Datasheet ADRF6601 Datasheet (ANALOG DEVICES)

Page 1
750 MHz to 1160 MHz Rx Mixer with
V
V
Integrated Fractional-N PLL and VCO

FEATURES

Rx mixer with integrated fractional-N PLL RF input frequency range: 300 MHz to 2500 MHz Internal LO frequency range: 750 MHz to 1160 MHz Input P1dB: 14.5 dBm Input IP3: 31 dBm IIP3 optimization via external pin SSB noise figure
IP3SET pin open: 13.5 dB
IP3SET pin at 3.3 V: 14.6 dB Voltage conversion gain: 6.7 dB Matched 200 Ω IF output impedance IF 3 dB bandwidth: 500 MHz Programmable via 3-wire SPI interface 40-lead, 6 mm × 6 mm LFCSP

APPLICATIONS

Cellular base stations

GENERAL DESCRIPTION

The ADRF6601 is a high dynamic range active mixer with an integrated phase-locked loop (PLL) and a voltage controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate a f can be divided or multiplied and then applied to the PLL phase frequency detector (PFD).
LODRV_EN
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
input to the mixer. The reference input
LO
CC1
36
LON
37
38
LOP
PLL_EN
DATA
CLK
REF_IN
MUXOUT
16
12
13
14
LE
6
8
SPI
INTERFACE
×2
MUX
÷2
÷4
FRACTION
TEMP
SENSOR
7 11 15 20 21 23 24 25 28 30 31 35

FUNCTIONAL BLOCK DIAGRAM

CC2VCC_LOVCC_MIXVCC_V2IVCC_LO
PHASE
INTEGER
N COUNTER
21 TO 123
MODULUS
REG
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
– +
FREQUENCY
DETECT OR
GND
REG
Figure 1.
ADRF6601
The PLL can support input reference frequencies from 12 MHz to 160 MHz. The PFD output controls a charge pump whose output drives an off-chip loop filter.
The loop filter output is then applied to an integrated VCO. The VCO output at 2 × f programmable PLL divider. The programmable PLL divider is controlled by a sigma-delta (Σ-) modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047.
The active mixer converts the single-ended 50  RF input to a 200 Ω differential IF output. The IF output can operate up to 500 MHz.
The ADRF6601 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, 6 mm × 6 mm LFCSP with an exposed paddle. Performance is specified over the −40°C to +85°C temperature range.
Table 1.
Internal LO
Part No.
Range
ADRF6601 750 MHz 300 MHz 450 MHz 1160 MHz 2500 MHz 1600 MHz
ADRF6602 1550 MHz 1000 MHz 1350 MHz
2150 MHz 3100 MHz 2750 MHz
ADRF6603 2100 MHz 1100 MHz 1450 MHz
2600 MHz 3200 MHz 2850 MHz
ADRF6604 2500 MHz 1200 MHz 1600 MHz
2900 MHz 3600 MHz 3200 MHz
2717101 22
34
BUFFER
BUFFER
PRESCALER
÷2
CHARGE PUMP 250µA, 500µA (DEFAULT ),
750µA, 1000µA
54
R
SET
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010–2011 Analog Devices, Inc. All rights reserved.
is applied to an LO divider, as well as to a
LO
±3 dB RF Balun Range
ADRF6601
INTERNAL LO RANGE
750MHz TO 1160M Hz
DIV
2:1
BY
MUX
4, 2, 1
VCO
CORE
3
CP VTUNE
IFP
NC
191839
IFN
32 33
3.3V LDO
2.5V LDO
VCO LDO
NC
IN
2
9
40
26
29
±1 dB RFIN Balun Range
DECL3P3
DECL2P5
DECLVCO
RF
IN
IP3SET
08546-001
Page 2
ADRF6601

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
RF Specifications .......................................................................... 3
Synthesizer/PLL Specifications................................................... 4
Logic Input and Power Specifications ....................................... 4
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics ............................................. 9
RF Frequency Sweep.................................................................... 9
IF Frequency Sweep ................................................................... 10
Spurious Performance................................................................ 15
Register Structure ........................................................................... 16
Register 0—Integer Divide Control (Default: 0x0001C0)..... 16
Register 1—Modulus Divide Control (Default: 0x003001) ........16
Register 2—Fractional Divide Control (Default: 0x001802) ......17
Register 3—Σ- Modulator Dither Control (Default:
0x10000B).................................................................................... 17
Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4)................................................... 18
Register 5—PLL Enable and LO Path Control (Default:
0x0000E5).................................................................................... 19
Register 6—VCO Control and VCO Enable (Default:
0x1E2106).................................................................................... 19
Register 7—Mixer Bias Enable and External VCO Enable
(Default: 0x000007).................................................................... 19
Theory of Operation ...................................................................... 20
Programming the ADRF6601................................................... 20
Initialization Sequence .............................................................. 20
LO Selection Logic ..................................................................... 21
Applications Information.............................................................. 22
Basic Connections for Operation............................................. 22
AC Test Fixture ............................................................................... 23
Evaluation Board............................................................................ 24
Evaluation Board Control Software......................................... 24
Schematic and Artwork............................................................. 26
Evaluation Board Configuration Options............................... 28
Outline Dimensions....................................................................... 29
Ordering Guide .......................................................................... 29

REVISION HISTORY

3/11—Rev. 0 to Rev. A
Changes to Features Section, General Description Section, and
Table 1 ............................................................................................ 1
Changes to Table 2............................................................................ 3
Changes to Conditions Statement and the Figure of Merit,
Reference Spurs, and Phase Noise Parameters, Table 3;
Changes to Conditions Statement and the Supply Current
Parameter, Table 4 ........................................................................ 4
Changes to Table 6............................................................................ 6
Changes to Table 7............................................................................ 7
Replaced Typical Performance Characteristics Section .............. 9
Added Spurious Performance Section......................................... 15
Changes to Figure 44 and Figure 45............................................. 19
Changes to Theory of Operation Section.................................... 20
Added AC Test Fixture Section and Figure 47;
Renumbered Sequentially ......................................................... 23
Changes to Evaluation Board Control Software Section........... 24
Changes to Table 10........................................................................ 28
1/10—Revision 0: Initial Version
Rev. A | Page 2 of 32
Page 3
ADRF6601

