
E N C O D E
ADuM1100
REV. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
V
D E C O D E
WATCHDOG
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.
DD2
GND
2
V
O
(DATA OUT)
GND
2
Page 2
ADuM1100–SPECIFICATIONS
(4.5 V ≤ V
1

ELECTRICAL SPECIFICATIONS, 5 V OPERATION

range, unless otherwise noted. All typical specifications are at TA = 25C, V
specifications apply over the entire recommended operation
= V
DD2
= 5 V.)
DD1
Parameter Symbol Min Typ Max Unit Test Conditions
DC SPECIFICATIONS
Input Supply Current I Output Supply Current I Input Supply Current (25 Mbps) I
(See TPC 1)
Output Supply Current
2
(25 Mbps) I
DD1(Q)
DD2(Q)
DD1(25)
DD2(25)
0.3 0.8 mA VI = 0 V or V
0.01 0.06 mA VI = 0 V or V
2.2 3.5 mA 12.5 MHz Logic Signal Frequency
0.5 1.0 mA 12.5 MHz Logic Signal Frequency
(See TPC 2)
Input Supply Current (100 Mbps) I
(See TPC 1) ADuM1100BR/ADuM1100UR Only
Output Supply Current
2
(100 Mbps) I
DD1(100)
DD2(100)
9.0 14 mA 50 MHz Logic Signal Frequency,
2.0 2.8 mA 50 MHz Logic Signal Frequency,
(See TPC 2) ADuM1100BR/ADuM1100UR Only Input Current I Logic High Output Voltage V
Logic Low Output Voltage V
I
OH
OL
–10 +0.01 +10 µA0 V
– 0.1 5.0 V IO = –20 µA, VI = V
DD2
V
– 0.8 4.6 V IO = –4 mA, VI = V
DD2
0.0 0.1 V IO = 20 µA, VI = V
0.03 0.1 V IO = 400 µA, VI = V
0.3 0.8 V IO = 4 mA, VI = V
SWITCHING SPECIFICATIONS
For ADuM1100AR
Minimum Pulse Width
Maximum Data Rate For ADuM1100BR/ADuM1100UR
Minimum Pulse Width
Maximum Data Rate
3
4
3
4
PW 40 ns CL = 15 pF, CMOS Signal Levels
25 Mbps CL = 15 pF, CMOS Signal Levels
PW 6.7 10 ns CL = 15 pF, CMOS Signal Levels
100 150 Mbps CL = 15 pF, CMOS Signal Levels
For All Grades
Propagation Delay Time t
to Logic Low Output
5, 6
PHL
10.5 18 ns CL = 15 pF, CMOS Signal Levels
(See TPC 3)
Propagation Delay Time t
to Logic High Output
5, 6
PLH
10.5 18 ns CL = 15 pF, CMOS Signal Levels
(See TPC 3)
Pulse Width Distortion |t
Change versus Temperature
Propagation Delay Skew t
(Equal Temperature)
Propagation Delay Skew t
(Equal Temperature, Supplies) Output Rise/Fall Time tR, t Common-Mode Transient Immunity |CM
at Logic Low/High Output Input Dynamic Power C
Dissipation Capacitance Output Dynamic Power C
Dissipation Capacitance
See Notes on page 5. Specifications subject to change without notice.
6, 8
PLH
10
10
– t
|6PWD 0.5 2 ns CL = 15 pF, CMOS Signal Levels
PHL
7
PSK1
PSK2
6, 8
F
|, 25 35 kV/µsV
9
L
|CMH|Transient Magnitude = 800 V
PD1
PD2
3 ps/°CC
8nsC
6nsC
3nsC
35 pF
8pF
5.5 V, 4.5 V V
DD1
5.5 V. All min/max
DD2
DD1
DD1
VIN V
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
= 0 or V
I
DD1
IH
IH
IL
IL
IL
, VCM = 1000 V,
DD1
–2–
REV. E
Page 3
ADuM1100

