Datasheet ADR392, ADR395 Datasheet (ANALOG DEVICES)

Page 1
Micropower, Low Noise Precision Voltage
www.BDTIC.com/ADI

FEATURES

Compact 5-lead TSOT packages Low temperature coefficient
B grade: 9 ppm/°C A grade: 25 ppm/°C
Initial accuracy
B grade: ±4 mV maximum (ADR390)
A grade: ±6 mV maximum Ultralow output noise: 5 μV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current
3 μA maximum in shutdown
120 μA maximum in operation No external capacitor required Output current: 5 mA Wide temperature range: −40°C to +125°C

APPLICATIONS

Battery-powered instrumentation Portable medical instrumentation Data acquisition systems Industrial process controls Automotive
References with Shutdown
ADR390/ADR391/ADR392/ADR395

PIN CONFIGURATION

ADR390/
1
SHDN
V
OUT (SENSE)
ADR391/
V
2
IN
ADR392/
ADR395
3
(Not to Scale)
Figure 1. 5-Lead TSOT (UJ Suffix)
Table 1.
Output
Model
ADR390B 2.048 9 ±4 ADR390A 2.048 25 ±6 ADR391B 2.5 9 ±4 ADR391A 2.5 25 ±6 ADR392B 4.096 9 ±5 ADR392A 4.096 25 ±6 ADR395B 5.0 9 ±5 ADR395A 5.0 25 ±6
Voltage (VO)
5
GND
V
4
OUT (FORCE)
Temperature Coefficient (ppm/°C)
00419-001
Accuracy (mV)

GENERAL DESCRIPTION

The ADR390/ADR391/ADR392/ADR395 are precision 2.048 V,
2.5 V, 4.096 V, and 5 V band gap voltage references, respectively, featuring low power and high precision in a tiny footprint. Using patented temperature drift curvature correction techniques from Analog Devices, Inc., the ADR39x references achieve a low 9 ppm/°C of temperature drift in the TSOT package.
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
The ADR39x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR39x precision voltage references ideally suited for battery­operated applications.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.
Page 2
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configuration ............................................................................. 1
General Description ......................................................................... 1
Specifications ..................................................................................... 3
ADR390 Electrical Characteristics ............................................. 3
ADR391 Electrical Characteristics ............................................. 4
ADR392 Electrical Characteristics ............................................. 5
ADR395 Electrical Characteristics ............................................. 6
Absolute Maximum Ratings ............................................................ 7
Thermal Resistance ...................................................................... 7

REVISION HISTORY

2/08—Rev. F to Rev. G
Changes to Ripple Rejection Ration Parameter (Table 2) ........... 3
Changes to Ripple Rejection Ration Parameter (Table 3) ........... 4
Changes to Ripple Rejection Ration Parameter (Table 4) ........... 5
Changes to Ripple Rejection Ration Parameter (Table 5) ........... 6
Changes to Figure 7 .......................................................................... 9
Changes to Outline Dimensions ................................................... 19
Changes to Ordering Guide .......................................................... 19
5/05—Rev. E to Rev. F
Changes to Table 5 ........................................................................... 7
Changes to Figure 2 ......................................................................... 9
4/04—Rev. D to Rev. E
Changes to ADR390—Specifications ............................................ 3
Changes to ADR391—Specifications ............................................ 4
Changes to ADR392—Specifications ............................................ 5
Changes to ADR395—Specifications ............................................ 6
4/04—Rev. C to Rev. D
Updated Format ................................................................ Universal
Changes to Title ............................................................................... 1
Changes to Features ......................................................................... 1
Changes to Applications ................................................................. 1
Changes to General Description ................................................... 1
Changes to Table 1 ........................................................................... 1
Changes to ADR390—Specifications ............................................ 3
Changes to ADR391—Specifications ............................................ 4
Changes to ADR392—Specifications ............................................ 5
Changes to ADR395—Specifications ............................................ 6
Changes to Absolute Maximum Ratings ...................................... 7
ESD Caution...................................................................................7
Terminology .......................................................................................8
Typical Performance Characteristics ..............................................9
Theory of Operation ...................................................................... 16
Device Power Dissipation Considerations .............................. 16
Shutdown Mode Operation ...................................................... 16
Applications Information .............................................................. 17
Basic Voltage Reference Connection ....................................... 17
Capacitors .................................................................................... 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 19
Changes to Thermal Resistance..................................................... 7
Moved ESD Caution........................................................................ 7
Changes to Figure 3, Figure 4, Figure 7, and Figure 8 ................ 9
Changes to Figure 11, Figure 12, Figure 13, and Figure 14...... 10
Changes to Figure 15, Figure 16, Figure 19, and Figure 20...... 11
Changes to Figure 23 and Figure 24............................................ 12
Changes to Figure 27 ..................................................................... 13
Changes to Ordering Guide ......................................................... 19
Updated Outline Dimensions ...................................................... 19
10/02—Rev. B to Rev. C
Add parts ADR392 and ADR395 .................................... Universal
Changes to Features ........................................................................ 1
Changes to General Description ................................................... 1
Additions to Table I ......................................................................... 1
Changes to Specifications ............................................................... 2
Changes to Ordering Guide ........................................................... 4
Changes to Absolute Maximum Ratings ...................................... 4
New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20 ............................ 6
New Figures 4 and 5 ...................................................................... 13
Deleted A Negative Precision Reference
without Precision Resistors Section ............................................ 13
Edits to General-Purpose Current Source Section ................... 13
Updated Outline Dimensions ...................................................... 15
5/02—Rev. A to Rev. B
Edits to Layout ................................................................... Universal
Changes to Figure 6 ....................................................................... 13
Rev. G | Page 2 of 20
Page 3
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

