Datasheet ADR121, ADR125 Datasheet (ANALOG DEVICES)

Page 1
Precision, Micropower LDO Voltage

FEATURES

Initial accuracy
A grade: ±0.24% B grade: ±0.12%
Maximum temperature coefficient
A grade: 25 ppm/°C
B grade: 9 ppm/°C Low dropout: 300 mV for ADR121/ADR125 High output current: +5 mA/−2 mA Low typical operating current: 85 μA Input range: 2.7 V to 18 V for ADR127 Temperature range: −40°C to +125°C Tiny TSOT (UJ-6) package

APPLICATIONS

Battery-powered instrumentation Portable medical equipment Data acquisition systems Automotive
References in TSOT
ADR121/ADR125/ADR127

PIN CONFIGURATION

1
1
NC
GND
ADR12x
2
TOP VIEW
(Not to Scale)
V
3
IN
NC = NO CONNECT
1
MUST BE LEFT FLOATING
Figure 1.
1
6
NC
1
NC
5
V
4
OUT
05725-001

GENERAL DESCRIPTION

The ADR121/ADR125/ADR127 are a family of micropower, high precision, series mode, band gap references with sink and source capability. The parts feature high accuracy and low power consumption in a tiny package. The ADR12x design includes a patented temperature-drift curvature correction technique that minimizes the nonlinearities in the output voltage vs. temperature characteristics.
The ADR12x is a low dropout voltage reference, requiring only 300 mV for the ADR121/ADR125 and 1.45 V for the ADR127 above the nominal output voltage on the input to provide a stable output voltage. This low dropout performance, coupled with the low 85 μA operating current, makes the ADR12x ideal for battery-powered applications.
Available in an extended industrial temperature range of −40°C to +125°C, the ADR121/ADR125/ADR127 are housed in the tiny TSOT (UJ-6) package.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006–2008 Analog Devices, Inc. All rights reserved.
Page 2
ADR121/ADR125/ADR127

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configuration ............................................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
ADR121 Electrical Characteristics ............................................. 3
ADR125 Electrical Characteristics ............................................. 4
ADR127 Electrical Characteristics ............................................. 5
Absolute Maximum Ratings ............................................................ 6
Thermal Resistance ...................................................................... 6
ESD Caution .................................................................................. 6
Typical Performance Characteristics ............................................. 7

REVISION HISTORY

1/08—Rev. A to Rev. B
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Table 3 .............................................................................5
Changes to Figure 52 ...................................................................... 17
Changes to Ordering Guide ......................................................... 18
Terminology .................................................................................... 15
Theory of Operation ...................................................................... 16
Power Dissipation Considerations ........................................... 16
Input Capacitor ........................................................................... 16
Output Capacitor ........................................................................ 16
Applications Information .............................................................. 17
Basic Voltage Reference Connection ....................................... 17
Stacking Reference ICs for Arbitrary Outputs ....................... 17
Negative Precision Reference Without Precision Resistors .. 17
General-Purpose Current Source ............................................ 17
Outline Dimensions ....................................................................... 18
Ordering Guide .......................................................................... 18
5/07—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Table 3 ............................................................................ 5
Added Thermal Hysteresis Equation ............................................. 7
Changes to Ordering Guide .......................................................... 18
6/06—Revision 0: Initial Version
Rev. B | Page 2 of 20
Page 3
ADR121/ADR125/ADR127

SPECIFICATIONS

ADR121 ELECTRICAL CHARACTERISTICS

TA = 25°C, VIN = 2.8 V to 18 V, I
Table 1.
Parameter Symbol Conditions/Comments Min Typ Max Unit
OUTPUT VOLTAGE V
B Grade 2.497 2.5 2.503 V
A Grade 2.494 2.5 2.506 V
INITIAL ACCURACY ERROR V
B Grade −0.12 +0.12 %
A Grade −0.24 +0.24 %
TEMPERATURE COEFFICIENT TCV
B Grade 3 9 ppm/°C
A Grade 15 25 ppm/°C
DROPOUT (V
− VIN) VDO I
OUT
LOAD REGULATION
LINE REGULATION 2.8 V to 18 V, I PSRR f = 60 Hz −90 dB QUIESCENT CURRENT IQ −40°C < TA < +125°C, no load V V SHORT-CIRCUIT CURRENT TO GROUND VIN = 2.8 V 18 mA V VOLTAGE NOISE f = 10 kHz 500 nV/√Hz f = 0.1 Hz to 10 Hz 18 μV p-p TURN-ON SETTLING TIME To 0.1%, CL = 0.2 μF 100 μs LONG-TERM STABILITY 1000 hours @ 25°C 150 ppm/1000 hrs OUTPUT VOLTAGE HYSTERESIS See the Terminology section 300 ppm
= 0 mA, unless otherwise noted.
OUT
OUT
OERR
−40°C < TA < +125°C
OUT
OUT
−40°C < T 0 mA < I
−40°C < T
−2 mA < I
= 0 mA 300 mV
< +125°C; VIN = 5.0 V,
A
< 5 mA
OUT
< +125°C; VIN = 5.0 V,
A
< 0 mA
OUT
= 0 mA −50 +3 +50 ppm/V
OUT
= 18 V 95 125 μA
IN
= 2.8 V 80 95 μA
IN
= 18 V 40 mA
IN
80 300 ppm/mA
50 300 ppm/mA
Rev. B | Page 3 of 20
Page 4
ADR121/ADR125/ADR127

