Datasheet ADRF6602 Datasheet (ANALOG DEVICES)

Page 1
1550 MHz to 2150 MHz Rx Mixer with
V
V
Integrated Fractional-N PLL and VCO

FEATURES

Rx mixer with integrated fractional-N PLL RF input frequency range: 1000 MHz to 3100 MHz Internal LO frequency range: 1550 MHz to 2150 MHz Input P1dB: 14.8 dBm Input IP3: 30 dBm IIP3 optimization via external pin SSB noise figure
IP3SET pin open: 13.8 dB
IP3SET pin at 3.3 V: 15 dB Voltage conversion gain: 6.5 dB Matched 200 Ω IF output impedance IF 3 dB bandwidth: 500 MHz Programmable via 3-wire SPI interface 40-lead, 6 mm × 6 mm LFCSP

APPLICATIONS

Cellular base stations

GENERAL DESCRIPTION

The ADRF6602 is a high dynamic range active mixer with integrated phase-locked loop (PLL) and voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a f can be divided or multiplied and then applied to the PLL phase frequency detector (PFD).
LODRV_EN
input to the mixer. The reference input
LO
CC1
36
LON
37
38
LOP
16
PLL_EN
DATA
CLK
REF_IN
MUXOUT
12 13 14
LE
6
8
SPI
INTERFACE
×2
MUX
÷2 ÷4
FRACTION
TEMP
SENSOR
7 11 15 20 21 23 24 25 28 30 31 35

FUNCTIONAL BLOCK DIAGRAM

CC2VCC_LOVCC_MIXVCC_V2IVCC_LO
MODULUS
REG
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
– +
N COUNTER
PHASE
FREQUENCY
DETECTOR
GND
INTEGER
REG
21 TO 123
Figure 1.
ADRF6602
The PLL can support input reference frequencies from 12 MHz to 160 MHz. The PFD output controls a charge pump whose output drives an off-chip loop filter.
The loop filter output is then applied to an integrated VCO. The VCO output at 2× f programmable PLL divider. The programmable PLL divider is controlled by a Σ- modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047.
The active mixer converts the single-ended 50  RF input to a 200 Ω differential IF output. The IF output can operate up to 500 MHz.
The ADRF6602 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, 6 mm × 6 mm LFCSP with an exposed paddle. Performance is specified over the −40°C to +85°C temperature range.
Table 1.
Internal LO
Part No.
Range
ADRF6601 750 MHz 300 MHz 450 MHz
1160 MHz 2500 MHz 1600 MHz
ADRF6602 1550 MHz 1000 MHz 1350 MHz
2150 MHz 3100 MHz 2750 MHz
ADRF6603 2100 MHz 1100 MHz 1450 MHz
2600 MHz 3200 MHz 2850 MHz
ADRF6604 2500 MHz 1200 MHz 1600 MHz
2900 MHz 3600 MHz 3200 MHz
2717101 22
34
BUFFER
BUFFER
PRESCALER
÷2
CHARGE PUMP 250µA, 500µA (DEFAUL T ) ,
750µA, 1000µA
54
R
SET
is applied to an LO divider, as well as to a
LO
±3 dB RF Balun Range
ADRF6602
INTERNAL L O RANGE 1550MHz TO 2150MHz
DIV
2:1
BY
MUX
2, 1
VCO
CORE
3
CP VTUNE
IFP
191839
IFN
NC
32 33
NC
3.3V LDO
2.5V LDO
VCO LDO
IN
2
9
40
26
29
±1 dB RFIN Balun Range
DECL3P3
DECL2P5
DECLVCO
RF
IN
IP3SET
08545-001
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
Page 2
ADRF6602

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
RF Specifications .......................................................................... 3
Synthesizer/PLL Specifications ................................................... 4
Logic Input and Power Specifications ....................................... 4
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings ............................................................ 6
ESD Caution .................................................................................. 6
Pin Configuration and Function Descriptions ............................. 7
Typical Performance Characteristics ............................................. 9
RF Frequency Sweep .................................................................... 9
IF Frequency Sweep ................................................................... 10
Spurious Performance................................................................ 15
Register Structure ........................................................................... 16
Register 0—Integer Divide Control (Default: 0x0001C0)..... 16
Register 1—Modulus Divide Control (Default: 0x003001) .. 16
Register 2—Fractional Divide Control (Default: 0x001802) 17
Register 3—Σ- Modulator Dither Control (Default:
0x10000B) .................................................................................... 17
Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4) ................................................... 18
Register 5—PLL Enable and LO Path Control (Default:
0x0000E5) .................................................................................... 19
Register 6—VCO Control and VCO Enable (Default:
0x1E2106) .................................................................................... 19
Register 7—Mixer Bias Enable and External VCO Enable
(Default: 0x000007) .................................................................... 19
Theory of Operation ...................................................................... 20
Programming the ADRF6602 ................................................... 20
Initialization Sequence .............................................................. 20
LO Selection Logic ..................................................................... 21
Applications Information .............................................................. 22
Basic Connections for Operation ............................................. 22
AC Test Fixture ............................................................................... 23
Evaluation Board ............................................................................ 24
Evaluation Board Control Software ......................................... 24
Schematic and Artwork ............................................................. 26
Evaluation Board Configuration Options ............................... 28
Outline Dimensions ....................................................................... 29
Ordering Guide .......................................................................... 29

REVISION HISTORY

9/10—Rev. B to Rev. C
Changes to Features Section............................................................ 1
Changes to Table 2 ............................................................................ 3
Changes to Table 3 and Table 4 ....................................................... 4
Changes to Table 6 ............................................................................ 6
Changes to Typical Performance Characteristics Section ........... 9
Added Spurious Performance Section ......................................... 15
Changes to Programming the ADRF6602 Section .................... 20
Added AC Test Fixture Section and Figure 47 ........................... 23
Changes to Evaluation Board Control Software Section ........... 24
7/10—Rev. A to Rev. B
Changes to Table 1 ............................................................................ 1
Changes to Table 6 ............................................................................ 6
Changes to Figure 20 ...................................................................... 14
Changes to Figure 21 ...................................................................... 17
Changes to Figure 22 ...................................................................... 18
Changes to Figure 23 ...................................................................... 19
Rev. C | Page 2 of 32
4/10—Rev. 0 to Rev. A
Added Table 1 .................................................................................... 1
Changes to Figure 1 ........................................................................... 1
Change to Synthesizer/PLL Specifications Section ....................... 4
Change to Table 3 .............................................................................. 4
Changes to Initializing Sequence Section ................................... 15
Changes to Figure 16 ...................................................................... 12
Changes to Figure 17 ...................................................................... 13
Changes to Figure 19 ...................................................................... 14
Changes to Figure 21 ...................................................................... 17
Changes to Figure 24 ...................................................................... 20
1/10—Revision 0: Initial Version
Page 3
ADRF6602