SPECIFICATIONS

ADR390 ELECTRICAL CHARACTERISTICS

VIN = 2.5 V to 15 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V V INITIAL ACCURACY V V V V
O
B grade 2.044 2.048 2.052 V
O
OERR
A grade 0.29 %
OERR
B grade 4 mV
OERR
B grade 0.19 %
OERR
TEMPERATURE COEFFICIENT TCVO A grade: −40°C < TA < +125°C 25 ppm/°C
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 2.5 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V LOAD REGULATION ∆VO/∆I
QUIESCENT CURRENT IIN No load 120 μA
VOLTAGE NOISE e
0.1 Hz to 10 Hz 5 μV p-p
np-p
TURN-ON SETTLING TIME tR 20 μs LONG-TERM STABILITY OUTPUT VOLTAGE HYSTERESIS ∆V
1
∆VO 1000 hours 50 ppm
O_HYS
RIPPLE REJECTION RATIO RRR fIN = 60 Hz −80 dB SHORT CIRCUIT TO GND ISC V
SHUTDOWN PIN
Shutdown Supply Current I
Shutdown Logic Input Current I
Shutdown Logic Low V
Shutdown Logic High V
1
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
3 μA
SHDN
500 nA
LOGI C
0.8 V
INL
2.4 V
INH
A grade 2.042 2.048 2.054 V
A grade 6 mV
B grade: −40°C < TA < +125°C 9 ppm/°C
I
LOAD
= 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V 60 ppm/mA
LOAD
I
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V 140 ppm/mA
LOAD
−40°C < TA < +125°C 140 μA
100 ppm
= 5 V 25 mA
IN
VIN = 15 V 30 mA
Rev. G | Page 3 of 20
Page 4
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

ADR391 ELECTRICAL CHARACTERISTICS

VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO A grade 2.494 2.5 2.506 V V INITIAL ACCURACY V
V V TEMPERATURE COEFFICIENT TCVO A grade, −40°C < TA < +125°C 25 ppm/°C
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 2.8 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V LOAD REGULATION ∆VO/∆I
QUIESCENT CURRENT IIN No load 120 μA
VOLTAGE NOISE e TURN-ON SETTLING TIME tR 20 μs LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS ∆V RIPPLE REJECTION RATIO RRR fIN = 60 Hz −80 dB SHORT CIRCUIT TO GND ISC V
SHUTDOWN PIN
Shutdown Supply Current I Shutdown Logic Input Current I Shutdown Logic Low V Shutdown Logic High V
1
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
B grade 2.496 2.5 2.504 V
O
A grade 6 mV
OERR
V
A grade 0.24 %
OERR
B grade 4 mV
OERR
B grade 0.16 %
OERR
B grade, −40°C < TA < +125°C 9 ppm/°C
I
LOAD
= 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V 60 ppm/mA
LOAD
I
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V 140 ppm/mA
LOAD
−40°C < TA < +125°C 140 μA
0.1 Hz to 10 Hz 5 μV p-p
np-p
∆VO 1000 hours 50 ppm
100 ppm
O_HYS
= 5 V 25 mA
IN
VIN = 15 V 30 mA
3 μA
SHDN
500 nA
LOGI C
0.8 V
INL
2.4 V
INH
Rev. G | Page 4 of 20
Page 5
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