ELECTRICAL SPECIFICATIONS, 3.3 V OPERATION

range, unless otherwise noted. All typical specifications are at TA = 25C, V
DD1
(3.0 V V
1
specifications apply over the entire recommended operation
= V
= 3.3 V.)
DD2
3.6 V, 3.0 V V
DD1
3.6 V. All min/max
DD2
Parameter Symbol Min Typ Max Unit Test Conditions
DC SPECIFICATIONS
Input Supply Current I
Output Supply Current I
Input Supply Current (25 Mbps) I
(See TPC 1)
Output Supply Current
2
(25 Mbps) I
DD1(Q)
DD2(Q)
DD1(25)
DD2(25)
0.1 0.3 mA VI = 0 V or V
0.005 0.04 mA VI = 0 V or V
DD1
DD1
2.0 2.8 mA 12.5 MHz Logic Signal Frequency
0.3 0.7 mA 12.5 MHz Logic Signal Frequency
(See TPC 2)
Input Supply Current (50 Mbps) I
(See TPC 1) ADuM1100BR/ADuM1100UR Only
Output Supply Current
2
(50 Mbps) I
DD1(50)
DD2(50)
4.0 6.0 mA 25 MHz Logic Signal Frequency,
1.2 1.6 mA 25 MHz Logic Signal Frequency,
(See TPC 2) ADuM1100BR/ADuM1100UR Only Input Current I Logic High Output Voltage V
Logic Low Output Voltage V
I
OH
OL
–10 +0.01 +10 µA0 V
– 0.1 3.3 V IO = –20 µA, VI = V
DD2
V
– 0.5 3.0 V IO = –2.5 mA, VI = V
DD2
0.0 0.1 V IO = 20 µA, VI = V
0.04 0.1 V IO = 400 µA, VI = V
0.3 0.4 V IO = 2.5 mA, VI = V
VIN V
DD1
IH
IH
IL
IL
IL
SWITCHING SPECIFICATIONS
For ADuM1100AR
Minimum Pulse Width
Maximum Data Rate For ADuM1100BR/ADuM1100UR
Minimum Pulse Width
Maximum Data Rate
3
4
3
4
PW 40 ns CL= 15 pF, CMOS Signal Levels
25 Mbps CL= 15 pF, CMOS Signal Levels
PW 10 20 ns CL= 15 pF, CMOS Signal Levels
50 100 Mbps CL= 15 pF, CMOS Signal Levels
For All Grades
Propagation Delay Time to t
Logic Low Output
5, 6
PHL
14.5 28 ns CL= 15 pF, CMOS Signal Levels
(See TPC 4)
Propagation Delay Time to t
Logic High Output
5, 6
PLH
15.0 28 ns CL= 15 pF, CMOS Signal Levels
(See TPC 4)
– t
Pulse Width Distortion |t
PLH
Change versus Temperature
Propagation Delay Skew t
(Equal Temperature)
6, 8
Propagation Delay Skew t
(Equal Temperature, Supplies) Output Rise/Fall Time tR, t Common-Mode Transient Immunity |CM
at Logic Low/High Output Input Dynamic Power Dissipation C
Capacitance Output Dynamic Power Dissipation C
Capacitance
See Notes on page 5. Specifications subject to change without notice.
10
10
|6PWD 0.5 3 ns CL= 15 pF, CMOS Signal Levels
PHL
7
PSK1
6, 8
9
PSK2
F
|, 25 35 kV/µsVI=0 or V
L
|CMH|Transient Magnitude = 800 V
PD1
PD2
10 ps/°CCL= 15 pF, CMOS Signal Levels
15 ns CL= 15 pF, CMOS Signal Levels
12 ns CL= 15 pF, CMOS Signal Levels
3nsC
= 15 pF, CMOS Signal Levels
L
, VCM= 1000 V,
DD1
47 pF
14 pF
REV. E
–3–
Page 4
ADuM1100
(5 V/3 V operation: 4.5 V V
= 5 V, V
1
5.5 V, 3.0 V V
= 3.3 V.)
DD2
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
= 15 pF, CMOS Signal Levels
L
DD2
ID
IL
IH
IL
IL
3.6 V.
V
IH
IH
IL
IL
IH
IL
DD1