SPECIFICATIONS

RF SPECIFICATIONS

VS = 5 V; ambient temperature (TA) = 25°C; f using CDAC (0x0) and IP3SET (3.3 V), unless otherwise noted.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
INTERNAL LO FREQUENCY RANGE 1550 2150 MHz RF INPUT FREQUENCY RANGE ±3 dB RF input range 1000 3100 MHz RF INPUT AT 1410 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −9 dB
Input P1dB 15.5 dBm
Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 54.0 dBm
Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 33.5 dBm
Single-Side Band Noise Figure IP3SET = 3.3 V 15.2 dB
IP3SET = open 14.1 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −45 dBm
RF INPUT AT 1760 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −15 dB
Input P1dB 15 dBm
Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 53.5 dBm
Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 30.8 dBm
Single-Side Band Noise Figure IP3SET = 3.3 V 14.9 dB
IP3SET = open 13.5 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −43 dBm
RF INPUT AT 2010 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) <(−20) dB
Input P1dB 14.8 dBm
Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 60 dBm
Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 29.5 dBm
Single-Side Band Noise Figure IP3SET = 3.3 V 15.8 dB
IP3SET = open 14.9 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −45 dBm
IF OUTPUT
Voltage Conversion Gain Differential 200 Ω load 6.5 dB
IF Bandwidth Small signal 3 dB bandwidth 500 MHz
Output Common-Mode Voltage External pull-up balun or inductors required 5 V
Gain Flatness Over frequency range, any 5 MHz/50 MHz 0.2/0.5 dB
Gain Variation Over full temperature range 1.2 dB
Output Swing Differential 200 Ω load 2 V p-p
Differential Output Return Loss Measured through 4:1 balun −12 dB
LO INPUT/OUTPUT (LOP, LON) Externally applied 1× LO input, internal PLL disabled
Frequency Range 250 6000 MHz
Output Level (LO as Output) 1× LO into a 50 Ω load, LO output buffer enabled −7 dBm
Input Level (LO as Input) −6 0 +6 dBm
Input Impedance 50 Ω
= 153.6 MHz; f
REF
= 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
PFD
Rev. C | Page 3 of 32
Page 4
ADRF6602

SYNTHESIZER/PLL SPECIFICATIONS

VS = 5 V; ambient temperature (TA) = 25°C; f
= 140 MHz; IIP3 optimized using CDAC (0x0) and IP3SET (3.3 V), unless otherwise noted.
f
IF
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
SYNTHESIZER SPECIFICATIONS Synthesizer specifications referenced to 1× LO
Frequency Range Internally generated LO 1550 2150 MHz Figure of Merit1 P
Reference Spurs f f f
PFD
PFD
PFD
>f PHASE NOISE fLO = 1550 MHz to 2150 MHz, f
1 kHz to 10 kHz offset −92 dBc/Hz
100 kHz offset −103 dBc/Hz
500 kHz offset −122 dBc/Hz
1 MHz offset −128 dBc/Hz
5 MHz offset −140 dBc/Hz
10 MHz offset −147 dBc/Hz
20 MHz offset −150 dBc/Hz
Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.3
PFD Frequency 20 40 MHz REFERENCE CHARACTERISTICS REF_IN, MUXOUT pins
REF_IN Input Frequency 12 160 MHz
REF_IN Input Capacitance 4 pF
MUXOUT Output Level VOL (lock detect output selected) 0.25 V
V
MUXOUT Duty Cycle 50 % CHARGE PUMP
Pump Current Programmable to 250 μA, 500 μA, 750 μA, 1 mA 500 μA
Output Compliance Range 1 2.8 V
1
The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10Log10(f
power = 10 dBm (500 V/μs slew rate) with a 40 MHz f
f
REF

LOGIC INPUT AND POWER SPECIFICATIONS

VS = 5 V; ambient temperature (TA) = 25°C; f using CDAC (0x0) and IP3SET (3.3 V), unless otherwise noted.
= 153.6 MHz; f
REF
= 0 dBm −220.5 dBc/Hz
REF_IN
power = 4 dBm; f
REF
= 38.4 MHz; high-side LO injection;
PFD
= 38.4 MHz /4 −105 dBc
−80 dBc
−80 dBc
PFD
= 38.4 MHz
PFD
°rms
(lock detect output selected) 2.7 V
OH
) – 20Log10(fLO/f
. The FOM was computed at 50 kHz offset.
PFD
= 153.6 MHz; f
REF
PFD
= 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
PFD
). The FOM was measured across the full LO range, with f
PFD
= 80 MHz,
REF
Table 4.
Parameter Test Conditions/Comments Min Typ Max Unit
LOGIC INPUTS CLK, DATA, LE
Input High Voltage, V
Input Low Voltage, V
Input Current, I
1.4 3.3 V
INH
0 0.7 V
INL
0.1 μA
INH/IINL
Input Capacitance, CIN 5 pF POWER SUPPLIES VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins
Voltage Range 4.75 5 5.25 V
Supply Current PLL only 97 mA External LO mode (internal PLL disabled, LO output buffer off, IP3SET pin = 3.3 V) 168 mA Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on) 277 mA Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off) 263 mA Power-down mode 30 mA
Rev. C | Page 4 of 32
Page 5
ADRF6602

TIMING CHARACTERISTICS

VCC2 = 5 V ± 5%.
Table 5.
Parameter Limit Unit Description
t1 20 ns min LE setup time t2 10 ns min DATA-to-CLK setup time t3 10 ns min DATA-to-CLK hold time t4 25 ns min CLK high duration t5 25 ns min CLK low duration t6 10 ns min CLK-to-LE setup time t7 20 ns min LE pulse width

Timing Diagram

CLK
t
4
t
5
DATA
DB23 (MSB) DB22
t
1
LE
t
2
t
3
DB2 DB1
(CONTROL BIT C2)(CONTROLBIT C3)
DB0 (LSB)
(CONTROLBIT C1)
t
6
t
7
08545-002
Figure 2. Timing Diagram
Rev. C | Page 5 of 32
Page 6
ADRF6602

ABSOLUTE MAXIMUM RATINGS

Table 6.
Parameter Rating
Supply Voltage, VCC1, VCC2, VCC_LO,
VCC_MIX, VCC_V2I Digital I/O, CLK, DATA, LE −0.3 V to +3.6 V IFP, IFN −0.3 V to VCC_V2I + 0.3 V RFIN 16 dBm LOP, LON 13 dBm θJA (Exposed Paddle Soldered Down) 35°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
−0.5 V to +5.5 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. C | Page 6 of 32
Page 7
ADRF6602