ADR392 ELECTRICAL CHARACTERISTICS

VIN = 4.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO A grade 4.090 4.096 4.102 V V INITIAL ACCURACY V
V V TEMPERATURE COEFFICIENT TCVO A grade, −40°C < TA < +125°C 25 ppm/°C
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 4.3 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V LOAD REGULATION ∆VO/∆I QUIESCENT CURRENT IIN No load 120 μA
VOLTAGE NOISE e TURN-ON SETTLING TIME tR 20 μs LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS ∆V RIPPLE REJECTION RATIO RRR fIN = 60 Hz −80 dB SHORT CIRCUIT TO GND ISC V
SHUTDOWN PIN
Shutdown Supply Current I
Shutdown Logic Input Current I
Shutdown Logic Low V
Shutdown Logic High V
1
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
B grade 4.091 4.096 4.101 V
O
A grade 6 mV
OERR
V
A grade 0.15 %
OERR
B grade 5 mV
OERR
B grade 0.12 %
OERR
B grade, −40°C < TA < +125°C 9 ppm/°C
I
LOAD
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V 140 ppm/mA
LOAD
−40°C < TA < +125°C 140 μA
0.1 Hz to 10 Hz 7 μV p-p
np-p
∆VO 1000 hours 50 ppm
100 ppm
O_HYS
= 5 V 25 mA
IN
VIN = 15 V 30 mA
3 μA
SHDN
500 nA
LOGI C
0.8 V
INL
2.4 V
INH
Rev. G | Page 5 of 20
Page 6
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

ADR395 ELECTRICAL CHARACTERISTICS

VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 5.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO A grade 4.994 5.000 5.006 V V INITIAL ACCURACY V
V V TEMPERATURE COEFFICIENT TCVO A grade, −40°C < TA < +125°C 25 ppm/°C
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 4.3 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V LOAD REGULATION ∆VO/∆I QUIESCENT CURRENT IIN No load 120 μA
VOLTAGE NOISE e TURN-ON SETTLING TIME tR 20 μs LONG-TERM STABILITY
1
OUTPUT VOLTAGE HYSTERESIS ∆V RIPPLE REJECTION RATIO RRR fIN = 60 Hz −80 dB SHORT CIRCUIT TO GND ISC V
SHUTDOWN PIN
Shutdown Supply Current I Shutdown Logic Input Current I Shutdown Logic Low V Shutdown Logic High V
1
The long-term stability specification is noncumulative. The drift of subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.
B grade 4.995 5.000 5.005 V
O
A grade 6 mV
OERR
V
A grade 0.12 %
OERR
B grade 5 mV
OERR
B grade 0.10 %
OERR
B grade, −40°C < TA < +125°C 9 ppm/°C
I
LOAD
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6 V 140 ppm/mA
LOAD
−40°C < TA < +125°C 140 μA
0.1 Hz to 10 Hz 8 μV p-p
np-p
∆VO 1000 hours 50 ppm
100 ppm
O_HYS
= 5 V 25 mA
IN
VIN = 15 V 30 mA
3 μA
SHDN
500 nA
LOGI C
0.8 V
INL
2.4 V
INH
Rev. G | Page 6 of 20
Page 7
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

At 25°C, unless otherwise noted.
Table 6.
Parameter Rating
Supply Voltage 18 V Output Short-Circuit Duration to GND
Storage Temperature Range −65°C to +125°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +125°C Lead Temperature (Soldering, 60 sec) 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
See derating curves

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, for a device soldered in a circuit board for surface-mount packages.
Table 7.
Package Type θJA θ
TSOT (UJ-5) 230 146 °C/W
Unit
JC

ESD CAUTION

Rev. G | Page 7 of 20
Page 8
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

TERMINOLOGY

Temperature Coefficient
The change of output voltage with respect to operating temper­ature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by the following equation:
[]
Cppm/ ×
TCV
O
=°
TVTV
1O2O
()( )
C25
×°
TTV
12O
6
10
(1)
()()
where:
V
(25°C) is VO at 25°C.
O
(T1) is VO at Temperature 1.
V
O
V
(T2) is VO at Temperature 2.
O
Line Regulation
The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, parts­per-million per volt, or microvolts per volt change in input voltage.
Load Regulation
The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milli­ampere, parts-per-million per milliampere, or ohms of dc output resistance.
Long-Term Stability
Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1000 hours at 25°C.
V
= VO(t0) − VO(t1)
O
tVtV
)()(
V (2)
O
]ppm[
=Δ
⎜ ⎝
0
O
O
tV
)(
0
O
1
6
10
×
⎟ ⎠
where:
(t0) is VO at 25°C at Time 0.
V
O
(t1) is VO at 25°C after 1000 hours operation at 25°C.
V
O
Thermal Hysteresis
The change of output voltage after the device is cycled through temperatures from +25°C to –40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle.
V
= VO(25°C) − V
O_HYS
V
HYSO
_
O
]ppm[ ×
=
(3)
O_TC
o
)25(
VCV
TCO
_
o
)25(
CV
O
6
10
(4)
where:
(25°C) is VO at 25°C
V
O
V
is VO at 25°C after a temperature cycle from +25°C to
O_TC
−40°C to +125°C and back to +25°C
Rev. G | Page 8 of 20
Page 9
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