SPECIFICATIONS

RF SPECIFICATIONS

VS = 5 V, ambient temperature (TA) = 25°C, f using CDAC = 0x0 and IP3SET = 3.3 V, unless otherwise noted.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
INTERNAL LO FREQUENCY RANGE 750 1160 MHz RF INPUT FREQUENCY RANGE ±3 dB RF input range 300 2500 MHz RF INPUT AT 610 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −11.1 dB Input P1dB 14.8 dBm Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 67.4 dBm Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 33.4 dBm Single-Side Band Noise Figure IP3SET = 3.3 V 13.3 dB
IP3SET = open 12.5 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −55.5 dBm
RF INPUT AT 910 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −16.7 dB Input P1dB 14.5 dBm Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 55.3 dBm Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 30.9 dBm Single-Side Band Noise Figure IP3SET = 3.3 V 14.6 dB
IP3SET = open 13.5 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −48 dBm
RF INPUT AT 1020 MHz
Input Return Loss Relative to 50 Ω (can be improved with external match) −16.8 dB Input P1dB 14.8 dBm Second-Order Intercept (IIP2) −5 dBm each tone (10 MHz spacing between tones) 60.9 dBm Third-Order Intercept (IIP3) −5 dBm each tone (10 MHz spacing between tones) 32.2 dBm Single-Side Band Noise Figure IP3SET = 3.3 V 14.8 dB
IP3SET = open 13.5 dB
LO-to-IF Leakage At 1× LO frequency, 50 Ω termination at the RF port −49 dBm
IF OUTPUT
Voltage Conversion Gain Differential 200 Ω load 6.7 dB IF Bandwidth Small signal 3 dB bandwidth 500 MHz Output Common-Mode Voltage External pull-up balun or inductors required 5 V Gain Flatness Over frequency range, any 5 MHz/50 MHz 0.2/0.5 dB Gain Variation Over full temperature range 1.2 dB Output Swing Differential 200 Ω load 2 V p-p Differential Output Return Loss Measured through 4:1 balun −15.5 dB
LO INPUT/OUTPUT (LOP, LON) Externally applied 1× LO input, internal PLL disabled
Frequency Range 250 6000 MHz Output Level (LO as Output) 1× LO into a 50 Ω load, LO output buffer enabled −6 dBm Input Level (LO as Input) −6 0 +6 dBm Input Impedance 50 Ω
= 153.6 MHz, f
REF
= 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized
PFD
Rev. A | Page 3 of 32
Page 4
ADRF6601

SYNTHESIZER/PLL SPECIFICATIONS

VS = 5 V, ambient temperature (TA) = 25°C, f
= 140 MHz, IIP3 optimized using CDAC = 0x0 and IP3SET = 3.3 V, unless otherwise noted.
f
IF
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
SYNTHESIZER SPECIFICATIONS Synthesizer specifications referenced to 1× LO
Frequency Range Internally generated LO 750 1160 MHz
Figure of Merit1 P
Reference Spurs f f f >f PHASE NOISE fLO = 750 MHz to 1160 MHz, f
1 kHz to 10 kHz offset −99 dBc/Hz
100 kHz offset −108 dBc/Hz
500 kHz offset −127 dBc/Hz
1 MHz offset −135 dBc/Hz
5 MHz offset −147 dBc/Hz
10 MHz offset −151 dBc/Hz
20 MHz offset −153 dBc/Hz
Integrated Phase Noise 1 kHz to 40 MHz integration bandwidth 0.14
PFD Frequency 20 40 MHz REFERENCE CHARACTERISTICS REF_IN, MUXOUT pins
REF_IN Input Frequency 12 160 MHz
REF_IN Input Capacitance 4 pF
MUXOUT Output Level VOL (lock detect output selected) 0.25 V
V
MUXOUT Duty Cycle 50 % CHARGE PUMP
Pump Current Programmable to 250 μA, 500 μA, 750 μA, 1 mA 500 μA
Output Compliance Range 1 2.8 V
1
The figure of merit (FOM) is computed as phase noise (dBc/Hz) – 10 log 10(f
power = 10 dBm (500 V/μs slew rate) with a 40 MHz f
and f
REF
= 153.6 MHz, f
REF
= 0 dBm −222 dBc/Hz/Hz
REF_IN
= 38.4 MHz
PFD
/4 −107 dBc
PFD
−83 dBc
PFD
−88 dBc
PFD
power = 4 dBm, f
REF
= 38.4 MHz
PFD
= 38.4 MHz, high-side LO injection,
PFD
°rms
(lock detect output selected) 2.7 V
OH
) – 20 log 10(fLO/f
. The FOM was computed at 50 kHz offset.
PFD
PFD
). The FOM was measured across the full LO range with f
PFD
= 80 MHz,
REF

LOGIC INPUT AND POWER SPECIFICATIONS

VS = 5 V, ambient temperature (TA) = 25°C, f using CDAC = 0x0 and IP3SET = 3.3 V, unless otherwise noted.
Table 4.
Parameter Test Conditions/Comments Min Typ Max Unit
LOGIC INPUTS CLK, DATA, LE
Input High Voltage, V
Input Low Voltage, V
Input Current, I
1.4 3.3 V
INH
0 0.7 V
INL
0.1 μA
INH/IINL
Input Capacitance, CIN 5 pF POWER SUPPLIES VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins
Voltage Range 4.75 5 5.25 V
Supply Current PLL only 97 mA External LO mode (internal PLL disabled, IP3SET pin = 3.3 V, LO output buffer off) 184 mA Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer on) 294 mA Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V, LO output buffer off ) 281 mA Power-down mode 30 mA
= 153.6 MHz, f
REF
= 38.4 MHz, high-side LO injection, fIF = 140 MHz, IIP3 optimized
PFD
Rev. A | Page 4 of 32
Page 5
ADRF6601

TIMING CHARACTERISTICS

VS = 5 V ± 5%.
Table 5.
Parameter Limit Unit Description
t1 20 ns min LE setup time t2 10 ns min DATA-to-CLK setup time t3 10 ns min DATA-to-CLK hold time t4 25 ns min CLK high duration t5 25 ns min CLK low duration t6 10 ns min CLK-to-LE setup time t7 20 ns min LE pulse width

Timing Diagram

CLK
t
4
t
5
DATA
DB23 (MSB) DB22
t
1
LE
t
2
t
3
DB2 DB1
(CONTROL BIT C2)(CONTROL BIT C3)
DB0 (LSB)
(CONTROL BIT C1)
t
6
t
7
08546-002
Figure 2. Timing Diagram
Rev. A | Page 5 of 32
Page 6
ADRF6601

ABSOLUTE MAXIMUM RATINGS

Table 6.
Parameter Rating
Supply Voltage, VCC1, VCC2, VCC_LO,
VCC_MIX, VCC_V2I Digital I/O, CLK, DATA, LE, LODRV_EN,
PLL_EN VTUNE 0 V to 3.3 V IFP, IFN −0.3 V to VCC_V2I + 0.3 V RFIN 16 dBm LOP, LON, REF_IN 13 dBm θJA (Exposed Paddle Soldered Down) 35°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
−0.5 V to +5.5 V
−0.3 V to +3.6 V
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. A | Page 6 of 32
Page 7
ADRF6601