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DRV_EN
ND
CC_LO
NC
V
G
LO
LON
LOP
VTUNE
DECLVCO
37
38
39
40
PIN 1
1VCC1
INDICATOR
2DECL3P3
3CP
GND
4
R
5
SET
REF_IN
6 7
GND
8
MUXOUT
VCC2
9
10
DECL2P5
NOTES
1. NC = NO CONNECT.
2. THE EXPOSED PADDLE SHOULD BE SOLDEREDTO A LOW I M P EDANCE GROUND PLANE.
ADRF6602
TOP VIEW
(Not to S cale)
11
12
13
14 LE
CLK
GND
DATA
Figure 3. Pin Configuration
GND
NC 32
31
33
34
35
36
30 GND 29 IP3SET 28 GND 27 VCC_V2I
RF
26
IN
25
GND 24 GND 23 GND 22 VCC_MIX 21
GND
15
17
16
18
19
20
IFP
IFN
GND
GND
PLL_EN
VCC_LO
08545-003
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
1 VCC1
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 2 DECL3P3 Decoupling Node for 3.3 V LDO. Connect a 0.1 μF capacitor between this pin and ground. 3 CP Charge Pump Output Pin. Connect to VTUNE through loop filter. 4, 7, 11, 15, 20,
GND Ground. Connect these pins to a low impedance ground plane. 21, 23, 24, 25, 28, 30, 31, 35
5 R
SET
Charge Pump Current. The nominal charge pump current can be set to 250 μA, 500 μA, 750 μA, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external R
is required. If Bit DB18 is set to 1, the four nominal charge pump currents (I
SET
can be externally adjusted according to the following equation:
×
I
4.217
⎛ ⎜
=
R
SET
I
NOMINAL
CP
⎟ ⎟ ⎠
37.8
6 REF_IN Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. 8 MUXOUT
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect
signal. The output is selected by programming the appropriate register. 9 DECL2P5 Decoupling Node for 2.5 V LDO. Connect a 0.1 μF capacitor between this pin and ground. 10 VCC2
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 12 DATA Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits. 13 CLK
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched
into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz. 14 LE
Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the
eight registers. The relevant latch is selected by the three control bits of the 24-bit word. 16 PLL_EN
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be
used to switch modes. 17, 34 VCC_LO
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 18, 19 IFP, IFN Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes.
NOMINAL
)
Rev. C | Page 7 of 32
Page 8
ADRF6602
Pin No. Mnemonic Description
22 VCC_MIX
26 RFIN RF Input (Single-Ended, 50 Ω). 27 VCC_V2I
29 IP3SET Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open. 32, 33 NC No Connection. 36 LODRV_EN
37, 38 LON, LOP
39 VTUNE
40 DECLVCO Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 μF capacitor between this pin and ground. EPAD Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. External LO drive frequency must be 1× LO. This pin should not be left floating.
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO generation is disabled, an external 1× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. Nominal input voltage range on this pin is 1.5 V to 2.5 V.
Rev. C | Page 8 of 32
Page 9
ADRF6602

TYPICAL PERFORMANCE CHARACTERISTICS

RF FREQUENCY SWEEP

CDAC = 0x0, internally generated high-side LO, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted.
5
IP3SET = OPEN IP3SET = 3.3V
4
3
2
1
0
GAIN (dB)
–1
–2
–3
–4
–5
1410 1510 1610 1710 1810 1910 2010
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 4. Gain vs. RF Frequency
90
IP3SET = OPEN IP3SET = 3.3V
80
70
60
INPUT IP2 (dBm)
50
40
30
1410 1510 1610 1710 1810 1910 2010
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 5. Input IP2 vs. RF Frequency
20
IP3SET = OPEN
19
IP3SET = 3.3V
18 17 16 15 14 13 12 11 10
9 8 7
NOISE FIGURE (dB)
6 5 4 3 2 1 0 1410 1510 1610 1710 1810 1910 2010
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 6. Noise Figure vs. RF Frequency
08545-104
08545-105
08545-106
45
IP3SET = OPEN IP3SET = 3.3V
40
35
30
INPUT IP3 (dBm)
25
20
1410 1510 1610 1710 1810 1910 2010
RF FREQUENCY ( MHz)
Figure 7. Input IP3 vs. RF Frequency
20
IP3SET = OPEN IP3SET = 3.3V
19
18
17
16
15
14
INPUT P1dB (dBm)
13
12
11
10
1410 1510 1610 1710 1810 1910 2010
RF FREQUENCY ( MHz)
Figure 8. Input P1dB vs. RF Frequency
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
08545-107
08545-108
Rev. C | Page 9 of 32
Page 10
ADRF6602