2.060
5.006
2.056
SAMPLE 2
2.052
(V)
OUT
V
2.048
SAMPLE 1
2.044
2.040 –40 –5
30 65 100 125
TEMPERATURE (°C)
Figure 2. ADR390 Output Voltage vs. Temperature
2.506
2.504
SAMPLE 1
2.502
(V)
2.500
OUT
V
2.498
2.496
SAMPLE 3
SAMPLE 2
SAMPLE 3
5.004 SAMPLE 3
5.002
(V)
V
0419-003
SAMPLE 2
5.000
OUT
4.998
4.996
4.994
–40 –5 30 65 125
SAMPLE 1
TEMPERATURE (°C)
100
00419-006
Figure 5. ADR395 Output Voltage vs. Temperature
140
120
100
80
SUPPLY CURRENT (µA)
60
+125°C
+85°C
+25°C
–40°C
2.494 –40 –5
30 65 100 125
TEMPERATURE (°C)
Figure 3. ADR391 Output Voltage vs. Temperature
4.100
4.098
SAMPLE 3
4.096
(V)
4.094
SAMPLE 1
OUT
V
4.092
4.090
4.088 –40 0 40 80 125
SAMPLE 2
TEMPERATURE (°C)
Figure 4. ADR392 Output Voltage vs. Temperature
40
2.5 15.05.0
00419-004
7.5 10.0 12.5
INPUT VOLTAGE (V)
00419-007
Figure 6. ADR390 Supply Current vs. Input Voltage
140
120
+125°C
100
80
SUPPLY CURRENT (µA)
60
40
2.5 15.05.0
00419-005
+85°C
+25°C
–40°C
7.5 10.0 12.5
INPUT VOLTAGE (V)
00419-008
Figure 7. ADR391 Supply Current vs. Input Voltage
Rev. G | Page 9 of 20
Page 10
ADR390/ADR391/ADR392/ADR395
A
A
A
A
www.BDTIC.com/ADI
140
120
100
80
SUPPLY CURRENT (µA)
60
40
57911
I N PU T VO LTAG E (V )
+125°C
+25°C
–40°C
Figure 8. ADR392 Supply Current vs. Input Voltage
140
120
100
80
SUPPLY CURRENT (µA)
60
+125°C
+25
–40
°
C
°
C
13 15
00419-009
180
I
= 0mA TO 5mA
L
160
140
TION (ppm/mA)
120
LOAD REGUL
100
80
–40 –10
20
TEMPERATURE (°
= 5V
V
IN
50 80 110 125
C)
Figure 11. ADR391 Load Regulation vs. Temperature
90
IL = 0mA TO 5mA
80
70
TION (ppm/mA)
60
LOAD REGUL
50
V
= 7.5V
IN
V
IN
= 5V
V
= 3V
IN
00419-012
40
5.5 7.0 8.5 10.0 14.5
INPUT VOLTAGE (V)
11.5
13.0
Figure 9. ADR395 Supply Current vs. Input Voltage
120
IL = 0mA TO 5mA
100
80
TION (ppm/mA)
60
40
LOAD REGUL
20
0
–40 –10
= 3V
V
IN
V
= 5V
IN
20 50 80 125
TEMPERATURE (°
C)
Figure 10. ADR390 Load Regulation vs. Temperature
110
00419-010
40
–40 –5 30 65 125
TEMPERATURE (°C)
100
00419-013
Figure 12. ADR392 Load Regulation vs. Temperature
80
IL = 0mA TO 5mA
70
V
= 7.5V
IN
60
TION (ppm/mA)
50
LOAD REGUL
40
00419-0 11
30
–40 –5 30 65 125
TEMPERATURE (°C)
100
V
= 5V
IN
00419-014
Figure 13. ADR395 Load Regulation vs. Temperature
Rev. G | Page 10 of 20
Page 11
ADR390/ADR391/ADR392/ADR395
A
A
A
www.BDTIC.com/ADI
25
20
15
TION (ppm/V)
10
LINE REGUL
5
0
–40 –10
20 80 110 125
TEMPERATURE (°C)
50
Figure 14. ADR390 Line Regulation vs. Temperature
25
20
15
10
LINE REGULATION ( ppm/V)
5
00419-015
14
12
10
8
TION (ppm/V)
6
4
LINE REGUL
2
0
–40 –5 30 65 125
VIN = 5.3V TO 15V
100
TEMPERATURE (°C)
Figure 17. ADR395 Line Regulation vs. Temperature
3.0
2.8
2.6
MIN (V)
IN
V
2.4
2.2
+85°C
–40
+25°C
°C
+125°C
00419-018
0
–40 –10
20 80 110 125
TEMPERATURE (°C)
50
Figure 15. ADR391 Line Regulation vs. Temperature
14
12
10
8
TION (ppm/V)
6
4
LINE REGUL
2
0
–40 –5 30 65 125
VIN = 4.4V TO 15V
100
TEMPERATURE (°C)
Figure 16. ADR392 Line Regulation vs. Temperature
00419-016
2.0 01
234
LOAD CURRENT (mA)
5
00419-019
Figure 18. ADR390 Minimum Input Voltage vs. Load Current
3.6
°C
3.4
3.2
MIN (V )
IN
V
3.0
2.8
2.6 01
00419-017
2345
LOAD CURRENT (mA)
+125
+85
+25
–40
°C
°C
°C
00419-020