ELECTRICAL SPECIFICATIONS, MIXED 5 V/3 V or 3 V/5 V OPERATION

3 V/5 V operation: 3.0 V ≤ V unless otherwise noted. All typical specifications are at TA = 25C, V
Parameter Symbol Min Typ Max Unit Test Conditions
DC SPECIFICATIONS
Input Supply Current, Quiescent I
5 V/3 V Operation 0.3 0.8 mA 3 V/5 V Operation 0.1 0.3 mA
Output Supply Current, Quiescent I
5 V/3 V Operation 0.005 0.04 mA 3 V/5 V Operation 0.01 0.06 mA
Input Supply Current, 25 Mbps I
5 V/3 V Operation 2.2 3.5 mA 12.5 MHz Logic Signal Frequency 3 V/5 V Operation 2.0 2.8 mA 12.5 MHz Logic Signal Frequency
Output Supply Current, 25 Mbps I
5 V/3 V Operation 0.3 0.7 mA 12.5 MHz Logic Signal Frequency 3 V/5 V Operation 0.5 1.0 mA 12.5 MHz Logic Signal Frequency
Input Supply Current, 50 Mbps I
5 V/3 V Operation 4.5 7.0 mA 25 MHz Logic Signal Frequency 3 V/5 V Operation 4.0 6.0 mA 25 MHz Logic Signal Frequency
Output Supply Current, 50 Mbps I
5 V/3 V Operation 1.2 1.6 mA 25 MHz Logic Signal Frequency
3 V/5 V Operation 1.0 1.5 mA 25 MHz Logic Signal Frequency Input Currents I Logic High Output Voltage, V
5 V/3 V Operation V Logic Low Output Voltage, V
5 V/3 V Operation 0.04 0.1 V IO = 400 µA, VI = V
Logic High Output Voltage, V
3 V/5 V Operation V Logic Low Output Voltage, V
3 V/5 V Operation 0.03 0.1 V IO = 400 µA, VI = V
SWITCHING SPECIFICATIONS
For ADuM1100AR
Minimum Pulse Width
Maximum Data Rate For ADuM1100BR/ADuM1100UR
Minimum Pulse Width
Maximum Data Rate For All Grades
Propagation Delay Time to Logic t
Low/High Output
5 V/3 V Operation (See TPC 5) 13 21 ns CL = 15 pF, CMOS Signal Levels 3 V/5 V Operation (See TPC 6) 16 26 ns C
Pulse Width Distortion, |t
5 V/3 V Operation 0.5 2 ns C 3 V/5 V Operation 0.5 3 ns C Change versus Temperature
5 V/3 V Operation 3 ps/ºC C 3 V/5 V Operation 10 ps/ºC C
Propagation Delay Skew t
(Equal Temperature)
5 V/3 V Operation 12 ns CL = 15 pF, CMOS Signal Levels 3 V/5 V Operation 15 ns CL = 15 pF, CMOS Signal Levels
3.6 V, 4.5 V V
DD1
3
4
3
4
5, 6
PLH
6, 8
– t
PHL
5.5 V. All min/max specifications apply over the entire recommended operation range,
DD2
DDI(Q)
DDO(Q)
DDI(25)
DDO(25)
DDI(50)
DDO(50)
IA
OH
OL
= 3.3 V, V
DD1
–10 +0.01 +10 µA0≤ VIA, VIB, VIC, V V
– 0.1 3.3 V IO = –20 µA, VI = V
DD2
– 0.5 3.0 V IO = –2.5 mA, VI = V
DD2
= 5 V or V
DD2
DD1
0.0 0.1 V IO = 20 µA, VI = V
0.3 0.4 V IO = 2.5 mA, VI = V
V
OH
OL
– 0.1 5.0 V IO = –20 µA, VI = V
DD2
– 0.8 4.6 V IO = –4 mA, VI = V
DD2
0.0 0.1 V IO = 20 µA, VI = V
0.3 0.8 V IO = 4 mA, VI = V
PW 40 ns CL = 15 pF, CMOS Signal Levels
25 Mbps CL = 15 pF, CMOS Signal Levels
PW 20 ns CL = 15 pF, CMOS Signal Levels
50 Mbps CL = 15 pF, CMOS Signal Levels
PHL, tPLH
6
|
PWD
PSK1
DD1
or V
DD2
–4–
REV. E
Page 5
ADuM1100
Parameter Symbol Min Typ Max Unit Test Conditions
SWITCHING SPECIFICATIONS (continued)
Propagation Delay Skew t
(Equal Temperature, Supplies)
6, 8
5 V/3 V Operation 9 ns CL = 15 pF, CMOS Signal Levels
3 V/5 V Operation 12 ns C Output Rise/Fall Time (10% to 90%) t Common-Mode Transient Immunity at
Logic Low/High Output
8
Input Dynamic Power Dissipation Capacitance10C
5 V/3 V Operation 35 pF
3 V/5 V Operation 47 pF
Output Dynamic Power Dissipation Capacitance
5 V/3 V Operation 8 pF
3 V/5 V Operation 14 pF
NOTES
1
All voltages are relative to their respective ground.
2
Output supply current values are with no output load present. The supply current drawn at a given signal frequency when an output load is present is given by
I
= I
+ V
DD2(L)
3
The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
4
The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
5
t the rising edge of the VI signal to the 50% level of the rising edge of the VO signal.
6
Since the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width distortion
DD2
is measured from the 50% level of the falling edge of the VI signal to the 50% level of the falling edge of the VO signal. t
PHL
× f × CL, where I
DD2
may be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figures 3 to 7 for information on the impact of given input rise/fall times on these parameters.
7
Pulse width distortion change versus temperature is the absolute value of the change in pulse width distortion for a 1°C change in operating temperature.
8
t
is the magnitude of the worst-case difference in t
PSK1
the recommended operating conditions. t temperature, supply voltages, and output load within the recommended operating conditions.
9
CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 V rate that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range over which the common-mode is slewed.
10
The dynamic power dissipation capacitance is given by
C
= (I
PDi
The supply current consumptions at a given frequency and output load are calculated as
I
= C
DD1
DDi(100)
× V
PD1
– I
DD1
DDi(Q)
× f + I
)/(V
× f), where i = 1 or 2 and f is the input signal frequency.
DDi
DD1(Q)
Specifications subject to change without notice.
is the unloaded output supply current, f is the input signal frequency, and CL is the output load capacitance.
DD2
and/or t
PHL
is the magnitude of the worst-case difference in t
PSK2
; I
= (C
DD2(L)
+ CL) × V
PD2
DD2
PSK2
= 15 pF, CMOS Signal Levels
, t
R
f
3nsC
|CML|, 25 35 kV/µsVI = 0 or V
|Transient Magnitude = 800 V
|CM
H
PD1
10
C
PD2
that will be measured between units at the same operating temperature and output load within
× f + I
PLH
, where CL is the output load capacitance.
DD2(Q)
PHL
and/or t
that will be measured between units at the same operating
PLH
. CML is the maximum common-mode voltage slew
DD2
L
= 15 pF, CMOS Signal Levels
L
, VCM = 1000 V,
DD1
is measured from the 50% level of
PLH