ADR125 ELECTRICAL CHARACTERISTICS

TA = 25°C, VIN = 5.3 V to 18 V, I
Table 2.
Parameter Symbol Conditions/Comments Min Typ Max Unit
OUTPUT VOLTAGE V
B Grade 4.994 5.0 5.006 V A Grade 4.988 5.0 5.012 V
INITIAL ACCURACY ERROR V
B Grade −0.12 +0.12 % A Grade −0.24 +0.24 %
TEMPERATURE COEFFICIENT TCV
B Grade 3 9 ppm/°C A Grade 15 25 ppm/°C
DROPOUT (V
− VIN) VDO I
OUT
LOAD REGULATION
LINE REGULATION 5.3 V to 18 V, I PSRR
QUIESCENT CURRENT IQ −40°C < TA < +125°C, no load V V SHORT-CIRCUIT CURRENT TO GROUND VIN = 5.3 V 25 mA V VOLTAGE NOISE f = 10 kHz 900 nV/√Hz f = 0.1 Hz to 10 Hz 36 μV p-p TURN-ON SETTLING TIME To 0.1%, CL = 0.2 μF 100 μs LONG-TERM STABILITY 1000 hours @ 25°C 150 ppm/1000 hrs OUTPUT VOLTAGE HYSTERESIS See the Terminology section 300 ppm
= 0 mA, unless otherwise noted.
OUT
OUT
OERR
−40°C < TA < +125°C
OUT
OUT
−40°C < T 0 mA < I
−40°C < T
−2 mA < I
f = 60 Hz −90 dB
= 18 V 95 125 μA
IN
= 5.3 V 80 95 μA
IN
= 18 V 40 mA
IN
= 5 mA 300 mV
< +125°C; VIN = 6.0 V,
A
< 5 mA
OUT
< +125°C; VIN = 6.0 V,
A
< 0 mA
OUT
= 0 mA 30 ppm/V
OUT
35 200 ppm/mA
35 200 ppm/mA
Rev. B | Page 4 of 20
Page 5
ADR121/ADR125/ADR127

ADR127 ELECTRICAL CHARACTERISTICS

TA = 25°C, VIN = 2.7 V to 18 V, I
Table 3.
Parameter Symbol Conditions/Comments Min Typ Max Unit
OUTPUT VOLTAGE V
B Grade 1.2485 1.25 1.2515 V
A Grade 1.2470 1.25 1.2530 V
INITIAL ACCURACY ERROR V
B Grade −0.12 +0.12 %
A Grade −0.24 +0.24 %
TEMPERATURE COEFFICIENT TCV
B Grade 3 9 ppm/°C
A Grade 15 25 ppm/°C
DROPOUT (V
− VIN) VDO I
OUT
LOAD REGULATION
LINE REGULATION 2.7 V to 18 V, I PSRR
QUIESCENT CURRENT IQ −40°C < TA < +125°C, no load V V SHORT-CIRCUIT CURRENT TO GROUND VIN = 2.7 V 15 mA V VOLTAGE NOISE f = 10 kHz 300 nV/√Hz
f = 0.1 Hz to 10 Hz 9 μV p-p
TURN-ON SETTLING TIME To 0.1%, CL = 0.2 μF 80 μs LONG-TERM STABILITY 1000 hours @ 25°C 150 ppm/1000 hrs OUTPUT VOLTAGE HYSTERESIS See the Terminology section 300 ppm
= 0 mA, unless otherwise noted.
OUT
OUT
OERR
−40°C < TA < +125°C
OUT
OUT
−40°C < T 0 mA < I
−40°C < T
−2 mA < I
f = 60 Hz −90 dB
IN
IN
IN
= 0 mA 1.45 V
< +125°C; VIN = 3.0 V,
A
< 5 mA
OUT
< +125°C; VIN = 3.0 V,
A
< 0 mA
OUT
= 0 mA 30 90 ppm/V
OUT
85 400 ppm/mA
65 400 ppm/mA
= 18 V 95 125 μA = 2.7 V 80 95 μA
= 18 V 30 mA
Rev. B | Page 5 of 20
Page 6
ADR121/ADR125/ADR127