Figure 19. ADR391 Minimum Input Voltage vs. Load Current
Rev. G | Page 11 of 20
Page 12
ADR390/ADR391/ADR392/ADR395
C
www.BDTIC.com/ADI
4.8
4.6
4.4
MIN (V)
IN
4.2
V
4.0
3.8 0123 5
LOAD CURRENT (mA)
+125
+25°C
–40°C
Figure 20. ADR392 Minimum Input Voltage vs. Load Current
6.0
5.8
5.6
5.4
MIN (V)
5.2
IN
V
5.0
+125
+25
–40
70
TEMPERATURE: +25°
°C
4
0419-021
60
50
Y
40
30
FREQUEN
20
10
0
–0.56 –0.26
–0.41 –0.11
V
OUT
Figure 23. ADR391 V
1k
900
VIN = 5V
800 700
°
C
°
C
°
C
Hz)
600
500
400
300
200
°
C
–40
C
DEVIATION (mV)
Hysteresis Distribution
OUT
ADR391
ADR390
+125°C +25°C
0.04 0.19
0.34
00419-024
4.8
4.6 0123 5
LOAD CURRENT (mA)
4
00419-022
Figure 21. ADR395 Minimum Input Voltage vs. Load Current
60
TEMPERATURE: +25°C
50
40
30
FREQUENCY
20
10
0
–0.18 –0.06
–0.24
–0.12
Figure 22. ADR390 V
–40°C
0 0.06 0.18
V
DEVIATION (mV)
OUT
Hysteresis Distribution
OUT
+125°C +25°C
0.12 0.24
0.30
00419-023
VOLTAGE NOISE DENSITY (nV/
100
10 100 1k 10k
FREQUENCY (Hz)
Figure 24. Voltage Noise Density vs. Frequency
0
0
0
0
0
0
VOLTAGE (2µV/DIV)
0
0
0
TIME (1s/ DIV)
Figure 25. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz
00419-025
0419-026
Rev. G | Page 12 of 20
Page 13
ADR390/ADR391/ADR392/ADR395
T
www.BDTIC.com/ADI
V
OUT
V
ON
LOAD
VOLTAGE (100µV/DIV)
VOLTAGE (1V/DIV)
LOAD OFF
CL = 0nF
TIME (10µ s/DIV)
Figure 26. ADR391 Voltage Noise 10 Hz to 10 kHz
LINE INTERRUPTI ON
VOLTAGE
V
OUT
TIME (10µs/DIV)
Figure 27. ADR391 Line Transient Response
C
C
BYPASS
BYPASS
0.5V/DIV
1V/DIV
= 0µF
= 0.1µF
00419-027
TIME (200µ s/DIV)
00419-030
Figure 29. ADR391 Load Transient Response
V
OUT
LOAD OFF
V
ON
VOLTAGE (1V/DIV)
LOAD
00419-028
TIME (200
µs/DIV)
CL = 1nF
00419-031
Figure 30. ADR391 Load Transient Response
V
OUT
CL = 100nF
LINE INTERRUPTION
AGE
VOL
V
OUT
TIME (10
µs/DIV)
0.5V/DIV
1V/DIV
00419-029
Figure 28. ADR391 Line Transient Response
Rev. G | Page 13 of 20
LOAD OFF
V
LOAD
ON
TIME (200µ s/DIV)
VOLTAGE (1V/DIV)
Figure 31. ADR391 Load Transient Response
00419-032
Page 14
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI
VIN = 15V
C
BYPASS
= 0.1µF
5V/DIV
V
IN
VOLTAGE
V
OUT
2V/DIV
TIME (20µs/DIV)
Figure 32. ADR391 Turn-On Response Time at 15 V
VIN = 15V
V
IN
VOLTAGE
V
OUT
5V/DIV
2V/DIV
V
OUT
VOLTAGE
V
IN
00419-033
2V/DIV
5V/DIV
00419-035
TIME (200µ s/DIV)
Figure 34. ADR391 Turn-On/Turn-Off Response at 5 V with Capacitance
RL = 500
V
OUT
VOLTAGE
V
IN
2V/DIV
5V/DIV
TIME (40µs/DIV)
Figure 33. ADR391 Turn-Off Response at 15 V
00419-034
TIME (200µs/DIV)
00419-036
Figure 35. ADR391 Turn-On/Turn-Off Response at 5 V with Resistor Load
Rev. G | Page 14 of 20
Page 15
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI
RL = 500 C
= 100nF
L
V
OUT
VOLTAGE
V
IN
2V/DIV
5V/DIV
TIME (200
µs/DIV)
Figure 36. ADR391 Turn-On/Turn-Off Response at 5 V
80
60
40
20
0
–20
–40
–60
RIPPLE REJECTION (d B)
–80
–100
–120
10 1M100
1k 10k 100k
FREQUENCY ( Hz)
00419-037
00419-038
100
90
80
70
60
50
40
30
OUTPUT IM PEDANCE (Ω)
20
10
0
10 1M100
= 1µF
C
L
1k 10k 100k
FREQUENCY ( Hz)
CL = 0µF
= 0.1µF
C
L
00419-039
Figure 38. Output Impedance vs. Frequency
Figure 37. Ripple Rejection vs. Frequency
Rev. G | Page 15 of 20
Page 16
ADR390/ADR391/ADR392/ADR395
V
www.BDTIC.com/ADI