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DRV_EN
ND
NC
VCC_LO
G
LO
LON
LOP
VTUNE
DECLVCO
37
38
39
40
PIN 1
1VCC1
INDICATOR
2DECL3P3 3CP
GND
4 5 6 7 8 9
ADRF6601
TOP VIEW
(Not to Scale)
11
12
13
14
LE
CLK
GND
DATA
R
SET
REF_IN
GND
MUXOUT
DECL2P5
10
VCC2
NOTES
1. NC = NO CONNECT. DO NOT CONNECT THIS PIN.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A LOW IMPEDANCE GROUND PL ANE.
Figure 3. Pin Configuration
GND
NC
32
31
33
34
35
36
30 GND 29 IP3SET 28 GND 27 VCC_V2I
RF
26
IN
25
GND 24 GND 23 GND 22 VCC_MIX 21
GND
15
17
16
18
19
20
ND
IFP
IFN
GND
G
PLL_EN
VCC_LO
08546-003
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
1 VCC1
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 2 DECL3P3 Decoupling Node for the 3.3 V LDO. Connect a 0.1 μF capacitor between this pin and ground. 3 CP Charge Pump Output Pin. Connect to VTUNE through the loop filter. 4, 7, 11, 15, 20,
GND Ground. Connect these pins to a low impedance ground plane. 21, 23, 24, 25, 28, 30, 31, 35
5 R
SET
Charge Pump Current. The nominal charge pump current can be set to 250 μA, 500 μA, 750 μA, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 in Register 4 to 0 (internal reference current). In this mode, no external R
is required. If Bit DB18 is set to 1, the four nominal charge pump currents (I
SET
can be externally adjusted according to the following equation:
=
R
SET
6 REF_IN
Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz. This pin is internally dc-
⎛ ⎜ ⎜ ⎝
I
NOMINAL
CP
⎟ ⎟ ⎠
37.8
×
I
4.217
biased and should be ac-coupled.
8 MUXOUT
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect
signal. The output is selected by programming the appropriate register. 9 DECL2P5 Decoupling Node for the 2.5 V LDO. Connect a 0.1 μF capacitor between this pin and ground. 10 VCC2
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 12 DATA Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits. 13 CLK
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched
into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz. 14 LE
Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the
eight registers. The relevant latch is selected by the three control bits of the 24-bit word. 16 PLL_EN
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be
used to switch modes. 17, 34 VCC_LO
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin. 18, 19 IFP, IFN Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes.
Rev. A | Page 7 of 32
NOMINAL
)
Page 8
ADRF6601
Pin No. Mnemonic Description
22 VCC_MIX
26 RFIN RF Input (single-ended, 50 Ω). 27 VCC_V2I
29 IP3SET Connect a resistor from this pin to a 5 V supply to adjust IIP3. Normally leave open. 32, 33 NC No Connection. 36 LODRV_EN
37, 38 LON, LOP
39 VTUNE
40 DECLVCO
EPAD Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high if the PLEN bit (DB6 in Register 5) is set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive frequency must be 1× LO. This pin has an internal 100 kΩ pull-down resistor.
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO generation is disabled, an external 1× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage range on this pin is 1.5 V to 2.5 V.
Decoupling Node for the VCO LDO. Connect a 100 pF capacitor and a 10 μF capacitor between this pin and ground.
Rev. A | Page 8 of 32
Page 9
ADRF6601

TYPICAL PERFORMANCE CHARACTERISTICS

RF FREQUENCY SWEEP

CDAC = 0x0, internally generated high-side LO, RFIN = −5 dBm, fIF = 140 MHz, unless otherwise noted.
5
IP3SET = OPEN IP3SET = 3.3V
4
3
2
1
0
GAIN (dB)
–1
–2
–3
–4
–5
610 660 710 760 810 860 910 960 1010
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 4. Gain vs. RF Frequency
08546-004
45
40
35
30
25
20
INPUT IP3 (dBm)
15
10
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C TA = +25°C TA = –40°C
5
610 660 710 760 810 860 910 960 1010
RF FREQUENCY ( MHz)
Figure 7. Input IP3 vs. RF Frequency
08546-007
90
80
70
60
INPUT IP2 (dBm)
50
40
30
IP3SET = OPEN IP3SET = 3.3V
610 660 710 760 810 860 910 960 1010
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 5. Input IP2 vs. RF Frequency
20
18
16
14
12
10
NOISE FIGURE (dB)
IP3SET = OPEN IP3SET = 3.3V
8
6
4
2
0
610 660 710 760 810 860 910 960 1010
RF FREQUENCY ( MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 6. Noise Figure vs. RF Frequency
20
18
16
14
12
10
INPUT P1dB (dBm)
08546-005
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C
8
6
4
2
0
610 660 710 760 810 860 910 960 1010
RF FREQUENCY ( MHz)
TA = +25°C TA = –40°C
08546-008
Figure 8. Input P1dB vs. RF Frequency
08546-006
Rev. A | Page 9 of 32
Page 10
ADRF6601