IF FREQUENCY SWEEP

CDAC = 0x0, internally generated swept low-side LO, fRF = 1960 MHz, RFIN = −5 dBm, unless otherwise noted.
5
IP3SET = OPEN IP3SET = 3.3V
4
3
2
1
0
GAIN (dB)
–1
–2
–3
–4
–5
25 4003753503253002752502252001751501257550 100
IF FREQ UENCY ( MHz)
Figure 9. Gain vs. IF Frequency
90
IP3SET = OPEN IP3SET = 3.3V
80
70
60
INPUT IP2 (dBm)
50
40
30
25 4003753503253002752502252001751501257550 100
IF FREQ UENCY ( MHz)
Figure 10. Input IP2 vs. IF Frequency, RFIN = −5 dBm
20
IP3SET = OPEN IP3SET = 3.3V
18
16
14
12
10
8
NOISE FIGURE (dB)
6
4
2
0
25 4003753503253002752502252001751501257550 100
IF FREQ UENCY ( MHz)
Figure 11. Noise Figure vs. IF Frequency
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
08545-110
08545-111
08545-112
45
IP3SET = OPEN IP3SET = 3.3V
40
35
30
25
20
INPUT IP3 (dBm)
15
10
5
25 4003753503253002752502252001751501257550 100
IF FREQ UENCY ( MHz)
Figure 12. Input IP3 vs. IF Frequency, RFIN = −5 dBm
20
IP3SET = OPEN IP3SET = 3.3V
18
16
14
12
10
8
INPUT P1dB (dBm)
6
4
2
0
25 4003753503253002752502252001751501257550 100
IF FREQ UENCY ( MHz)
Figure 13. Input P1dB vs. IF Frequency
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
08545-113
08545-114
Rev. C | Page 10 of 32
Page 11
ADRF6602
0
IP3SET = OPEN
–5
IP3SET = 3.3V –10 –15 –20 –25 –30 –35 –40 –45
LO-TO - IF FEEDT HROUGH (dBm)
–50 –55 –60
1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
TA = +85°C TA = +25°C TA = –40°C
Figure 14. LO-to-IF Feedthrough vs. LO Frequency,
LO Output Turned Off, CDAC = 0x0
30
IP3SET = OPEN
IP3SET = 3.3V –40
–50
–60
–70
LO-TO-RF LEAKAGE ( dBm)
–80
TA = +85°C TA = +25°C TA = –40°C
08545-115
0
–2
–4
–6
–8
–10
–12
RETURN LOSS (d B)
–14
–16
–18
–20
1400 230022002100200019001800170016001500
LO FREQUENCY (MHz )
08545-117
Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)
350
300
250
200
150
RESISTANCE (Ω)
100
50
RESISTANCE
CAPACITANCE
3.5
3.0
2.5
2.0
1.5
1.0
0.5
CAPACITANCE (pF)
–90
1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off
0
–10
–20
–30
–40
–50
RETURN LOSS (d B)
–60
–70
–80
1400 230022002100200019001800170016001500
RF FREQUENCY ( MHz)
Figure 16. RF Input Return Loss vs. RF Frequency
0
50 500450400350300250200150100
08545-109
IF FREQUENCY (MHz )
0
08545-118
Figure 18. IF Differential Output Impedance (R Parallel C Equivalent)
35
IP3SET = OPEN IP3SET = 3.3V
30
25
20
NOISE FIGURE (dB)
15
10
–60 0–10–20–30–40–50
08545-116
CW BLOCKER LE V E L (dBm)
08545-200
Figure 19. SSB Noise Figure vs. 5 MHz Offset Blocker Level,
LO Frequency = 2105 MHz, RF Frequency = 1965 MHz
Rev. C | Page 11 of 32
Page 12
ADRF6602
0
IP3SET = OPEN
–5
IP3SET = 3.3V –10 –15 –20 –25 –30 –35 –40 –45
RF-TO-IF ISOLATION (dBc)
–50 –55 –60
1300 1500 1700 1900 2100 2300
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
08545-119
Figure 20. RF-to-IF Leakage vs. RF Frequency, High-Side LO, IF = 140 MHz,
LO Output Turned Off
0
IP3SET = OPEN
IP3SET = 3.3V
–1
–2
–3
–4
–5
–6
–7
–8
LO OUTP UT AMPLIT UDE ( dBm)
–9
–10
1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
TA = +85°C TA = +25°C TA = –40°C
08545-120
Figure 21. LO Output Amplitude vs. LO Frequency
20
15
10
5
0
–5
–10
–15
FREQUENCY DEVIATION FROM 1960MHz ( M Hz )
–20
0 25020015010050
TIME (ns)
08545-222
Figure 22. Frequency Deviation from LO Frequency at
LO = 1.97 GHz to 1.96 GHz vs. Lock Time
5.0
4.5
4.0
3.5
3.0
2.5
2.0
VTUNE VOLTAGE (V)
1.5
1.0
0.5
0 1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
TA = +85°C TA = +25°C TA = –40°C
Figure 23. VTUNE vs. LO Frequency
350
300
250
200
SUPPLY CURRENT ( mA)
150
100
IP3SET = OPEN IP3SET = 3.3V
1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
TA = +85°C TA = +25°C TA = –40°C
Figure 24. Supply Current vs. LO Frequency
2.0
1.9
1.8
1.7
1.6
1.5
1.4
VPTAT VOLTAGE (V)
1.3
1.2
1.1
1.0
IP3SET = OPEN IP3SET = 3.3V
–55 –35 –15 5 25 45 65 85 105
TEMPERATURE ( °C)
Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open)
08545-122
08545-123
08545-124
Rev. C | Page 12 of 32
Page 13
ADRF6602
Complementary cumulative distribution function (CCDF), fRF = 1960 MHz, fIF = 140 MHz.
100
DISTRIBUTION PERCENTAG E (%)
IP3SET = OPEN IP3SET = 3.3V
90
80
70
60
50
40
30
20
10
0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5
GAIN (dB)
Figure 26. Gain
100
DISTRIBUTION PERCENTAG E (%)
IP3SET = OPEN IP3SET = 3.3V
90
80
70
60
50
40
30
20
10
0
40 45 50 55 60 65 70 75 80
INPUT IP2 (dBm)
Figure 27. Input IP2
100
IP3SET = OPEN
90
80
70
60
50
40
30
20
DISTRIBUTION PERCENTAG E (%)
10
0
11 12 13 14 15 16 17 18
NOISE FI GURE (dB)
Figure 28. Noise Figure
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
08545-125
08545-126
08545-127
100
DISTRIBUTION PERCENTAG E (%)
IP3SET = OPEN IP3SET = 3.3V
90
80
70
60
50
40
30
20
10
0
20 22 24 26 28 30 32 34 36
INPUT IP3 (dBm)
Figure 29. Input IP3
100
DISTRIBUTION PERCENTAG E (%)
IP3SET = OPEN IP3SET = 3.3V
90
80
70
60
50
40
30
20
10
0
9 10111213141516 1817
INPUT P1dB (dBm)
Figure 30. Input P1dB
100
DISTRIBUTION PERCENTAG E (%)
IP3SET = OPEN IP3SET = 3.3V
90
80
70
60
50
40
30
20
10
0
–55 –53 –51 –49 –47 –45 –43 –41 –39 –37 –35
LO FEEDTHROUGH (dBm)
Figure 31. LO Feedthrough to IF, LO Output Turned Off
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
08545-128
08545-129
08545-130
Rev. C | Page 13 of 32
Page 14
ADRF6602
Measured at IF output, CDAC = 0x0, IP3SET = open, internally generated high-side LO, f RF
= −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.
IN
80
LO FREQUENCY = 2134.4MHz
–90
–100
–110
–120
LO FREQUENCY = 1558.4MHz
–130
PHASE NOISE (d Bc/Hz)
–140
–150
–160
1k 10k 100k 1M 10M 100M
OFFSET FREQUENCY (Hz)
Figure 32. Phase Noise vs. Offset Frequency
75
2× PFD FREQUENCY
4× PFD FREQUENCY
SPURRS LEVEL (dBc)
–80
–85
–90
–95
–100
–105
TA = +85°C TA = +25°C TA = –40°C
TA = +85°C TA = +25°C TA = –40°C
08545-131
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
INTEGRATE D P HAS E NOISE (°rms)
0.1
0 1550 1650 1750 1850 1950 2050 2150
80
–90
–100
–110
–120
–130
PHASE NOISE (d Bc/Hz)
–140
–150
= 153.6 MHz, f
REF
LO FREQUENCY (MHz )
= 38.4 MHz,
PFD
TA = +85°C TA = +25°C TA = –40°C
Figure 35. Integrated Phase Noise vs. LO Frequency
TA = +85°C TA = +25°C TA = –40°C
OFFSET = 1kHz
OFFSE T = 100kHz
OFFSET = 5MHz
08545-133
–110
1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD)
75
3× PFD FREQUENCY
1× PFD FREQUENCY
1550 1650 1750 1850 1950 2050 2150
LO FREQUENCY (MHz )
SPURRS LEVEL (dBc)
–80
–85
–90
–95
–100
–105
–110
TA = +85°C TA = +25°C TA = –40°C
0.25× PF D FREQUENCY
Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD)
–160
1550 1650 1750 1850 1950 2050 2150
08545-132
LO FREQUENCY (MHz )
08545-134
Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps)
80
–90
–100
–110
–120
–130
PHASE NOISE (d Bc/Hz)
–140
–150
–160
1550 1650 1750 1850 1950 2050 2150
08545-232
OFFSE T = 10kHz
OFFSET = 1MHz
LO FREQUENCY (MHz )
TA = +85°C TA = +25°C TA = –40°C
08545-135
Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps)
Rev. C | Page 14 of 32
Page 15
ADRF6602

SPURIOUS PERFORMANCE

(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious products were measured in dB relative to the carrier (dBc) from the IF output power level. All spurious components greater than −125 dBc are shown.
LO = 1550 MHz, RF = 1410 MHz (horizontal axis is m, vertical axis is n), and RF
0 1 2
N
3 4 5 6 7
0 1 2 3 4
−95.78 −36.11 −38.06 −43.03
−27.96 0.00 −75.14 −44.01 −81.04
−80.82 −84.22 −70.69 −83.52 −90.50
−105.61 −93.37 −112.15 −84.67 −121.89
−120.72 −121.95 −123.15 −120.95 −123.77
−122.11 −122.03 −122.97 −123.53
−122.02 −121.46 −122.62
−122.03 −121.44
M
LO = 1900 MHz, RF = 1760 MHz (horizontal axis is m, vertical axis is n), and RF
0 1 2 −69.90 −80.06 −71.05 −86.55 −95.26
N
3 −105.85 −107.79 −104.24 −78.66 −121.43 4 5 6 7
0 1 2 3 4
−96.17 −35.62 −23.14 −51.42
−23.66 0.00 −63.13 −40.94 −68.37
−122.72 −121.39 −122.69 −124.20
M
−122.78 −122.48 −117.55
LO = 2150 MHz, RF = 2010 MHz (horizontal axis is m, vertical axis is n), and RF
0 1 2 −76.22 −77.24 −75.74 −80.30 −87.09
N
3 4 5 6 7
0 1 2 3 4
−94.96 −36.89 −22.24 +9.56 +9.56
−21.91 0.00 −69.83 −31.34 +9.56
−97.36 −101.06 −76.16 −121.60
−122.66 −122.37 −120.59 −125.16
M
−122.76 −121.11 −124.51
power = −10 dBm.
IN
power = −10 dBm.
IN
−122.39 −123.67
power = −10 dBm.
IN
−122.63 −122.41
−119.57
−122.93
Rev. C | Page 15 of 32
Page 16
ADRF6602

REGISTER STRUCTURE

This section provides the register maps for the ADRF6602. The three LSBs determine the register that is programmed.

REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)

RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0000000000000DMID6ID5ID4ID3ID2ID1ID0C3(0)C2(0)C1(0)
DIVIDE
MODE
DIVIDE MODE
DM
FRACTIONAL ( DEFAULT)
0
INTEGER
1
ID6 ID5 ID4 ID3 ID2 ID1 ID0 0010101 0010110 0010111 0011000
... ... ... ... ... ... ...
... ... ... ... ... ... ...
0111000
... ... ... ... ... ... ...
... ... ... ... ... ... ...
1110111 1111000 1111001 1111010 1111011
INTEGER DI VIDE RATIO CONTRO L BITS
INTEGER DI VIDE RATIO 21 (INTEGER MODE ONLY) 22 (INTEGER MODE ONLY) 23 (INTEGER MODE ONLY) 24 ... ... 56 (DEFAULT ) ... ... 119 120 (INTEG E R MODE ONLY ) 121 (INTEG E R MODE ONLY ) 122 (INTEG E R MODE ONLY ) 123 (INTEG E R MODE ONLY )
Figure 38. Register 0—Integer Divide Control Register Map
08545-004

REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
RESERVED
0 0 0 0 0 0 0 0 0 0 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1)
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 0 0000000001 0 0000000010
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
1 1000000000
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
1 1111111111
Figure 39. Register 1—Modulus Divide Control Register Map
Rev. C | Page 16 of 32
MODULUS VALUE
CONTROL BITS
MODULUS VALUE 1 2 ... ... 1536 (DEFAULT ) ... ... 2047
08545-005
Page 17
ADRF6602

REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
FRACTIONAL V ALUERESERVED
0 0 0 0 0 0 0 0 0 0 FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0 C3(0) C2(1) C1(0)
CONTROL BITS
FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 FD2 FD1 FD0 0 0000000000 0 0000000001
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
0 1100000000
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
FRACTIONAL VALUE MUST BE LESS THAN MO DUL US
Figure 40. Register 2—Fractional Divide Control Register Map

REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)

DITHER
ENABLE
DEN
DITHER ENABLE
0
DISABLE
1
ENABLE (DEFAUL T, RECOMME NDED)
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 00000000000000001
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
11111111111111111
DITHER RESTART VALUE CONTROL BITS
Figure 41. Register 3—Σ-Δ Modulator Dither Control Register Map
DITH1 DITH0 00 01
10 11
DITHER
MAGNITUDE
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 DITH1 DITH0 DEN DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)
DITHER MAGNI TUDE 15 (DEFAULT) 7
3 1 (RECOMME NDED)
FRACTIONAL VALUE 0 1 ... ... 768 (DEFAULT ) ... ... <MDR
DITHER RESTART VALUE
0x00001 (DEFAULT) ... ... 0x1FFFF
08545-006
08545-007
Rev. C | Page 17 of 32
Page 18
ADRF6602

REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)

REF OUTPUT MUX SELECT
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 RMS2 RMS1 RMS0 RS1 RS0 CPM CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1 PE0 PAB1 PAB0 C3(1) C2(0) C1(0)
INPUT REF
PATH
CP
CURRENT
REF
SOURCE
PFD POL
PFD PHASE OF FSET
MULTIPLIER
CP
CURRENT
CP
SRC
CP
CONTROL
PFD EDGE CONTROL BITS
PFD ANTI
BACKLASH
DELAY
CPB4 CPB3 CPB2 CPB1 CPB0 00000
00001 00110 01010 10000 11111
CPC1 CPC0 00
01 10 11
CHARGE PUMP CONTRO L SO URCE
CPS
CONTROL BASED ON STATE OF DB7/DB8 (CP CO NTROL)
0
CONTROL F ROM PFD (DEF AULT)
1
CPP1 CPP0 00
01 10 11
PFD PHASE OFFSET MULTIPLIER 0 × 22.5°/ I
1 × 22.5°/ I 6 × 22.5°/ I 10 × 22.5°/I 16 × 22.5°/I 31 × 22.5°/I
CHARGE PUMP CURRENT 250µA
500µA (DEFAULT) 750µA 1000µA
CPMULT CPMULT
(RECOMMENDED)
CPMULT
(DEFAULT)
CPMULT CPMULT CPMULT
PAB0 PAB1 00
01 10 11
REFERENCE PATH EDGE
PE0
SENSITIVITY
0
FALLING EDGE (RECOMMENDED) RISING EDGE (DE F AULT)
1
DIVIDER PAT H EDGE
PE1
SENSITIVITY
0
FALLING EDGE (RECOMMENDED) RISING EDGE (DEFAULT)
1
CHARGE PUMP CONT ROL BOTH ON
PUMP DOWN PUMP UP TRISTATE (DEFAULT)
PFD ANTI BACKLAS H DELAY
0ns (DEFAUL T)
0.5ns
0.75ns
0.9ns
RMS2 RMS1 RMS0 000
001 010 011 100 101 110 111
CPBD 0
1
CHARGE PUMP CURRENT
CPM
REFERENCE SOURCE INTERNAL (DEFAULT)
0
EXTERNAL
1
RS0 RS1 00
01 10 11
REF OUTPUT MUX SELECT LOCK DETECT ( DEF AUL T)
VPTAT REFIN (BUFF ERED)
0.5× REFIN ( BUFFERED) 2× REFIN (BUF FERED) TRISTATE RESERVED RESERVED
INPUT REFERE NCE PATH SOURCE
2× REFIN REFIN (DEFAUL T)
0.5× REFIN
0.25× REFI N
Figure 42. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map
PFD PHASE OFFSET POLARITY NEGATIVE
POSITIVE (DEFAULT)
Rev. C | Page 18 of 32
08545-008
Page 19
ADRF6602

REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)

RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB70DB6 DB5 DB4 DB3 DB2 DB1 DB0
00000000000 0
CAP DAC CONTROL BITS
CD3 CD2 CD1 CD0 PLEN LDV1 LXL LDRV C3(1) C2(0) C1(1)
RES
PLLENLO
DIV1LOEXTLODRV
CAPACITOR DAC
CD3 CD2 CD1 CD0
0000 1111
CONTROL FOR IIP3 OPTIMIZATION
MIN MAX
PLEN 0
1
Figure 43. Register 5—PLL Enable and LO Path Control Register Map

REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)

3.3V VCO LDO
LDO
ENABLE
ENABLE
DISABLE ENABLE (DEFAUL T)
VCO
LVEN
ENABLE
VCO EN 0
1
VCO
SWITCH
VCO SW 0
1
VCO ENABLE DISABLE
ENABLE (DEFAULT)
VCO AMPLITUDERESERVED
VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)
VC[5:0] VCO AMP LITUDE 0x00 0
…. …. 0x18 24 (DEFAULT)
…. …. 0x2B 43
…. …. 0x3F 63 (RECOMMENDED)
VCO SWITCH CONTROL FROM SPI REGULAR (DEF AULT)
BAND CAL
Figure 44. Register 6—VCO Control and VCO Enable Register Map
VCO
BW SW
CTRL
VBSRC 0
1
DB23
000
CPEN 0
1
CHARGE
PUMP
DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
CHARGE PUMP ENABLE DISABLE
ENABLE (DEFAUL T)
ENABLE
CPEN L3EN VCO EN VCO SW VC5
L3EN 3.3V LDO ENABL E
DISABLE
0
ENABLE (DEFAUL T)
1
LVEN VCO LDO ENABLE 0
1
LO OUTPUT DRIVER
LDRV
ENABLE DRIVER OFF (DEFAULT)
0
DRIVER ON
1
EXTERNAL LO DRIVE
LXL
ENABLE (PIN 37, PIN 38) INTERNAL LO OUTPUT (DEFAULT)
0
EXTERNAL LO INPUT
1
DIVIDE - B Y - 2 I N L O CH AIN ENABLE
LDV1
DIVIDE BY 1
0
DIVIDE BY 2 (DE FAULT)
1
PLL ENABLE DISABLE
ENABLE (DEFAULT)
VCO BAND SELECT FROM SPI
VBS[5:0] VCO BAND S ELECT FROM SPI 0x00
0x01 ….
0x3F
VCO BW CAL AND SW S OURCE CONTROL BAND CAL (DEFAULT )
SPI
DEFAULT 0x20
CONTROL BITS
08545-009
08545-010

REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)

MIXER
XVCORES
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0XVCO
B_EN
MBE000000000000000000C3(1)C2(1)C1(1)
MBE
MIXER BIAS ENABLE DISABLE
0
ENABLE (DEFAULT)
1
EXTERNAL VCO
XVCO
INTERNAL VCO ( DE FAULT)
0
EXTERNAL VCO
1
Figure 45. Register 7—Mixer Bias Enable and External VCO Enable Register Map
RESERVED CONTROL BITS
Rev. C | Page 19 of 32
08545-011
Page 20
ADRF6602

THEORY OF OPERATION

The ADRF6602 integrates a high performance downconverting mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the fractional-N PLL functions and the mixer optimization functions, as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6602 is the next generation of an industry-leading family of mixers from Analog Devices, Inc. The RF input is converted to a current and then mixed down to IF using high performance NPN transistors. The mixer output currents are transformed to a differential output. The high performance active mixer core results in an exceptional IIP3 and IP1dB, with a very low output noise floor for excellent dynamic range. Over the specified frequency range, the ADRF6602 typically provides IF input P1dB of 14.5 dBm and IIP3 of 30 dBm.
Improved performance at specific frequencies can be achieved with the use of the internal capacitor DAC (CDAC), which is programmable via the SPI port, and by using a resistor to a 5 V supply from the IP3SET pin (Pin 29). Adjustment of the capacitor DAC allows increments in phase shift at internal nodes in the ADRF6602, thus allowing cancellation of third-order distortion with no change in supply current. Connecting a resistor to a 5 V supply from the IP3SET pin increases the internal mixer core current, thereby improving overall IIP2 and IIP3, as well as IP1dB. Using the IP3SET pin for this purpose increases the overall supply current.
The fractional divide function of the PLL allows the frequency multiplication value from REF_IN to LO output to be a fractional value rather than be restricted to an integer value as in traditional PLLs. In operation, this multiplication value is INT + (FRAC/MOD), where INT is the integer value, FRAC is the fractional value, and MOD is the modulus value, all programmable via the SPI port. In other fractional-N PLL designs, fractional multiplication is achieved by periodically changing the fractional value in a deterministic way. The disadvantage of this approach is often spurious components close to the fundamental signal. In the ADRF6602, a Σ- modulator is used to distribute the fractional value randomly, thus significantly reducing the spurious content due to the fractional function.

PROGRAMMING THE ADRF6602

The ADRF6602 is programmed via a 3-pin SPI port. The timing requirements for the SPI port are shown in Figure 2. Eight pro­grammable registers, each with 24 bits, control the operation of the device. The register functions are listed in Tabl e 8.
Table 8. Register Functions
Register Function
Register 0 Integer divide control for the PLL Register 1 Modulus divide control for the PLL Register 2 Fractional divide control for the PLL Register 3 Σ-Δ modulator dither control Register 4 PLL charge pump, PFD, reference path control Register 5 PLL enable and LO path control Register 6 VCO control and VCO enable Register 7 Mixer bias enable and external VCO enable
Note that internal calibration for the PLL must be run when the ADRF6602 is initialized at a given frequency. This calibration is run automatically whenever Register 0, Register 1, or Register 2 is programmed. Because the other registers affect PLL performance, Register 0, Register 1, and Register 2 should always be programmed last and in this order: Register 0, Register 1, Register 2.
To program the frequency of the ADRF6602, the user typically programs only Register 0, Register 1, and Register 2. However, if registers other than these are programmed first, a short delay should be inserted before programming Register 0. This delay ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the ADRF6602 product page under the Evaluation Boards & Development Kits section that allows easy programming from a PC running Windows XP or Vista.

INITIALIZATION SEQUENCE

To ensure proper power-up of the ADRF6601, it is important to reset the PLL circuitry after the VCC supply rail settles to 5 V ±
0.25 V. Resetting the PLL ensures that the internal bias cells are properly configured, even under poor supply start-up conditions.
To ensure that the PLL is reset after power-up, follow this procedure:
Disable the PLL by setting the PLEN bit to 0 (Register 5,
1. Bit DB6).
After a delay of >100 ms, set the PLEN bit to 1 (Register 5,
2. Bit DB6).
After this procedure is followed, the other registers should be programmed in this order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of >100 ms, Register 0 should be programmed.
Rev. C | Page 20 of 32
Page 21
ADRF6602

LO SELECTION LOGIC

The downconverting mixer in the ADRF6602 can be used without the internal PLL by applying an external differential LO to Pin 37 and Pin 38 (LON and LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these same pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer.
Table 9. LO Selection Logic
Pins1 Register 5 Bits1 Outputs
Pin 16 (PLL_EN) Pin 36 (LODRV_EN) Bit DB6 (PLEN) Bit DB3 (LDRV) Output Buffer LO
0 X 0 X Disabled External 0 X 1 X Disabled External 1 X 0 X Disabled External 1 0 1 0 Disabled Internal 1 X 1 1 Enabled Internal 1 1 1 X Enabled Internal
1
X = don’t care.
The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Ta b le 9 .
Rev. C | Page 21 of 32
Page 22
ADRF6602