THEORY OF OPERATION

Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR390/ADR391/ADR392/ADR395 are no exception. The uniqueness of these devices lies in the architecture. As shown in Figure 39, the ideal zero TC band gap voltage is referenced to the output, not to ground. Therefore, if noise exists on the ground line, it is greatly attenuated on V
OUT
. The band gap cell consists of the PNP pair, Q51 and Q52, running at unequal current densities. The difference in V
results in a
BE
voltage with a positive TC, which is amplified by a ratio of
R58
2
×
R54
This PTAT voltage, combined with V
s of Q51 and Q52,
BE
produces a stable band gap voltage.
Reduction in the band gap curvature is performed by the ratio of Resistors R44 and R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance.
Q1
R59 R44
R58
R49
R54
IN
V
OUT (FORCE)
V
OUT (SENSE)

DEVICE POWER DISSIPATION CONSIDERATIONS

The ADR390/ADR391/ADR392/ADR395 are capable of delivering load currents to 5 mA, with an input voltage that ranges from 2.8 V (ADR391 only) to 15 V. When these devices are used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. The following formula should be used to calculate the maximum junction temperature or dissipation of the device:
TT
AJ
P
=
D
(5)
θ
JA
where:
T
and TA are, respectively, the junction and ambient temperatures.
J
P
is the device power dissipation.
D
θ
is the device package thermal resistance.
JA

SHUTDOWN MODE OPERATION

The ADR390/ADR391/ADR392/ADR395 include a shutdown feature that is TTL/CMOS level compatible. A logic low or a
SHDN
zero volt condition on the devices off. During shutdown, the output of the reference becomes a high impedance state, where its potential would then be determined by external circuitry. If the shutdown feature is
SHDN
not used, the
pin should be connected to VIN (Pin 2).
pin is required to turn the
SHDN
Figure 39. Simplified Schematic
Q51
R60
R53
Q52
R61
R48
GND
00419-040
Rev. G | Page 16 of 20
Page 17
ADR390/ADR391/ADR392/ADR395
S
V
www.BDTIC.com/ADI

APPLICATIONS INFORMATION

BASIC VOLTAGE REFERENCE CONNECTION

The circuit shown in Figure 40 illustrates the basic configuration for the ADR39x family. Decoupling capacitors are not required for circuit stability. The ADR39x family is capable of driving capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor is recommended to absorb and deliver the charge, as required by a dynamic load.
HUTDOWN
INPUT
C
B
*NOT REQUIRED
*
0.1µF
SHDN
V
IN
V
OUT (S ENSE)
Figure 40. Basic Configuration for the ADR39x Family