PACKAGE CHARACTERISTICS

Parameter Symbol Min Typ Max Unit Test Conditions
Resistance (Input-Output) Capacitance (Input-Output) Input Capacitance
2
1
1
Input IC Junction-to-Case θ
R
I–O
C
I–O
C
I
JCI
12
10
1pFf = 1 MHz
4.0 pF 46 °C/W Thermocouple Located at Center
Thermal Resistance Underside of Package
Output IC Junction-to-Case θ
JCO
41 °C/W
Thermal Resistance
Package Power Dissipation P
NOTES
1
Device considered a 2-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
2
Input capacitance is measured at Pin 2 (VI).
REV. E
PD
–5–
240 mW
Page 6
ADuM1100

REGULATORY INFORMATION

The ADuM1100 has been approved by the following organizations:
UL CSA VDE
Recognized under 1577 Approved under CSA Component Certified according to Component Recognition Program1Acceptance Notice No. 5A, C22.2 No. 1-98, DIN EN 60747-5-2 (VDE 0884 Part 2): 2003–1
C22.2 No. 14-95, and C22.2 No. 950-95 DIN EN 60950 (VDE 0805): 2001–12; EN60950: 2000
File E214100 File 205078 File 2471900-4880-0002
NOTES
1
In accordance with UL 1577, each ADuM1100 is proof tested by applying an insulation test voltage 3000 V rms for 1 second (leakage detection current limit, I
2
In accordance with DIN EN 60747-5-2, each ADuM1100 is proof tested by applying an insulation test voltage 1050 V limit 5 pC). A “*” mark branded on the component designates DIN EN 60747-5-2 approval.
for 1 second (partial discharge detection
PEAK

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Parameter Symbol Value Unit Conditions
Minimum External Air Gap (Clearance) L(I01) 4.90 min mm Measured from input terminals to output terminals,
shortest distance through air
Minimum External Tracking (Creepage) L(I02) 4.01 min mm Measured from input terminals to output terminals,
shortest distance path along body Minimum Internal Gap (Internal Clearance) 0.016 min mm Insulation distance through insulation Tracking Resistance (Comparative Tracking Index) CTI >175 V DIN IEC 112/VDE 0303 Part 1 Isolation Group IIIa Material Group (DIN VDE 0110, 1/89, Table 1)
5 µA).
I–O
2

DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS

Description Symbol Characteristic Unit
I
nstallation Classification per DIN VDE 0110
For Rated Mains Voltage 150 V rms I to IV For Rated Mains Voltage 300 V rms I to III For Rated Mains Voltage 400 V rms I to II
Climatic Classification
ADuM1100AR and ADuM1100BR 40/105/21
ADuM1100UR 40/125/21 Pollution Degree (DIN VDE 0110, Table I) 2 Maximum Working Insulation Voltage V
IORM
560 V
PEAK
Input-to-Output Test Voltage, Method b1
V
× 1.875 = VPR, 100% Production Test, tM = 1 sec, Partial Discharge < 5 pC V
IORM
Input-to-Output Test Voltage, Method a V
PR
PR
1050 V 672 V
PEAK
PEAK
After Environmental Tests Subgroup 1
V
× 1.6 = VPR, tM = 10 sec, Partial Discharge < 5 pC V
IORM
PR
896 V
PEAK
After Input and/or Output Safety Test Subgroup 2/3
× 1.2 = VPR, tM = 10 sec, Partial Discharge < 5 pC V
V
IORM
Highest Allowable Overvoltage (Transient Overvoltage, t
INI
= 60 sec) V
PR
TR
672 V 4000 V
PEAK
PEAK
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure,
See Thermal Derating Curve, Figure 1
Case Temperature T
Input Current I
Output Current I
S
S, INPUT
S, OUTPUT
Insulation Resistance at TS, VIO = 500 V Rs >10
This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. The * marking on the package denotes DIN EN 60747-5-2 approval for 560 V
working voltage.
PEAK
150 °C 160 mA 170 mA
9
–6–
REV. E
Page 7
ADuM1100
180
160
140
120
100
INPUT CURRENT
80
60
40
SAFETY-LIMITING CURRENT (mA)
20
0
0
OUTPUT CURRENT
50 100 150 200
CASE TEMPERATURE (ⴗC)
Figure 1. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN EN 60747-5-2

ABSOLUTE MAXIMUM RATINGS

1
Parameter Symbol Min Max Unit
Storage Temperature T Ambient Operating T
Temperature Supply Voltages Input Voltage Output Voltage Average Current, per Pin
2
2
2
3
ST
A
V
DD1, VDD2
V
I
V
O
–55 +150 °C –40 +125 °C
–0.5 +6.5 V –0.5 V –0.5 V
DD1
DD2
+ 0.5 V + 0.5 V
Temperature 105°C –25 +25 mA
Temperature 125°C
Input Current –7 +7 mA Output Current –20 +20 mA
Common-Mode Transients
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Ambient temperature = 25°C, unless otherwise noted.
2
All voltages are relative to their respective ground.
3
See Figure 1 for information on maximum allowable current for various temperatures.
4
Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or permanent damage.
4
–100 +100 kV/µs

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Min Max Unit
Operating Temperature
ADuM1100AR and ADuM1100BR T
ADuM1100UR T Supply Voltages Logic High Input Voltage, 5 V Operation Logic Low Input Voltage, 5 V Operation Logic High Input Voltage, 3.3 V Operation Logic Low Input Voltage, 3.3 V Operation
1
1, 2
(See TPCs 7 and 8) V
1, 2
(See TPCs 7 and 8) V
1, 2
(See TPCs 7 and 8) V
1, 2
(See TPCs 7 and 8) V
A
A
V
DD1, VDD2
IH
IL
IH
IL
–40 +105 °C –40 +125 °C
3.0 5.5 V
2.0 V
DD1
V
0.0 0.8 V
1.5 V
DD1
V
0.0 0.5 V
Input Signal Rise and Fall Times 1.0 ms
NOTES
1
All voltages are relative to their respective ground.
2
Input switching thresholds have 300 mV of hysteresis.
See the Method of Operation, DC Correctness, and Magnetic Field Immunity section and Figures 8 and 9 for information on immunity to external magnetic fields.
REV. E
–7–
Page 8
ADuM1100
Table I. Truth Table (Positive Logic)
VI Input V
DD1
H Powered Powered H L Powered Powered L X Unpowered Powered H* X Powered Unpowered X*
*VO returns to VI state within 1 µs of power restoration.
Note: Package branding is as follows:
ADuM1100AR, ADuM1100AR-RL7
8
AD1100A
R YYWW
*
XXXXXX
1
ADuM1100BR, ADuM1100BR-RL7
8
AD1100B
R YYWW
1
XXXXXX
*
ADuM1100UR, ADuM1100UR-RL7
8
AD1100U
R YYWW
XXXXXX
1
where:
* = DIN EN 60747-5-2 mark R= Package Designator (R denotes SOIC) YYWW = Date Code XXXXXX = Lot Code
State V
*
State VO Output
DD2