ABSOLUTE MAXIMUM RATINGS

Table 4.
Parameter Rating
VIN to GND 20 V Internal Power Dissipation
TSOT (UJ-6) 40 mW Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Lead Temperature, Soldering
Vapor Phase (60 sec) 215°C
Infrared (15 sec) 220°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 5.
Package Type θJA θ
6-Lead TSOT (UJ-6) 230 146 °C/W
Unit
JC

ESD CAUTION

Rev. B | Page 6 of 20
Page 7
ADR121/ADR125/ADR127

TYPICAL PERFORMANCE CHARACTERISTICS

1.256
5
1.254
1.252
(V)
1.250
OUT
V
1.248
1.246
1.244 –25 –10 5 20 35 50 65 80 95 110
–40 125
TEMPERATURE ( °C)
Figure 2. ADR127 V
2.510
2.508
2.506
2.504
2.502
(V)
2.500
OUT
V
2.498
2.496
2.494
2.492
2.490 –40 125
–25–105 203550658095110
Figure 3. ADR121 V
vs. Temperature
OUT
TEMPERATURE (°C)
vs. Temperature
OUT
4
3
2
NUMBER OF PARTS
1
0
–50 50
40–30–20–100 10203040
05725-006
TEMPERATURE CO EFFICIENT (ppm/°C)
05725-009
Figure 5. ADR127 Temperature Coefficient
5
4
3
2
NUMBER OF PARTS
1
0
–50 50
40–30–20–100 10203040
05725-007
TEMPERATURE CO EFFICIENT (ppm/°C)
05725-011
Figure 6. ADR121 Temperature Coefficient
5.020
5.015
5.010
5.005
(V)
5.000
OUT
V
4.995
4.990
4.985
4.980 –40 125
25–105 203550658095110
TEMPERATURE (°C)
Figure 4. ADR125 V
vs. Temperature
OUT
05725-008
Rev. B | Page 7 of 20
5
4
3
2
NUMBER OF PARTS
1
0
–50 50
40–30–20–100 10203040
TEMPERATURE CO EFFICIENT (ppm/°C)
Figure 7. ADR125 Temperature Coefficient
05725-010
Page 8
ADR121/ADR125/ADR127
3.0
120
2.8
–40°C
2.6
_MIN (V)
IN
2.4
V
2.2
2.0 –2–1012345
+25°C
+125°C
LOAD CURRENT (mA)
Figure 8. ADR127 Minimum Input Voltage vs. Load Current
3.5
3.4
3.3
3.2
3.1
3.0
_MIN (V)
IN
2.9
V
2.8
2.7
2.6
2.5
2–1012345
LOAD CURRENT (mA)
+125°C
+25°C
–40°C
Figure 9. ADR121 Minimum Input Voltage vs. Load Current
6.2
100
+25°C
80
+125°C
–40°C
60
40
SUPPLY CURRENT ( µA)
20
0
3 4 5 6 7 8 9 1011121314151617
21
5725-012
INPUT VOLTAG E (V)
8
5725-015
Figure 11. ADR127 Supply Current vs. Input Voltage
120
100
SUPPLY CURRENT ( µA)
05725-013
+125°C
+25°C
80
60
40
20
0
21
–40°C
3 4 5 6 7 8 9 1011121314151617
INPUT VOLTAGE (V)
8
05725-016
Figure 12. ADR121 Supply Current vs. Input Voltage
120
6.0
5.8
5.6
_MIN (V)
IN
V
5.4
5.2
5.0
2–1012345
LOAD CURRENT (mA)
+125°C
+25°C
–40°C
Figure 10. ADR125 Minimum Input Voltage vs. Load Current
05725-014
Rev. B | Page 8 of 20
100
+25°C
80
+125°C
–40°C
60
40
SUPPLY CURRENT (µA)
20
0
51
6 7 8 9 1011121314151617
INPUT VOLTAG E (V)
8
5725-017
Figure 13. ADR125 Supply Current vs. Input Voltage
Page 9
ADR121/ADR125/ADR127
6
5
+125°C
— +25°C
–40°C
0
–10
4
3
2
SUPPLY CURRENT (mA)
1
0
–2 5
101234
LOAD CURRENT (mA)
Figure 14. ADR127 Supply Current vs. Load Current