APPLICATIONS INFORMATION

BASIC CONNECTIONS FOR OPERATION

Figure 46 shows the schematic for the ADRF6602 evaluation board. The six power supply pins should be individually decoupled using 100 pF and 0.1 µF capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 46.
The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC.
A peak-to-peak differential swing on RF for a sine wave input) results in an IF output power of 3.8 dBm.
The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should
VCC RED
+5V
C7
0.1µF (0402)
VCC1
RED
S1
OPEN
R56
(0402)
LO IN/OUT
R55 OPEN (0402)
0
TC1-1-13+
REF_IN
REFOUT
4
3
51
T8
(0402)
R70
49.9 (0402)
R16
0
(0402)
LODRV_EN
C5
1nF
(0402)
C6
1nF
(0402)
C31 1nF
REF_IN
MUXOUT
LON
LOP
R6 0 (0402)
C8 100pF (0402)
34 27 17 10 1
36
37
38
ADRF6602
×2
6
8
MUX
÷2 ÷4
of 1 V (0.353 V rms
IN
C25
0.1µF (0402)
R26 0 (0402)
C24 100pF (0402)
VCC_MIXVCC_V2IVCC_LO
FRACTION
THIRD-ORDER
INTERPOLATOR
TEMP
SENSOR
7 11 15 20 21 23 24 25 28 30 31 35
C23
0.1µF (0402)
R25 0 (0402)
C22 100pF (0402)
VCC_LO VCC2 VCC1
22
MODULUS
REG
FRACTIONAL
N COUNTER
21 TO 123
PHASE
+
FREQUENCY
DETECTOR
CP
TEST
POINT
(ORANGE)
C20
0.1µF (0402)
R25 0 (0402)
C21 100pF (0402)
INTEGER
REG
R38
0
(0402)
C14
22pF
(0603)
C43
10µF
(0603)
R37
0
(0402)
R11 OPEN (0402)
OPEN (0402)
R17 0 (0402)
Figure 46. Basic Connections for Operation of the ADRF6602
VCC
S2
C19
0.1µF (0402)
C18 100pF (0402)
PRESCALER
÷2
CHARGE PUMP 250µA, 500µA (DEFAULT), 750µA, 1000µA
R
SET
R2 OPEN (0402)
R9 10k
(0402)
R10
3.0k (0603)
C15
2.7nF (1206)
C2
be ac-coupled and terminated with a 50 Ω resistor as shown in Figure 46. The reference signal, or a divided-down version o the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin.
The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options sectio
Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary.
P1
R54 10k (0402)
R65 10k
R1
0
(0402)
100pF (0402)
R7 0 (0402)
BUFFER
BUFFER
(0402)
C13
6.8pF (0603)
C1
R53
10k
(0402)
C9
0.1µF (0402)
C10 100pF (0402)
1 2 3 4 5 6 7 8 9
R19
0
R20
(0402)
0
(0402)
DIVIDER
÷2
DIV
2:1
BY
MUX
2, 1
VCO
CORE
VTUNE
CP
R62 0 (0402)
C40 22pF (0603)
R12 0 (0402)
R35 0 (0402)
DECLVCO
VTUNE
R63 OPEN (0402)
R30 0 (0402)
PLL_EN
R57 0 (0402)
CLK
DATA
1316 12
14
SPI
INTERFACE
VCC
+5V
LE
19184039354
9-PIN DSUB
R36 0 (0402)
IFNIFP
C34 OPEN (0402)
C33 OPEN (0402)
C32 OPEN (0402)
DECL2P5
9
DECL3P3
2
26
29
R59 (0402) C29
0.1µF (0402)
RF
IN
IP3SET
0
R52 OPEN (0402)
R51 OPEN (0402)
R50 OPEN (0402)
C16 100pF (0402)
C12 100pF (0402)
R28
0
(0402)
R27
0
(0402)
124
35
R43
0
(0402)
R18
0
(0402)
R8 0
(0402)
RFIN
C27
0.1µF (0402)
RFOUT
n.
C17
0.1µF (0402)
C11
0.1µF (0402)
C42 10µF (0603)
C41 OPEN (0603)
f
08545-024
Rev. C | Page 22 of 32
Page 23
ADRF6602
A

AC TEST FIXTURE

Characterization data for the ADRF6602 was taken under very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of
RF1 AGIL E NT N5181A
HP 11636A
POWER DIVIDER
RF2 AGIL E NT N5181A
REF_IN AGILENT N5181A
REF_IN
DRF6602 CHARACTERIZ ATION RACK DIAGRAM. ALL INSTRUMEN TS ARE CONTR OLLED BY A LAB COMPUTER VIA A USB TO GPIB CONTROLLER, DAISY CHAINED TO EACH INDIVI DUAL INSTRUME NT .
the signal generation and measurement equipment. Figure 47 shows the typical AC test set up used in the characterization of the ADRF6602.
RF
IN
ADRF6602
EVALUATION BOARD
IF_OUT
ROHDE & SCHWARTZ
FSEA30
AGILENT 34401A SET T O IDC
(SET FO R S UPPLY CURRENT)
5V dc VIA
10-PIN DC HEADER
AGILENT 34980A WITH THREE 34921 MODULES
AND ONE 34950 MODULE
5V dc MEASURED F OR SUPPLY CURRENT
10-PIN DC HEADER
9-PIN CONTRO LLER DSUB AND
GND VIA 10-PIN DC HEADER
3.3V dc VIA 10-PIN DC HEADER
AGILENT E3631A 25V SET TO
3.3V, 6V SE T T O 5V. RETURNS ARE
JUMPERED TOGETHER
08545-047
Figure 47. ADRF6602 AC Test Set Up
Rev. C | Page 23 of 32
Page 24
ADRF6602

EVALUATION BOARD

Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6602. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or with an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0 Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to enable operation with an external VCO (see the Register 6—VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are described in Ta ble 1 0.

EVALUATION BOARD CONTROL SOFTWARE

Software to program the ADRF6602 is available for download on the ADRF6602 product page under the Evaluation Boards & Development Kits section. To install the software
Download and extract the zip file:
1. ADRF6x0x_3p0p0_XP_install.exe file.
Follow the instructions in the read me file..
2.
The evaluation board can be connected to the PC using a PC parallel port or a USB port. These options are selectable from the opening menu of the software interface (see Figure 48). The evaluation board is shipped with a 25-pin parallel port cable for connection to the PC parallel port.
To connect the evaluation board to a USB port, a USB adapter board (EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices. This board connects to the PC using a standard USB cable with a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the ADF4XXXZ-USB board to the 9-pin D-Sub connector on the ADRF6602 evaluation board.
8545-025
Figure 48. Control Software Opening Menu
Figure 49 shows the main menu of the control software with the default settings displayed.
Rev. C | Page 24 of 32
Page 25
ADRF6602
08545-026
Figure 49. Main Screen of the ADRF6602 Evaluation Board Software
Rev. C | Page 25 of 32
Page 26
ADRF6602
V
V