PIN CONFIGURATION

1
1
V
DD1
2
V
I
ADuM1100
1
3
V
DD1
GND
NOTES
1
PIN 1 AND PIN 3 ARE INTERNALLY CONNECTED. EITHER OR BOTH
MAY BE USED FOR V
2
PIN 5 AND PIN 7 ARE INTERNALLY CONNECTED. EITHER OR BOTH
MAY BE USED FOR GND2.
4
1
DD1
TOP VIEW
(Not to Scale)
.
8
V
DD2
2
7
GND
2
V
6
O
2
5
GND
2

ORDERING GUIDE

Temperature Max Data Min Pulse Package
Model Range Rate (Mbps) Width (ns) Package Description Option
ADuM1100AR –40°C to +105°C25408-Lead SOIC R-8 ADuM1100AR-RL7 –40°C to +105°C25408-Lead SOIC, 1,000 Piece Reel R-8 ADuM1100ARZ* –40°C to +105°C25408-Lead SOIC R-8 ADuM1100ARZ-RL7* –40°C to +105°C25408-Lead SOIC, 1,000 Piece Reel R-8 ADuM1100BR –40°C to +105°C 100 10 8-Lead SOIC R-8 ADuM1100BR-RL7 –40°C to +105°C 100 10 8-Lead SOIC, 1,000 Piece Reel R-8 ADuM1100BRZ* –40°C to +105°C 100 10 8-Lead SOIC R-8 ADuM1100BRZ-RL7* –40°C to +105°C 100 10 8-Lead SOIC, 1,000 Piece Reel R-8 ADuM1100UR –40°C to +125°C 100 10 8-Lead SOIC R-8 ADuM1100UR-RL7 –40°C to +125°C 100 10 8-Lead SOIC, 1,000 Piece Reel R-8 ADuM1100URZ* –40°C to +125°C 100 10 8-Lead SOIC R-8 ADuM1100URZ-RL7* –40°C to +125°C 100 10 8-Lead SOIC, 1,000 Piece Reel R-8 ADuM1100EVAL Evaluation Board
*Z = Lead Free
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADuM1100 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
–8–
REV. E
Page 9
TEMPERATURE (ⴗC)
18
–50 –25 125
PROPAGATION DELAY (ns)
16
14
13
12
0255075100
t
PHL
t
PLH
17
15
Typical Performance Characteristics—
ADuM1100
20
18
16
14
12
10
8
CURRENT (mA)
6
4
2
0
0
25 50 75 100 125 150
5V
3.3V
DATA RATE (Mbps)
TPC 1. Typical Input Supply Current vs. Logic Signal Frequency for 5 V and 3.3 V Operation
5
4
3
5V
2
CURRENT (mA)
1
3.3V
18
17
16
t
PHL
15
14
PROPAGATION DELAY (ns)
13
12
–50
–25 25 50 100 125
075
TEMPERATURE (ⴗC)
t
PLH
TPC 4. Typical Propagation Delays vs. Temperature,
3.3 V Operation
14
13
t
PLH
12
t
PHL
11
PROPAGATION DELAY (ns)
10
0
0
25 50 75 100 125 150
DATA RATE (Mbps)
TPC 2. Typical Output Supply Current vs. Logic Signal Frequency for 5 V and 3.3 V Operation
13
12
11
t
PHL
PROPAGATION DELAY (ns)
10
9
–50
TPC 3. Typical Propagation Delays vs. Temperature, 5 V Operation
05075100 125
–25 25
TEMPERATURE (ⴗC)
t
PLH
9
–25 25 50 100 125
–50
075
TEMPERATURE (ⴗC)
TPC 5. Typical Propagation Delays vs. Temperature, 5 V/3 V Operation
TPC 6. Typical Propagation Delays vs. Temperature, 3 V/5 V Operation
REV. E
–9–
Page 10
ADuM1100
1.7
1.6
(V)
INPUT THRESHOLD, V
ITH
1.5
1.4
1.3
1.2
1.1
3.0
–40C
+25C
+125C
3.5 4.0 4.5 5.0 5.5 INPUT SUPPLY VOLTAGE, V
DD1
(V)
TPC 7. Typical Input Voltage Switching Threshold, Low-to-High Transition
APPLICATION INFORMATION PC Board Layout
The ADuM1100 digital isolator requires no external interface circuitry for the logic interfaces. A bypass capacitor is recom­mended at the input and output supply pins. The input bypass capacitor may most conveniently be connected between Pins 3 and 4 (Figure 2). Alternatively, the bypass capacitor may be located between Pins 1 and 4. The output bypass capacitor may be con­nected between Pins 7 and 8 or Pins 5 and 8. The capacitor value should be between 0.01 µF and 0.1 µF. The total lead length between both ends of the capacitor and the power supply pins should not exceed 20 mm.
V
(DATA)
1
GND
V
DD1
1
V
(OPTIONAL)
VO (DATA OUT)
GND
DD2
2
Figure 2. Recommended Printed Circuit Board Layout
INPUT (VI)
OUTPUT (V
t
PLH
)
O
t
PHL
50%
50%
Figure 3. Propagation Delay Parameters