Stacking Reference ICs for Arbitrary Outputs

Some applications may require two reference voltage sources, which are a combined sum of standard outputs. Figure 41 shows how this stacked output reference can be implemented.
OUTPUTTABLE
U1/U2
ADR390/ADR390 ADR391/ADR391 ADR392/ADR392 ADR395/ADR395
V
IN
SHDN
0.1
0.1µF
C2
µF
C2
V
V
SHDN
V
V
Figure 41. Stacking Voltage References with the
ADR390/ADR391/ADR392/ADR395
Two reference ICs are used, fed from an unregulated input,
. The outputs of the individual ICs are connected in series,
V
IN
which provide two output voltages, V terminal voltage of U1, while V and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see the Output
GND
ADR39x
V
OUT (FORCE)
*
0.1µF
C
B
V
(V) V
OUT1
2.048
2.5
4.096 5
V
IN
OUT (FORCE)
OUT ( SENSE)
GND
V
IN
OUT (FORCE)
OUT ( SENSE)
GND
is the sum of this voltage
OUT2
U2
U1
OUT1
OUT2
4.096
5.0
8.192 10
(V)
and V
OUT2
OUTPUT
V
OUT2
V
OUT1
. V
OUT1
00419-041
00419-042
is the
Tabl e in Figure 41). For example, if both U1 and U2 are ADR391s, V
is 2.5 V and V
OUT1
OUT2
is 5.0 V.
While this concept is simple, a precaution is required. Because the lower reference circuit must sink a small bias current from U2 plus the base current from the series PNP output transistor in U2, either the external load of U1 or an external resistor must provide a path for this current. If the U1 minimum load is not well defined, the external resistor should be used and set to a value that conservatively passes 600 μA of current with the applicable V
across it. Note that the two U1 and U2
OUT1
reference circuits are treated locally as macrocells; each has its own bypasses at input and output for best stability. Both U1 and U2 in this circuit can source dc currents up to their full rating. The minimum input voltage, V the outputs, V
, plus the dropout voltage of U2.
OUT2
, is determined by the sum of
IN

A Negative Precision Reference without Precision Resistors

A negative reference can be easily generated by adding an A1 op amp and is configured as shown in Figure 42. V and V
OUT (SENSE)
are at virtual ground and, therefore, the negative
OUT (FORCE)
reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output.
+
DD
V
IN
V
OUT (FORCE)
SHDN
V
OUT ( SENSE)
GND
A1
–V
DD
–V
REF
00419-043
Figure 42. Negative Reference

General-Purpose Current Source

Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR390/ADR391/ADR392/ADR395 can be configured as a precision current source. As shown in Figure 43, the circuit configuration is a floating current source with a grounded load. The reference output voltage is bootstrapped across R
, which sets the output current into the load. With
SET
this configuration, circuit precision is maintained for load currents in the range from the reference supply current, typically 90 μA to approximately 5 mA.
Rev. G | Page 17 of 20
Page 18
ADR390/ADR391/ADR392/ADR395
V
www.BDTIC.com/ADI
IN
SHDN
V
OUT (SENSE)
ADR39x
V
IN
V
OUT (FORCE)
GND
ISY (I
SET
0.1µF
ADJUST
)
I
SET
R1
R1
= I
R
SET
P1
SET
+ ISY (I
SET
)
00419-044
I
SY
I
OUT
R
L
Figure 43. A General-Purpose Current Source

High Power Performance with Current Limit

In some cases, the user may want higher output current delivered to a load and still achieve better than 0.5% accuracy out of the ADR39x. The accuracy for a reference is normally specified on the data sheet with no load. However, the output voltage changes with load current.
The circuit shown in Figure 44 provides high current without compromising the accuracy of the ADR39x. The series pass transistor, Q1, provides up to 1 A load current. The ADR39x delivers only the base drive to Q1 through the force pin. The sense pin of the ADR39x is a regulated output and is connected to the load.
The Transistor Q2 protects Q1 during short-circuit limit faults by robbing its base drive. The maximum current is
I
0.6 V/RS (6)
LMAX
R1
4.7k
V
IN
U1
SHDN
V
IN
V
OUT (FORCE)
V
OUT (SENSE)
ADR39x
GND
R
S
Q1 Q2N2222
R
L
Q2 Q2N4921
00419-D-046
Figure 45. ADR39x for High Output Current
with Darlington Drive Configuration

CAPACITORS

Input Capacitor

Input capacitors are not required on the ADR39x. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional
0.1 μF in parallel also helps reduce noise from the supply.