SCHEMATIC AND ARTWORK

CC
T7
1
GND2
1
GND1
1
GND
VCC
1
VCC_BB
VCC_LO
VCC_RF
11A22A3
P1-T7
P1-T7
AGND
9J1
6J1
7J1
8J1
10J1
AGND
VCO_LDO
2P5V_LDO
3P3V_LDO
VCC_SENSE
LO_EXTERN
2J1
3J1
4J1
5J1
1J1
AGND
OUT
VCC
AGND
AGND
0
R43
461
T3
TC4-1W
3
2
VCC_SENSE
0
SNS1
SNS
C28
AGND
0
R32
0
R31
0
R29
AGNDAGND
6A
10UF
LO
AGND
VCC_LO
0
R69
AGND
P4-T7
P4-T7
44A55A6
T8
3A
1
VCC_LO
P1-T7
4
2
0
R6
NC
153
P3-T7
P3-T7
LO_EXTERN
P3-T7
P4-T7
R66
0
R67
R68
0DNI
IP3SET
OUTPUT_EN
C7
0.1UF
AGND AGND
C8
100PF
VCC_BB
C27
0.1UF
TBD
R27
R60
TBD
1
IP3SET
IP3SET
AGND
0
R33
1NF
C6 C5
1NF
R56
10K
AGND
2
VCC
1
VCC1
3
10K
R55
AGND
1
S1
VCC_RF
1
VCC_RF
C25
0.1UF
0
R26
C24
100PF
AGND AGND
272829
30
GND
GND
IP3SET
GND
31323334353637383940
NC
VCC_V2I
NC
VCC_LO
GND
LODRV_EN
LON
LOP
VTUNE
DECLVCO
P1-6
0
R63
R72
100K
AGND
VTUNE
0
R62
22PF
C40
10K
R65R9
C13
6.8PF
10K
3K
C15
R10
C14
22PF
0
R37
0
R38
1
CP
0
R12
2.7NF
DNI
R11
100PF
C10
0
R7
0.1UF
C9
1
VCC4
VCC
C1
100PF
0
R1
C2
0.1UF
VCO_LDO
1
AGND
R49
VCO_LDO
R8
AGND AGND
1
3P3V1
VCC1
123456789
AGND
AGND
10UF
C43
AGND
DNI
AGND
C12
100PF
0
C11
0.1UF
AGND
OSC_3P3V
C41
10UF
AGND
DECL3P3CPGND
0
R15
1
C4
OSC_3P3V
R59
0
VCC
R44
AGND
C29
0.1UF
AGND
RFIN
0
R28
AGND
AGND
VCC_BB
1
C23
VCC_BB1
0.1UF
0
R25
AGND AGND
C22
100PF
DNI
IFP
AGND
R47
C35
DNI
L1
TBD
VCC
IFN
AGND
0
0
R48
C36
DNI
L2
TBD
VCC
DNI
R58
VCC_LO
22
23
242526
IN
GND
GND
GND
RF
AGND
21
PAD
GND
E-PAD
VCC_MIX
GND
AGND
IFN
IFP
VCC_LO
PLL_EN
Z1
SET
R
REF_IN
GND
MUXOUT
R2
DNI
AGND
GND
LE
CLK
DATA
GND
DECL2P5
VCC2
10
AGND
P1-1
TBD
0
13 14 17 19
R35
11 12 15 16 18 20
R19
C32
100PFDNI
AGND
P1-1
1
R50
1KD NI
P1
123456789
CLK
C16
100PF
0
R18
C17
0.1UF
1
2P5V
10UF
C42
R71
0
R16
2P5V_LDO
AGND
REFOUT
DNI
R14
Y1
10PF
22000PF
C3
C31
1000PF
AGND
R70
49.9
AGND
AGND
REFIN
1
VCC_LO1
0
R34
0
R20
1
DATA
0
0
R57
R30
P1-6
AGNDAGND
C20
0.1UF
0
R24
C21
100PF
OUTPUT_EN
R54
3
1
2
S2
AGND
100PFDNI
C33
1
0
0
DIG_GND
R36
AGND
R51
1KDNI
1
VCC
AGND
R53
10K 10K
1
C34
100PFDNI
AGND
R52
1KDNI
AMP745781-4
100PF
C18
AGND
AGND
1
VCC2
AGND
AGND
0
R17
0.1UF
C19
AGND
VCC
08545-023
CC5
LE
3P3V_LDO
Figure 50. Evaluation Board Schematic
Rev. C | Page 26 of 32
Page 27
ADRF6602
08545-013
Figure 51. Evaluation Board Layout (Bottom)
Figure 52. Evaluation Board Layout (Top)
08545-012
Rev. C | Page 27 of 32
Page 28
ADRF6602

EVALUATION BOARD CONFIGURATION OPTIONS

Table 10.
Default Condition/
Component Description
S1, R55, R56, R33
LO IN/OUT SMA Connector
REFIN SMA Connector
REFOUT SMA Connector
CP Test Point
R37, C14, R9, R10, C15, C13, R65, C40
R11, R12
R62, R63, VTUNE SMA Connector
R2 R RFIN SMA Connector
T3
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information).
LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input connector.
Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50 Ω.
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REFIN, 2× REFIN, REFIN/2, and REFIN/4; temperature sensor output voltage; and lock detect indicator.
Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements such as phase noise.
Loop filter. Loop filter components.
Loop filter return. When the internal VCO is used, the loop filter components should be returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used, the loop filter components can be returned to ground by installing a 0 Ω resistor in R11.
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.
pin. This pin is unused and should be left open. R2 = open (0402)
SET
RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6602 is ac-coupled, so no bias is necessary.
IF output. The differential IF output signals from the ADRF6602 (IFP and IFN) are converted to a single-ended signal by T3.
Option Settings
S1 = R55 = open (not installed), R56 = R33 = 0 Ω, LODRV_EN = 0 V
LO input
Lock detect
R12 = 0 Ω (0402), R11 = open (0402)
R62 = 0 Ω (0402), R63 = open (0402)
R3 = R23 = open (0402)
Rev. C | Page 28 of 32
Page 29
ADRF6602

OUTLINE DIMENSIONS

PIN 1
INDICATOR
1.00
0.85
0.80
12° MAX
SEATING PLANE
6.00
BSC SQ
TOP
VIEW
0.80 MAX
0.65 TYP
0.30
0.23
0.18
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
5.75
BSC SQ
0.20 REF
0.05 MAX
0.02 NOM
COPLANARITY
0.60 MAX
0.08
0.50
BSC
0.50
0.40
0.30
0.60 MAX
31
30
EXPOSED
(BOTTOM VIEW)
21
20
40
1
PAD
10
11
4.50 REF
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONF IGURATIO N AND FUNCTION DES CRIPTIONS SECTION O F THIS DATA SHEET.
PIN 1 INDICATOR
4.25
4.10 SQ
3.95
0.25 MIN
072108-A
Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option
ADRF6602ACPZ-R7 −40°C to +85°C 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-40-1 ADRF6602-EVALZ Evaluation Board
1
Z = RoHS Compliant Part.
Rev. C | Page 29 of 32
Page 30
ADRF6602
NOTES
Rev. C | Page 30 of 32
Page 31
ADRF6602
NOTES
Rev. C | Page 31 of 32
Page 32
ADRF6602
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
registered trademarks are the property of their respective owners. D08545-0-9/10(C)
D08545-0-9/10(C)
Rev. C | Page 32 of 32
Loading...