Propagation Delay-Related Parameters

Propagation delay time describes the length of time it takes for a logic signal to propagate through a component. Propagation delay
(V)
ITH
INPUT THRESHOLD, V
1.4
1.3
1.2
1.1
1.0
0.9
0.8
3.0
3.5 4.0 4.5 5.0 5.5 INPUT SUPPLY VOLTAGE, V
–40C
+25C
DD1
+125C
(V)
TPC 8. Typical Input Voltage Switching Threshold, High-to-Low Transition
time to logic low output and propagation delay time to logic high output refer to the duration between an input signal transition and the respective output signal transition (Figure 3).
Pulse width distortion is the maximum difference between t t
and provides an indication of how accurately the input signal’s
PHL
PLH
and
timing is preserved in the component’s output signal. Propagation delay skew is the difference between the minimum and maximum propagation delay values among multiple ADuM1100 compo­nents operated at the same operating temperature and having the same output load.
Depending on the input signal rise/fall time, the measured propa­gation delay based on the input 50% level can vary from the true propagation delay of the component (as measured from its input switching threshold). This is due to the fact that the input threshold, as is the case with commonly used optocouplers, is at a different voltage level than the 50% point of typical input signals. This propagation delay difference is given by
tt tVVV
=−=
'/..
LH PLH PLH r I
=−=
tt tVVV
'/..
HL PHL PHL f I
08 05
()
08 05
()
1
()
1
()
ITH L H
ITH H L
()
()
where:
t
PLH
, t
PHL
= propagation delays as measured from the
input 50% level.
, t
t
PLH
PHL
= propagation delays as measured from the
input switching thresholds.
, t
t
r
f
V
I
= input 10% to 90% rise/fall time. =amplitude of input signal (0 to VI levels
assumed).
V
ITH(L–H)
, V
= input switching thresholds.
ITH(H–L)
INPUT (VI)
V
ITH(L–H)
LH
V
I
OUTPUT (VO)
HL
50%
t
PLH
t'
PLH
50%
V
ITH(H–L)
t'
t
PHL
PHL
Figure 4. Impact of Input Rise/Fall Time on Propagation Delay
–10–
REV. E
Page 11
(ns)
INPUT RISE/FALL TIME (10%–90%, ns)
6
1
PULSEWIDTH DISTORTION ADJUSTMENT,
PWD
(ns)
3
0
36810
5
1
5V INPUT SIGNAL
24579
3.3V INPUT SIGNAL
2
4
LH
PROPAGATION DELAY CHANGE,
4
3
5V INPUT SIGNAL
2
1
3.3V INPUT SIGNAL
0
1
24579
36810
INPUT RISE TIME (10%–90%, ns)
ADuM1100
Figure 5. Typical Propagation Delay Change due to Input Rise Time Variation (for V
0
= 3.3 V and 5 V)
DD1
Figure 7. Typical Pulse Width Distortion Adjustment due to Input Rise/Fall Time Variation (at V
= 3.3 V and 5 V)
DD1