IF FREQUENCY SWEEP

CDAC = 0x0, internally generated swept low-side LO, fRF = 1960 MHz, RFIN = −5 dBm, unless otherwise noted.
5
IP3SET = OPEN
4
IP3SET = 3.3V
3
2
1
0
GAIN (dB)
–1
–2
–3
–4
–5
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 9. Gain vs. IF Frequency
08546-009
45
40
35
30
25
20
INPUT IP3 (dBm)
15
10
IP3SET = OPEN IP3SET = 3.3V
5
25 4003753503253002752502252001751501257550 100
IF FREQUENCY (MHz)
Figure 12. Input IP3 vs. IF Frequency, RF
TA = +85°C TA = +25°C TA = –40°C
= −5 dBm
IN
08546-012
90
80
70
60
INPUT IP2 (dBm)
50
40
30
NOISE FIGURE (dB)
IP3SET = OPEN IP3SET = 3.3V
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
IF FREQUENCY (MHz)
Figure 10. Input IP2 vs. IF Frequency, RF
20
18
16
14
12
10
IP3SET = OPEN IP3SET = 3.3V
8
6
4
2
0
25 4003753503253002752502252001751501257550 100
IF FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
= −5 dBm
IN
TA = +85°C TA = +25°C TA = –40°C
Figure 11. Noise Figure vs. IF Frequency
20
18
16
14
12
10
INPUT P1dB (dBm)
08546-010
IP3SET = OPEN IP3SET = 3.3V
8
6
4
2
0
25 4003753503253002752502252001751501257550 100
IF FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
08546-013
Figure 13. Input P1dB vs. IF Frequency
08546-011
Rev. A | Page 10 of 32
Page 11
ADRF6601
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–55
LO-TO -IF FEE DTHROUGH (dBm)
–60
–65
–70
IP3SET = OPEN IP3SET = 3.3V
750 800 850 900 950 1000 1050 1100 1150
LO FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 14. LO-to-IF Feedthrough vs. LO Frequency,
LO Output Turned Off, CDAC = 0x0
30
–40
–50
–60
–70
LO-RF LEAKAGE (dBm)
–80
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C TA = +25°C TA = –40°C
08546-014
0
–5
–10
–15
–20
–25
RETURN LOSS (d B)
–30
–35
–40
500 1300120011001000900800700600
LO FREQUENCY (MHz)
08546-017
Figure 17. LO Input Return Loss vs. LO Frequency (Including TC1-1-13 Balun)
350
300
250
200
150
RESISTANCE (Ω)
100
50
RESISTANCE
CAPACITANCE
3.5
3.0
2.5
2.0
1.5
1.0
0.5
CAPACITANCE (pF )
–90
750 1000 1050 1100 1150950900850800
LO FREQUENCY (MHz)
Figure 15. LO-to-RF Leakage vs. LO Frequency, LO Output Turned Off
0
–5
–10
–15
–20
–25
RETURN LOSS (d B)
–30
–35
–40
500 1300120011001000900800700600
RF FREQUENCY (M Hz)
Figure 16. RF Input Return Loss vs. RF Frequency
0
50 500450400350300250200150100
08546-015
IF FREQUENCY (MHz)
0
08546-018
Figure 18. IF Differential Output Impedance (R Parallel C Equivalent)
35
30
25
20
NOISE FIGURE (dB)
15
10
08546-016
IP3SET = OPEN IP3SET = 3.3V
–60 –50 –40 –30 –20 –10 0
CW BLOCKER LEVEL (dBm)
08546-019
Figure 19. SSB Noise Figure vs. 5 MHz Offset Blocker Level,
LO Frequency = 1055 MHz, RF Frequency = 915 MHz
Rev. A | Page 11 of 32
Page 12
ADRF6601
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
RF-TO-IF ISOLATION (dBc)
–55
–60
–65
–70
0
550 1350125011501050950850750650
IP3SET = OPEN IP3SET = 3.3V
RF FREQUENCY (M Hz)
TA = +85°C TA = +25°C TA = –40°C
08546-020
Figure 20. RF-to-IF Isolation vs. RF Frequency, High-Side LO, IF = 140 MHz,
LO Output Turned Off
0
IP3SET = OPEN IP3SET = 3.3V
750 800 850 900 950 1000 1050 1100 1150
LO FREQUENCY (MHz)
LO OUTPUT AMPLIT UDE (dBm)
–10
–1
–2
–3
–4
–5
–6
–7
–8
–9
TA = +85°C TA = +25°C TA = –40°C
08546-021
Figure 21. LO Output Amplitude vs. LO Frequency
5.0
4.5
4.0
3.5
3.0
2.5
2.0
VTUNE VOLTAGE (V)
1.5
1.0
0.5
0
750 80 0 850 900 950 1000 1050 1100 1150
LO FREQUE NCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 23. VTUNE vs. LO Frequency
350
300
250
200
SUPPLY CURRENT (mA)
150
100
750 1150110010501000950900850800
IP3SET = OPEN IP3SET = 3.3V
LO FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
Figure 24. Supply Current vs. LO Frequency
08546-023
08546-024
20
15
10
5
0
–5
–10
–15
FREQUENCY DEVIATION F ROM 920MHz (M Hz)
–20
0 50 100 150 200 250
TIME (µs)
Figure 22. Frequency Deviation from 910 MHz vs. Time
(Demonstrates LO Frequency Settling Time from 920 MHz to 910 MHz)
08546-022
Rev. A | Page 12 of 32
2.0
1.9
1.8
1.7
1.6
1.5
1.4
VPTAT VOLTAGE (V)
1.3
1.2
1.1
1.0
IP3SET = OPEN IP3SET = 3.3V
–55 –35 –15 5 25 45 65 85 105
TEMPERATURE (° C)
Figure 25. VPTAT Voltage vs. Temperature (IP3SET = Optimized, Open)
08546-025
Page 13
ADRF6601
Complementary cumulative distribution function (CCDF), fRF = 2140 MHz, fIF = 140 MHz.
100
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
0
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C TA = +25°C TA = –40°C
–1.0–1.5–2.0 –0.5 0 0. 5 1.0 1.5 2.0 3.02.5
GAIN (dB)
08546-026
Figure 26. Gain
100
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C TA = +25°C TA = –40°C
0
24 26 28 30 32 34 36 38 40
INPUT IP3 (dBm)
Figure 29. Input IP3
08546-029
100
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C TA = +25°C TA = –40°C
0
50 55 60 65 70 75 80
INPUT IP2 (dBm)
Figure 27. Input IP2
100
IP3SET = OPEN
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
0
11 12 13 14 15 16 17109
NOISE FI GURE (dB)
TA = +85°C TA = +25°C TA = –40°C
Figure 28. Noise Figure
100
IP3SET = OPEN
90
IP3SET = 3.3V
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
0
08546-027
10 11 12 13 1 4 15 16 1817
INPUT P1dB (dBm)
TA = +85°C TA = +25°C TA = –40°C
08546-030
Figure 30. Input P1dB
100
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAG E (%)
10
08546-028
IP3SET = OPEN IP3SET = 3.3V
TA = +85°C TA = +25°C TA = –40°C
0
–90 –80 –70 –60 –50 –40 –30
LO FEEDTHROUGH (dBm)
08546-031
Figure 31. LO Feedthrough to IF, LO Output Turned Off
Rev. A | Page 13 of 32
Page 14
ADRF6601
Measured at IF output, CDAC = 0x0, IP3SET = open, internally generated high-side LO, f RF
= −5 dBm, fIF = 140 MHz, unless otherwise noted. Phase noise measurements made at LO output, unless otherwise noted.
IN
80
–90
LO FREQ UENCY = 1155.2MHz
–100
–110
–120
–130
PHASE NOISE (d Bc/Hz)
LO FREQUENCY = 752MHz
–140
–150
–160
1k 10k 100k 1M 10M 100M
OFFSET FREQUENCY (Hz)
Figure 32. Phase Noise vs. Offset Frequency
TA = +85°C TA = +25°C TA = –40°C
08546-032
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
INTEGRATE D PHASE NOISE ( °rms)
0.05
0
750 800 850 900 950 1000 1 050 1100 1150
= 153.6 MHz, f
REF
LO FREQUENCY (MHz)
= 38.4 MHz,
PFD
TA = +85°C TA = +25°C TA = –40°C
Figure 35. Integrated Phase Noise vs. LO Frequency
08546-035
75
OFFSET AT 2× PFD FREQUENCY
–80
–85
–90
–95
SPURS LEVEL (dBc)
–100
–105
–110
OFFSET AT 4× PFD FREQUENCY
TA = +85°C TA = +25°C TA = –40°C
750 850 950 1050 1150800 900 1000 1100
LO FREQUENCY (MHz)
08546-033
Figure 33. PLL Reference Spurs vs. LO Frequency (2× PFD and 4× PFD)
75
OFFSET AT 3× PFD FREQUENCY
–80
–85
–90
–95
SPURS LEVEL (dBc)
–100
–105
–110
OFFSET AT 1× PFD FREQUENCY
0.25× PFD FREQUENCY
750 850 950 1050 1150800 900 1000 1100
LO FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
08546-034
Figure 34. PLL Reference Spurs vs. LO Frequency (0.25× PFD, 1× PFD, and 3× PFD)
90
OFFSE T = 1kHz
OFFSE T = 100kHz
OFFSET = 5MHz
LO FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
08546-036
PHASE NOISE (dBc/Hz)
–100
–110
–120
–130
–140
–150
–160
750 1150110010501000950900850800
Figure 36. Phase Noise vs. LO Frequency (1 kHz, 100 kHz, and 5 MHz Steps)
100
–105
–110
–115
–120
–125
–130
–135
PHASE NOISE (dBc/Hz)
–140
–145
–150
750 800 850 900 950 1000 1050 1100 1150
OFFSET = 10kHz
OFFSET = 1MHz
LO FREQUENCY (MHz)
TA = +85°C TA = +25°C TA = –40°C
08546-037
Figure 37. Phase Noise vs. LO Frequency (10 kHz, 1 MHz Steps)
Rev. A | Page 14 of 32
Page 15
ADRF6601

SPURIOUS PERFORMANCE

(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board (see the Evaluation Board section). Mixer spurious products were measured in dB relative to the carrier (dBc) from the IF output power level. All spurious components greater than −125 dBc are shown.
LO = 750 MHz, RF = 610 MHz (horizontal axis is m, vertical axis is n), and RF
0 1 2
N
3 4 5 6 7
0 1 2 3 4
−115.74 −63.28 −31.83 −54.52 −33.54
−49.49 0.0 −64.58 −24.09 −71.52
−48.77 −42.49 −75.23 −60.35 −67.88
−81.30 −71.27 −103.32 −73.13 −110.05
−83.02 −91.24 −105.20 −88.27 −113.66
−103.16 −111.19 −114.25 −108.4 −115.31
−110.88 −112.83 −112.85 −113.85 −113.55
−110.87 −108.26 −112.91 −111.93 −113.64
M
LO = 1050 MHz, RF = 910 MHz (horizontal axis is m, vertical axis is n), and RF
0 −113.23 −57.96 −27.78 −58.01 1 −34.12 0.0 −58.72 −27.14 −84.94 2 −49.76 −47.19 −57.30 −68.48 −65.03
N
3 −73.54 −74.12 −102.24 −72.99 −108.62 4 5 6 7
0 1 2 3 4
−102.66
−108.79 −107.57
−110.79 −108.34 −107.38
−109.87 −109.71 −108.58
−110.29 −100.07 −99.75 −112.69
M
−110.94 −110.16 −115.35
power = 0 dBm.
IN
power = 0 dBm.
IN
−40.34
−112.44 −113.78
−110.01
Rev. A | Page 15 of 32
Page 16
ADRF6601

REGISTER STRUCTURE

This section provides the register maps for the ADRF6601. The three LSBs determine the register that is programmed.

REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)

RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0000000000000DMID6ID5ID4ID3ID2ID1ID0C3(0)C2(0)C1(0)
DM
0
1
ID6 ID5 ID4 ID3 ID2 ID1 ID0
0010101
0010110
0010111
0011000
... ... ... ... ... ... ...
... ... ... ... ... ... ...
0111000
... ... ... ... ... ... ...
... ... ... ... ... ... ...
1110111
1111000
1111001
1111010
1111011
DIVIDE MODE
DIVIDE MODE
FRACTIONAL (DEFAULT)
INTEGER
INTEGER DI VIDE RATIO CONTROL BITS
INTEGER DIVIDE RATIO
21 (INTEG ER MODE ONL Y)
22 (INTEG ER MODE ONL Y)
23 (INTEG ER MODE ONL Y)
24
...
...
56 (DEFAULT)
...
...
119
120 (INTEGER MODE ONL Y)
121 (INTEGER MODE ONL Y)
122 (INTEGER MODE ONL Y)
123 (INTEGER MODE ONL Y)
Figure 38. Register 0—Integer Divide Control Register Map
08546-038

REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
RESERVED
0 0 0 0 0 0 0 0 0 0 MD10 M D9 M D8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1)
MD10MD9MD8MD7MD6MD5MD4MD3MD2MD1MD0
0 0000000001
0 0000000010
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
1 1000000000
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
1 1111111111
Figure 39. Register 1—Modulus Divide Control Register Map
Rev. A | Page 16 of 32
MODULUS VALUE
CONTROL BI TS
MODULUS VALUE
1
2
...
...
1536 (DEFAULT )
...
...
2047
8546-039
Page 17
ADRF6601

REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
FRACTIONAL VALUERESERVED
0 0 0 0 0 0 0 0 0 0 FD10 FD9 FD8 FD7 FD6 FD5 FD4 FD3 F D2 FD1 F D0 C3(0) C2(1) C1(0)
CONTROL BI TS
FD10FD9FD8FD7FD6FD5FD4FD3FD2FD1FD0
0 0000000000
0 0000000001
... ... ... ... ... ... ... ... ... .. . ...
... ... ... ... ... ... ... ... ... .. . ...
0 1100000000
... ... ... ... ... ... ... ... ... .. . ...
... ... ... ... ... ... ... ... ... .. . ...
FRACTIONAL VALUE MUST BE LESS THAN MO DULUS
Figure 40. Register 2—Fractional Divide Control Register Map

REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 DITH1 DITH0 DE N DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)
DITH1 DITH0 00 01
10
11
DITHER
MAGNITUDE
DITHER MAGNITUDE 15 (DEFAULT ) 7
3
1 (RECOMMENDED)
DITHER
ENABLE
DEN 0 1
DITHER RESTART VALUE CONTROL BITS
DITHER ENABLE DISABLE ENABLE (DEFAULT, RECOMMENDED)
FRACTIONAL VALUE
0
1
...
...
768 (DEFAULT )
...
...
<MDR
08546-040
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0
00000000000000001
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
11111111111111111
DITHER RESTART VALUE
0x00001 (DEFAULT )
... ... 0x1FFFF
08546-041
Figure 41. Register 3—Σ-Δ Modulator Dither Control Register Map
Rev. A | Page 17 of 32
Page 18
ADRF6601

REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)

REF OUP UT
MUX SELECT
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
RMS2 RMS1 RMS0 RS1 RS0 CPM CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1 PE0 PAB1 PAB0 C3(1) C2(0) C1(0)
INPUT REF
PATH
CP
CURRENT
REF
SOURCE
PFD
POL
PFD PHASE OFFSET
MULTIPLIER
CP
CURRENT
CP
SRC
CP
CONTROL
PFD EDGE CONTROL BITS
PFD ANTI
BACKLASH
DELAY
CPB4 CPB3 CPB2 CPB1 CPB0
0000 0 0000 1 0011 0 0101 0 1000 0 1111 1
CPC1 CPC0
00 01 10 11
CHARGE PUMP CONTROL SOURCE
CPS
CONTROL BASE D ON STATE OF DB7/DB8 (CP CO NTROL)
0
CONTROL FRO M PFD (DEFAUL T)
1
CPP1 CPP0
00 01 10 11
PFD PHASE OFF SET MULTIPLIER
0 × 22.5°/I 1 × 22.5°/I 6 × 22.5°/I 10 × 22.5°/I 16 × 22.5°/I 31 × 22.5°/I
CHARGE PUMP CURRENT
250µA 500µA (DEFAUL T) 750µA 1000µA
CPMULT CPMULT
(RECOMMENDED)
CPMULT
(DEFAULT)
CPMULT CPMULT CPMULT
PAB0 PAB1
00 01 10 11
REFERENCE PATH EDGE
PE0
SENSITIVITY
0
FALLING EDGE RISING EDG E (DEFAULT )
1
DIVIDER PATH EDGE
PE1
SENSITIVITY
0
FALLING EDGE RISING EDG E (DEFAULT )
1
CHARGE PUMP CONT ROL
BOTH ON PUMP DOWN PUMP UP TRISTATE (DEFAULT)
PFD ANTI BACKLASH DELAY
0ns (DEFAULT)
0.5ns
0.75ns
0.9ns
RMS2 RMS1 RMS0
000 001 010 011 100 101 110 111
CPBD
0 1
CHARGE PUMP CURRENT
CPM
REFERENCE SOURCE INTERNAL (DEF AULT)
0
EXTERNAL
1
RS0 RS1
00 01 10 11
REF OUTPUT MUX SELECT
LOCK DETECT (DEFAULT) VPTAT REF_IN (BUFFERED)
0.5× REF_IN ( BUFFERED) 2× REF_IN (BUFFERED) TRISTATE RESERVED RESERVED
INPUT REFERENCE PATH SOURCE
2× REF_IN REF_IN (DEFAULT)
0.5× REF_IN
0.25× REF_IN
Figure 42. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map
PFD PHASE OFFSET POLARITY
NEGATIVE POSITIVE (DEFAULT)
Rev. A | Page 18 of 32
08546-042
Page 19
ADRF6601

REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)

RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7
00000000000 0
CAP DAC
CD3 CD2 CD1 CD0 PLEN LDV1 L XL LDRV C3(1) C2(0) C1(1)
RES
LDV2
PLLENLO
DIV1LOEXTLODRV
DB6 DB5 DB4 DB3 DB2 DB1 DB0
CONTRO L BIT S
CAPACITOR DAC
CD3 CD2 CD1 CD0
0000
... ... ... ...
1111
CONTROL F OR IIP3 OPTIMIZATION
MIN ... MAX
Figure 43. Register 5—PLL Enable and LO Path Control Register Map

REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)

DB23
CPEN
0 1
CHARGE
PUMP
DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
000
CHARGE PUMP ENABLE
DISABLE ENABLE (DEFAULT)
ENABLE
L3EN 3.3V LDO ENABLE
DISABLE
0
ENABLE (DEFAULT)
1
LVEN VCO LDO ENABLE
0 1
3.3V VCO LDO
LDO
ENABLE
ENABLE
CPEN L3EN VCO EN VCO SW VC5
DISABLE ENABLE (DEFAULT)
LVEN
VCO
ENABLE
VCO EN
0 1
VCO
SWITCH
VCO SW
0 1
VCO SWIT CH CONTROL FROM SPI
REGULAR (DEFAUL T) BAND CAL
VCO ENABLE
DISABLE ENABLE (DEFAULT)
Figure 44. Register 6—VCO Control and VCO Enable Register Map
VCO
VCO AMPLITUDERESERVED
VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)
VC[5:0] VCO AMPLITUDE
0x00 0 …. ….
0x18 24 (DEFAULT) …. ….
0x2B 43 …. ….
0x3F 63 (RECOMMENDE D)
BW SW
CTRL
VBSRC
0 1
LO OUTPUT DRIVER
LDRV
ENABLE
DRIVER OFF (DEFAULT)
0
DRIVER ON
1
EXTERNAL LO DRIVE
LXL
ENABLE (PIN 37, PIN 38)
INTERNAL LO OUTPUT (DEFAULT)
0
EXTERNAL LO INPUT
1
DIVIDE-BY-2 I N LO CHAIN E NABLE
LDV1
DIVIDE BY 1
0
DIVIDE BY 2 (DEFAULT)
1
PLEN
PLL ENABLE
DISABLE
0
ENABLE (DEFAULT)
1
VCO BAND SELECT FROM SPI
VBS[5:0] VCO BAND SELECT FROM SPI
0x00 0x01
….
0x20 ….
0x3F
VCO BW CAL AND SW SOURCE CONTRO L
BAND CAL (DEFAULT ) SPI
DEFAULT
CONTROL BI TS
08546-043
08546-044

REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)

MIXER
XVCORES
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0XVCO
B_EN
MBE0 0 00000000000000 00C3(1)C2(1)C1(1)
MBE
MIXER BIAS ENABL E ENABLE (DEFAULT)
0
DISABLE
1
EXTERNAL VCO
XVCO
INTERNAL VCO (DEFAULT)
0
EXTERNAL VCO
1
Figure 45. Register 7—Mixer Bias Enable and External VCO Enable Register Map
RESERVED CONTROL BITS
Rev. A | Page 19 of 32
08546-045
Page 20
ADRF6601

THEORY OF OPERATION

The ADRF6601 integrates a high performance downconverting mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the fractional-N PLL functions and the mixer optimization functions, as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6601 is the next generation of an industry-leading family of mixers from Analog Devices, Inc. The RF input is converted to a current and then mixed down to IF using high performance NPN transistors. The mixer output currents are transformed to a differential output voltage by external bias inductors. The mixer bias current is also sourced through these external inductors. The high performance active mixer core results in an exceptional IIP3 and IP1dB with a very low output noise floor for excellent dynamic range. Over the specified frequency range, the ADRF6601 typically provides an IF input P1dB of
14.5 dBm and an IIP3 of 31 dBm.
Improved performance at specific frequencies can be achieved with the use of the internal capacitor DAC (CDAC), which is programmable via the SPI port and by using a resistor to a 5 V supply from the IP3SET pin (Pin 29). Adjustment of the capacitor DAC allows increments in phase shift at internal nodes in the ADRF6601, thus allowing cancellation of third-order distortion with no change in supply current. Connecting a resistor to a 5 V supply from the IP3SET pin increases the internal mixer core current, thereby improving overall IIP2 and IIP3, as well as IP1dB. Using the IP3SET pin for this purpose increases the overall supply current.
The fractional divide function of the PLL allows the frequency multiplication value from REF_IN to LO output to be a fractional value rather than to be restricted to an integer value as in traditional PLLs. In operation, this multiplication value is
INT + (FRAC/MOD)
where:
INT is the integer value. FRAC is the fractional value. MOD is the modulus value.
The INT, FRAC, and MOD values are all programmable via the SPI port. In other fractional-N PLL designs, fractional multiplication is achieved by periodically changing the fractional value in a deterministic way. The disadvantage of this approach is often spurious components close to the fundamental signal. In the ADRF6601, a Σ- modulator is used to distribute the fractional value randomly, thus significantly reducing the spurious content due to the fractional function.
Table 8. ADRF6601 Register Functions
Register Function
Register 0 Integer divide control for the PLL Register 1 Modulus divide control for the PLL Register 2 Fractional divide control for the PLL Register 3 Σ-Δ modulator dither control Register 4 PLL charge pump, PFD, reference path control Register 5 PLL enable and LO path control Register 6 VCO control and VCO enable Register 7 Mixer bias enable and external VCO enable
Note that internal calibration for the PLL must be run when the ADRF6601 is initialized at a given frequency. This calibration is run automatically whenever Register 0, Register 1, or Register 2 is programmed. Because the other registers affect PLL performance, Register 0, Register 1, and Register 2 should always be programmed in the order specified in the Initialization Sequence section.
To program the frequency of the ADRF6601, the user typically programs only Register 0, Register 1, and Register 2. However, if registers other than these are programmed first, a short delay should be inserted before programming Register 0. This delay ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the ADRF6601 product page under the Evaluation Boards & Kits section that allows easy programming from a PC running Windows XP or Vista.

INITIALIZATION SEQUENCE

To ensure proper power-up of the ADRF6601, it is important to reset the PLL circuitry after the VCC supply rail settles to 5 V ±
0.25 V. Resetting the PLL ensures that the internal bias cells are properly configured, even under poor supply start-up conditions.
To ensure that the PLL is reset after power-up, follow this procedure:
Disable the PLL by setting the PLEN bit to 0 (Register 5,
1. Bit DB6).
After a delay of >100 ms, set the PLEN bit to 1 (Register 5,
2. Bit DB6).
After this procedure is complete, the other registers should be programmed in the following order: Register 7, Register 6, Register 4, Register 3, Register 2, Register 1. Then, after a delay of >100 ms, Register 0 should be programmed.