Output Capacitor

The ADR39x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 μF, filters out any low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can improve with the addition of a 1 μF to 10 μF output capacitor in parallel. A capacitor here acts as a source of stored energy for a sudden increase in load current. The only parameter that degrades by adding an output capacitor is the turn-on time, and it depends on the size of the capacitor chosen.
150
100
R1
4.7k
V
IN
U1
SHDN
V
IN
V
OUT (FORCE)
V
OUT (SENSE)
ADR39x
GND
Q2
Q2N2222
Q1 Q2N4921
R
S
RLI
L
Figure 44. ADR39x for High Power Performance with Current Limit
A similar circuit function can also be achieved with the Darlington transistor configuration, as shown in Figure 45.
00419-045
Rev. G | Page 18 of 20
50
0
DRIFT (ppm)
–50
–100
–150
0
100 200 300 400 500 600 700 1000
TIME (Hours)
900800
Figure 46. ADR391 Typical Long-Term Drift over 1000 Hours
00419-002
Page 19
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

2.90 BSC
54
0.50
0.30
2.80 BSC
0.95 BSC
*
1.00 MAX
SEATING PLANE
(UJ-5)
0.20
0.08
8° 4° 0°
0.60
0.45
0.30
1.60 BSC
123
PIN 1
*
0.90
0.87
0.84
0.10 MAX
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
1.90
BSC
Figure 47. 5-Lead Thin Small Outline Transistor Package [TSOT]
Dimensions shown in millimeters

ORDERING GUIDE

Models
Output Voltage (V
O
)
Initial Accuracy (mV) (%)
ADR390AUJZ-REEL712.048 ±6 0.29 25 5-Lead TSOT UJ-5 R0A 3,000 −40°C to +125°C ADR390AUJZ-R2 ADR390BUJZ-REEL7 ADR390BUJZ-R2 ADR391AUJZ-REEL7 ADR391AUJZ-R2 ADR391BUJZ-REEL7 ADR391BUJZ-R2 ADR392AUJZ-REEL7 ADR392AUJZ-R2 ADR392BUJZ-REEL7 ADR392BUJZ-R2 ADR395AUJZ-REEL7 ADR395AUJZ-R2 ADR395BUJZ-REEL7 ADR395BUJZ-R2
1
Z = RoHS Compliant Part.
1
2.048 ±6 0.29 25 5-Lead TSOT UJ-5 R0A 250 −40°C to +125°C
1
2.048 ±4 0.19 9 5-Lead TSOT UJ-5 R0B 3,000 −40°C to +125°C
1
2.048 ±4 0.19 9 5-Lead TSOT UJ-5 R0B 250 −40°C to +125°C
1
2.5 ±6 0.24 25 5-Lead TSOT UJ-5 R1A 3,000 −40°C to +125°C
1
2.5 ±6 0.24 25 5-Lead TSOT UJ-5 R1A 250 −40°C to +125°C
1
2.5 ±4 0.16 9 5-Lead TSOT UJ-5 R1B 3,000 −40°C to +125°C
1
2.5 ±4 0.16 9 5-Lead TSOT UJ-5 R1B 250 −40°C to +125°C
1
4.096 ±6 0.15 25 5-Lead TSOT UJ-5 RCA 3,000 −40°C to +125°C
1
4.096 ±6 0.15 25 5-Lead TSOT UJ-5 RCA 250 −40°C to +125°C
1
4.096 ±5 0.12 9 5-Lead TSOT UJ-5 RCB 3,000 −40°C to +125°C
1
4.096 ±5 0.12 9 5-Lead TSOT UJ-5 RCB 250 −40°C to +125°C
1
5.0 ±6 0.12 25 5-Lead TSOT UJ-5 RDA 3,000 −40°C to +125°C
1
5.0 ±6 0.12 25 5-Lead TSOT UJ-5 RDA 250 −40°C to +125°C
1
5.0 ±5 0.10 9 5-Lead TSOT UJ-5 RDB 3,000 −40°C to +125°C
1
5.0 ±5 0.10 9 5-Lead TSOT UJ-5 RDB 250 −40°C to +125°C
Temperature Coefficient (ppm/°C)
Package Description
Package Option
Branding
Number of Parts per Reel
Temperature Range
Rev. G | Page 19 of 20
Page 20
ADR390/ADR391/ADR392/ADR395
www.BDTIC.com/ADI
NOTES
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00419-0-2/08(G)
Rev. G | Page 20 of 20
Loading...