Method of Operation, DC Correctness, and Magnetic Field Immunity

(ns)
HL
–1
5V INPUT SIGNAL
Referring to the functional block diagram, the two coils act as a pulse transformer. Positive and negative logic transitions at the isolator input cause narrow (2 ns) pulses to be sent via the trans­former to the decoder. The decoder is bistable and therefore
–2
3.3V INPUT SIGNAL
either set or reset by the pulses indicating input logic transitions. In the absence of logic transitions at the input for more than 2 µs, a periodic update pulse of the appropriate polarity is sent to ensure dc correctness at the output. If the decoder receives none of
–3
PROPAGATION DELAY CHANGE,
–4
1
36810
24579
INPUT RISE TIME (10%–90%, ns)
Figure 6. Typical Propagation Delay Change due to Input Fall Time Variation (for V
= 3.3 V and 5 V)
DD1
The impact of the slower input edge rates can also affect the measured pulse width distortion as based on the input 50% level. This impact may either increase or decrease the apparent pulse width distortion depending on the relative magnitudes of t
, and PWD. The case of interest here is the condition
t
PLH
PHL
that leads to the largest increase in pulse width distortion. The change in this case is given by
∆∆
()
PWD PWD
=′ = =
PWD LH HL
08
tVVV V for t t t
/. ,
1
––
==
()
––
ITH L H ITH H L
() ()
()
rf
where:
PWD t t
=
PLH PHL
This adjustment in pulse width distortion is plotted as a func­tion of input rise/fall time in Figure 7.
PWD t t
′= ′ ′––
PLH PHL
these update pulses for more than about 5 µs, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a logic high state by the watchdog timer circuit.
The limitation on the ADuM1100’s magnetic field immunity is set by the condition in which induced voltage in the transformer’s receiving coil is sufficiently large to either falsely set or reset the decoder. The analysis that follows defines the conditions under which this may occur. The ADuM1100’s 3.3 V operating condi­tion is examined because it represents the most susceptible mode of operation.
,
The pulses at the transformer output are greater than 1.0 V in amplitude. The decoder has sensing thresholds at about 0.5 V, therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The induced voltage induced across the receiving coil is given by
Vddtrn N
=
βπ
()
2
Σ
=–/ ;,,....,
n
12
where:
β = magnetic flux density (Gauss).
N = number of turns in receiving coil. r
= radius of nth turn in receiving coil (cm).
n
REV. E
–11–
Page 12
ADuM1100
Given the geometry of the receiving coil in the ADuM1100 and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 8.
100
10
1
0.1
DENSITY (KGauss)
0.01
MAXIMUM ALLOWABLE MAGNETIC FLUX
0.001 1k 10k 10M
MAGNETIC FIELD FREQUENCY (Hz)
1M
100M100k
Figure 8. Maximum Allowable External Magnetic Field
For example, at a magnetic field frequency of 1 MHz, the maximum allowable magnetic field of 0.2 KGauss induces a voltage of
0.25 V at the receiving coil. This is about 50% of the sensing threshold and will not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from >1.0 V to 0.75 V—still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM1100 transformers. Figure 9 expresses these allowable current magnitudes as a function of frequency for selected distances. As can be seen, the ADuM1100 is extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example noted, one would have to place a current of 0.5 kA 5 mm away from the ADuM1100 to affect the component’s operation.
1000
DISTANCE = 1m
100
10
DISTANCE = 100mm
1
DISTANCE = 5mm
0.1
MAXIMUM ALLOWABLE CURRENT (kA)
0.01 1k 10k 100M100k 1M 10M
MAGNETIC FIELD FREQUENCY (Hz)
Figure 9. Maximum Allowable Current for Various Current-to-ADuM1100 Spacings
Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.
–12–
REV. E
Page 13

OUTLINE DIMENSIONS

8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
85
6.20 (0.2440)
5.80 (0.2284)
41
ADuM1100
1.27 (0.0500)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
BSC
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012AA
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
8 0
1.27 (0.0500)
0.40 (0.0157)
45
REV. E
–13–
Page 14
ADuM1100

Revision History

Location Page
10/03—Data Sheet changed from REV. D to REV. E.
Changes to Product Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6/03—Data Sheet changed from REV. C to REV. D.
Changed DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4/03—Data Sheet changed from REV. B to REV. C.
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to Patent note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to INSULATION CHARACTERISTICS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to Package Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Changes to Method of Operation, DC Correctness, and Magnetic Field Immunity section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Replaced Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1/03—Data Sheet changed from REV. A to REV. B.
Added ADuM1100UR Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Changed ADuM1100AR/ADuM1100BR to ADuM1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Added Electrical Specifications, Mixed 5 V/3 V or 3 V/5 V Operation table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Updated REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to VDE 0884 INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Changes to Package Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Updated TPCs 3–8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Deleted iCoupler in Field Bus Networks section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Changes to Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Added a new Figure 9 and related text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
11/02—Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to VDE 0884 INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Added Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–14–
REV. E
Page 15
–15–
Page 16
C02462–0–10/03(E)
–16–
Loading...