PROGRAMMING THE ADRF6601

The ADRF6601 is programmed via a 3-pin SPI port. The timing requirements for the SPI port are shown in Figure 2. Eight pro­grammable registers, each with 24 bits, control the operation of the device. The register functions are listed in Tabl e 8 .
Rev. A | Page 20 of 32
Page 21
ADRF6601

LO SELECTION LOGIC

The downconverting mixer in the ADRF6601 can be used without the internal PLL by applying an external differential LO to Pin 37 and Pin 38 (LON and LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these same pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer.
Table 9. LO Selection Logic
Pins1 Register 5 Bits1 Outputs
Pin 16 (PLL_EN) Pin 36 (LODRV_EN) Bit DB6 (PLEN) Bit DB3 (LDRV) Output Buffer LO
0 X 0 X Disabled External 0 X 1 X Disabled External 1 X 0 X Disabled External 1 0 1 0 Disabled Internal 1 X 1 1 Enabled Internal 1 1 1 X Enabled Internal
1
X = don’t care.
The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Ta b le 9 .
Rev. A | Page 21 of 32
Page 22
ADRF6601

APPLICATIONS INFORMATION

BASIC CONNECTIONS FOR OPERATION

Figure 46 shows the schematic for the ADRF6601 evaluation board. The six power supply pins should be individually decoupled using 100 pF and 0.1 µF capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 46.
The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC.
A peak-to-peak differential swing on RF for a sine wave input) results in an IF output power of 4.7 dBm.
The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should
VCC RED
+5V
VCC1
RED
R55 OPEN (0402)
S1
OPEN
(0402)
LO IN/OUT
R56
0
REF_IN
REFOUT
4
51
T8
TC1-1-13+
R70
49.9
(0402)
R16
(0402)
LODRV_EN
3
(0402)
(0402)
C31 1nF
(0402)
0
C5
1nF
C6
1nF
REF_IN
MUXOUT
LON
LOP
34 22 17 10 1
36
37
38
ADRF6601
×2
6
÷2
÷4
8
of 1 V (0.353 V rms
IN
C7
C25
0.1µF
0.1µF
(0402)
(0402)
R6
R26
0
0
(0402)
(0402)
C8
C24
100pF
100pF
(0402)
(0402)
VCC_MIXVCC_V2IVCC_LO
27
FRACTIO N
REG
THIRD-ORDER
FRACTIONAL
INTERPO LATOR
MUX
TEMP
SENSOR
1174 2015 2321 2524 3038 3531
Figure 46. Basic Connections for Operation of the ADRF6601
C23
C20
0.1µF
0.1µF
(0402)
(0402)
R25 0 (0402)
(ORANG E)
R24 0 (0402)
C22
C21
100pF
100pF
(0402)
(0402)
VCC_LO VCC2 VCC1
N COUNTER
21 TO 123
PHASE
+
FREQUENCY
DETECTOR
CP
TEST
POINT
INTEGER
REG
R38
0
(0402)
C14
22pF
(0603)
C43
10µF
(0603)
MODULUS
R37
0
(0402)
R11 OPEN (0402)
R17 0 (0402)
R9 10k
OPEN (0402)
be ac-coupled and terminated with a 50 Ω resistor as shown in Figure 46. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin.
The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options section.
Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary.
P1
89
R57 0 (0402)
CLK
DATA
13 12
SPI
INTERFACE
1840393
VCC
+5V
195
LE
14
9-PIN DSUB
R36 0 (0402)
IFNIFP
DECL2P5
9
DECL3P3
2
RF
26
IP3SET
29
R59
0
(0402)
C29
0.1µF (0402)
C34 OPEN (0402)
C33 OPEN (0402)
C32 OPEN (0402)
IN
C16 100pF (0402)
C12 100pF (0402)
R28
0
(0402)
R27
(0402)
14
2
3
R52 OPEN (0402)
R51 OPEN (0402)
R50 OPEN (0402)
(0402)
(0402)
0
(0402)
5
R18
R43
0
R8 0
RFIN
C27
0.1µF (0402)
0
VCC
R54 10k (0402)
S2
R53
10k
(0402)
C19
C9
0.1µF
0.1µF
(0402)
(0402)
R7 0 (0402)
C18
C10
100pF
100pF
(0402)
(0402)
BUFFER
BUFFER
PRESCALER
÷2
CHARGE PUMP 250µA, 500µA ( DEFAULT), 750µA, 1000µA
R
SET
R2 OPEN (0402)
R65 10 k
(0402)
(0402)
R10
3.0k
C13
(0603)
6.8pF
C15
(0603)
2.7nF (1206)
R1 0
(0402)
C2
C1 100pF (0402)
R20
0
(0402)
C40 22pF (0603)
R12 0 (0402)
2 4 61357
R19
0
(0402)
DIVIDER
÷2
DIV
2:1
MUX
4, 2, 1
VCO
CORE
VTUNE
CP
R62 0 (0402)
BY
R35 0 (0402)
DECLVCO
R63 OPEN (0402)
R30 0 (0402)
PLL_EN
16
VTUNE
C17
0.1µF (0402)
C11
0.1µF (0402)
RFOUT
C42 10µF (0603)
C41 OPEN (0603)
08546-046
Rev. A | Page 22 of 32
Page 23
ADRF6601
A

AC TEST FIXTURE

Characterization data for the ADRF6601 was taken under very strict test conditions. All possible techniques were used to achieve optimum accuracy and to remove degrading effects of
ALL INSTRUMENTS ARE CONTROLLED BY A LAB COMPUTER VIA A USB TO GPIB CONTROLLER, DAISY CHAINED TO EACH INDIVIDUAL INSTRUMENT.
RF1 AGILENT N5181A
HP 11636A
POWER DIVI DER
RF2 AGILENT N5181A
REF_IN AGILENT N5181A
REF_IN
DRF6601 CHARACTERIZATI ON RACK DIAGRAM.
the signal generation and measurement equipment. Figure 47 shows the typical ac test setup used in the characterization of the ADRF6601.
RF
IN
ADRF6601
EVALUATION BOARD
IF_OUT
ROHDE & SCHWARTZ
FSEA30
AGILENT 34401A SET TO IDC
(SET FOR SUPPLY CURRENT)
5V dc VIA
10-PIN DC HEADER
AGILENT 34980A WITH THREE 34921 MODUL ES
AND ONE 34950 MODULE
5V dc MEASURED FOR SUPPLY CURRENT
10-PIN DC HEADER
9-PIN CONTRO LLER DSUB AND
GND VIA 10-PIN DC HEADER
3.3V dc VI A 10-PIN DC HEADER
AGILENT E3631A 25V SET TO
3.3V, 6V SET TO 5V. RETURNS ARE
JUMPERED TOGETHER
08546-047
Figure 47. ADRF6601 AC Test Setup
Rev. A | Page 23 of 32
Page 24
ADRF6601

EVALUATION BOARD

Figure 50 shows the schematic of the RoHS-compliant evaluation board for the ADRF6601. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or with an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0 Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to enable operation with an external VCO (see the Register 6—VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are described in Ta bl e 10 .

EVALUATION BOARD CONTROL SOFTWARE

Software to program the ADRF6601 is available for download from the ADRF6601 product page under the Evaluation Boards & Kits section. To install the software
Download and extract the zip file:
1. ADRF6x0x_3p0p0_XP_install.exe file.
Follow the instructions in the read me file.
2.
The evaluation board can be connected to the PC using a PC USB port.
To connect the evaluation board to a USB port, a USB adapter board (EVAL-ADF4XXXZ-USB) must be purchased from Analog Devices.
This board connects to the PC using a standard USB cable with a USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the EVAL-ADF4XXXZ-USB board to the 9-pin D-Sub connector on the ADRF6601 evaluation board.
Figure 48. Control Software Opening Menu
Figure 49 shows the main window of the control software with the default settings displayed.
08546-053
Rev. A | Page 24 of 32
Page 25
ADRF6601
08546-049
Figure 49. Main Window of the ADRF6601 Evaluation Board Software
Rev. A | Page 25 of 32
Page 26
ADRF6601

SCHEMATIC AND ARTWORK

T7
GND2
GND1
GND
VCC
1
VCC
VCC_BB
VCC_LO
VCC_RF
AGNDAGND
6A
11A22A3
P1-T7
P1-T7
1
1
1
AGND
VCC_SENSE
SNS1
SNS
0
R32
0
R31
0
R29
LO
AGND
P4-T7
P4-T7
44A55A6
T8
3A
153
P3-T7
P3-T7
P4-T7
P1-6
9J1
10J1
VCO_LDO
LO_EXTERN
C28
AGND
10UF
AGND
0
R69
VCC_LO
P1-T7
4
2
NC
LO_EXTERN
P3-T7
0
R72
VTUNE
5J1
6J1
7J1
8J1
2P5V_LDO
3P3V_LDO
0
R66
R67
R68
0 DNI
IP3SET
OUTPUT_EN
VCC_LO
1
C7
0.1UF
0
R6
AGND AGND
C8
100PF
R63
100K
AGND
10K
R65R9
10K
0
R38
1
CP
1J1
2J1
3J1
4J1
AGND
TC4-1W
3
VCC
AGND
AGND
VCC_SENSE
0
IP3SE T
0
R33
1NF
C6 C5
1NF
3K
R10
R56
10K
AGND
2
VCC
1
VCC1
0
R62
22PF
C40
C13
6.8PF
C15
2.7NF
C14
22PF
0
R37
VCC4
1
3
S1
10K
R55
0
R12
VCO_LDO
1
DNI
AGND
R11
100PF
C10
0
R7
AGND AGND
0.1UF
C9
1
VCC
AGND
OUT
0
R43
VCC_BB
TBD
R27
1
IP3SET
AGND
0
R1
VCO_LDO
1
3P3V1
VCC_RF
C27
0.1UF
R60
TBD
AGND AGND
AGND
31323334353637383940
INBB IPBB
GND
LON LOP
AGND
100PF
C1
AGND
C43
C2
0.1UF
AGND
R49
DNI
AGND
C12
100PF
0
R8
AGND
C11
0.1UF
AGND
C41
10UF
2
461
T3
VCC_RF
1
C25
0.1UF
0
R26
C24
100PF
27
28
29
30
VCCRF
GNDRF
GNDRF
IP3SET
GNDBB
VCC_LO
LOEXTEN
VCO_IN
VCO_LDO
3P3_LDO
VCC
CPOUT
GNDCP
123456789
10UF
0
C4
R15
1
OSC_3P3V
OSC_3P3V
AGND
AGND
26
RFIN
Z1
RSET
R2
AGND
22000PF
RFIN
0
R28
24
25
RFRTNNCGNDRF
REF_IN
REFGND
DNI
Y1
10PF
C3
R59
0
VCC
R44
AGND
GNDBB IFN IFP VCC_LO OUTPUTEN GNDDIG LE CLK DATA GNDDIG
DNI
IFP
AGND
R47
C35
DNI
L1
TBD
VCC
AGND
0
13 14 17 19
11 12 15 16 18 20
0
AGND
R35
R19
C32
100PF DNI
AGND
P1-11
1
R50
1K DNI
P1
CLK
C16
100PF
0
R18
C17
0.1UF
1
2P5V
10UF
C42
2P5V_LDO
AGND
AGND
0
0
R48
C36
L2
VCC
DNI
R58
VCC_LO1
0
R34
0
R20
1
DATA
0
0
R30
P1-6
2345678
AGND
R17
AGND
1
VCC2
AGND
IFN
1
R57
VCC
AGND
DNI
TBD
VCC_LO
AGNDAGND
C20
0.1UF
0
R24
C21
100PF
OUTPUT_EN
R54
3
1
2
S2
AGND
100PF DNI
C33
1
0
0
DIG_GND
R36
9
AMP745781-4
100PF
C18
0
0.1UF
C19
AGND
R51
1K DNI
AGND
AGND
1
VCC
AGND
R53
10K 10K
1
C34
100PF DNI
AGND
R52
1K DNI
AGND
C29
0.1UF
AGND
VCC_BB
1
C23
VCC_BB1
0.1UF
0
R25
AGND AGND
C22
100PF
22
23
21
PAD
E-PAD
GNDRF
VCCBB
2P5_LDO
REFOUT/LOCK
VCC
10
AGND
P1-1
TBD R71
R16
REFOUT
DNI R14
C31
1000PF
AGND
R70
49.9
REFIN
08546-050
VCC5
LE
3P3V_LDO
Figure 50. Evaluation Board Schematic
Rev. A | Page 26 of 32
Page 27
ADRF6601
08546-051
Figure 51. Evaluation Board Layout (Bottom)
Figure 52. Evaluation Board Layout (Top)
08546-052
Rev. A | Page 27 of 32
Page 28
ADRF6601

EVALUATION BOARD CONFIGURATION OPTIONS

Table 10.
Default Condition/
Component Description
S1, R55, R56, R33
LO IN/OUT SMA Connector
REFIN SMA Connector
REFOUT SMA Connector
CP Test Point
R37, C14, R9, R10, C15, C13, R65, C40
R11, R12
R62, R63, VTUNE SMA Connector
R2 R RFIN SMA Connector
T3
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information).
LO input/output. An external 1× LO or 2× LO signal can be applied to this single-ended input connector.
Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50 Ω.
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REF_IN, 2× REF_IN, REF_IN/2, and REF_IN/4; temperature sensor output voltage; and lock detect indicator.
Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements such as phase noise.
Loop filter. Loop filter components.
Loop filter return. When the internal VCO is used, the loop filter components should be returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used, the loop filter components can be returned to ground by installing a 0 Ω resistor in R11.
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.
pin. This pin is unused and should be left open. R2 = open (0402)
SET
RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6601 is ac-coupled; therefore, no bias is necessary.
IF output. The differential IF output signals from the ADRF6601 (IFP and IFN) are converted to a single-ended signal by T3.
Option Settings
S1 = R55 = open (not installed), R56 = R33 = 0 Ω, LODRV_EN = 0 V
LO input
Lock detect
R12 = 0 Ω (0402), R11 = open (0402)
R62 = 0 Ω (0402), R63 = open (0402)
R3 = R23 = open (0402)
Rev. A | Page 28 of 32
Page 29
ADRF6601

OUTLINE DIMENSIONS

PIN 1
INDICATOR
1.00
0.85
0.80
12° MAX
SEATING PLANE
6.00
BSC SQ
TOP
VIEW
0.80 MAX
0.65 TYP
0.30
0.23
0.18
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
5.75
BSC SQ
0.20 REF
0.05 MAX
0.02 NOM
COPLANARITY
0.60 MAX
0.50 BSC
0.50
0.40
0.30
0.08
0.60 MAX
31
30
EXPOSED
(BOTTOM VIEW)
21
20
40
1
PAD
10
11
4.50 REF
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONF IGURATIO N AND FUNCTION DES CRIPTIONS SECTION O F THIS DAT A SHEET.
PIN 1 INDICATOR
4.25
4.10 SQ
3.95
0.25 MIN
072108-A
Figure 53. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option
ADRF6601ACPZ-R7 −40°C to +85°C 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-40-1 ADRF6601-EVALZ Evaluation Board
1
Z = RoHS Compliant Part.
Rev. A | Page 29 of 32
Page 30
ADRF6601
NOTES
Rev. A | Page 30 of 32
Page 31
ADRF6601
NOTES
Rev. A | Page 31 of 32
Page 32
ADRF6601
NOTES
©2010–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08546-0-3/11(A)
Rev. A | Page 32 of 32
Loading...