6
+125°C
— +25°C
–40°C
5
4
3
2
SUPPLY CURRENT (mA)
1
0
–2 5
101234
LOAD CURRENT (mA)
Figure 15. ADR121 Supply Current vs. Load Current
6
+125°C
— +25°C
–40°C
5
–20
–30
LINE REGUL ATION (ppm/V)
–40
–50
–40 125
05725-018
VIN = 2.7V TO 18V
–25 –10 5 20 35 50 65 80 95 110
TEMPERATURE ( °C)
05725-021
Figure 17. ADR127 Line Regulation vs. Temperature
3
2
1
0
–1
LINE REGUL ATION (ppm/V)
–2
–3
–40 125
–25 –10 5 20 35 50 65 80 95 110
05725-019
VIN = 2.8V TO 18V
TEMPERATURE ( °C)
05725-022
Figure 18. ADR121 Line Regulation vs. Temperature
6
4
4
3
2
SUPPLY CURRENT (mA)
1
0
–2 5
101234
LOAD CURRENT (mA)
Figure 16. ADR125 Supply Current vs. Load Current
05725-020
Rev. B | Page 9 of 20
2
0
–2
LINE REGUL ATION (p pm/V)
–4
–6
VIN = 5.3V TO 18V
–40 125
–25 –10 5 20 35 50 65 80 95 110
TEMPERATURE ( °C)
Figure 19. ADR125 Line Regulation vs. Temperature
05725-023
Page 10
ADR121/ADR125/ADR127
200
150
CIN = C
OUT
= 0.1µF
100
50
0
–50
–100
LOAD REGULAT ION (pp m/mA)
–150
–200
–40 125
2mA SINKING, VIN = 3V
5mA SOURCING, VIN = 3V
–25 –10 5 20 35 50 65 80 95 110
TEMPERATURE ( °C)
Figure 20. ADR127 Load Regulation vs. Temperature
100
80
60
40
20
0
–20
–40
LOAD REGULAT ION (pp m/mA)
–60
–80
–100
–40 125
–25 –10 5 20 35 50 65 80 95 110
2mA SINKING, VIN = 5V
5mA SOURCING, VIN = 5V
TEMPERATURE ( °C)
Figure 21. ADR121 Load Regulation vs. Temperature
CH1 p-p
5.76µV
1
2µV/DIV
05725-024
TIME (1s/ DIV)
CH1 rms
0.862µV
05725-027
Figure 23. ADR127 0.1 Hz to 10 Hz Noise
CIN = C
1
05725-025
= 0.1µF
OUT
5µV/DIV TIME (1s/DIV )
CH1 p-p
10.8µV
CH1 rms
1.75µV
05725-028
Figure 24. ADR121 0.1 Hz to 10 Hz Noise
50
40
30
20
10
–10
–20
LOAD REGULAT ION (pp m/mA)
–30
–40
–50
2mA SINKING, VIN = 6V
0
5mA SOURCING, VIN = 6V
–40 125
–25 –10 5 20 35 50 65 80 95 110
TEMPERATURE ( °C)
Figure 22. ADR125 Load Regulation vs. Temperature
05725-026
Rev. B | Page 10 of 20
CIN = C
1
= 0.1µF
OUT
10µV/DIV TIME (1s/DIV)
CH1 p-p
20.6µV
CH1 rms
3.34µV
05725-029
Figure 25. ADR125 0.1 Hz to 10 Hz Noise
Page 11
ADR121/ADR125/ADR127
CIN = C
OUT
= 0.1µF
CH1 p-p 287µV
VIN 1V/DIV C
= C
IN
OUT
= 0.1µF
1
50µV/DIV
TIME (1s/ DIV)
CH1 rms
38.8µV
05725-030
Figure 26. ADR127 10 Hz to 10 kHz Noise
CIN = C
1
= 0.1µF
OUT
100µV/DIV TIME (1s/DI V)
CH1 p-p 450µV
CH1 rms
58.1µV
05725-031
Figure 27. ADR121 10 Hz to 10 kHz Noise
1
V
OUT
2
500mV/DIV
TIME (200µs/ DIV)
05725-033
Figure 29. ADR127 Turn-On Response
VIN 1V/DIV C
= C
= 0.1µF
IN
OUT
1
V
OUT
500mV/ DIV
TIME (40µs/DIV)
2
05725-034
Figure 30. ADR127 Turn-On Response
CIN = C
1
= 0.1µF
OUT
200µV/DIV TIME (1s/DI V)
Figure 28. ADR125 10 Hz to 10 kHz Noise
CH1 p-p 788µV
CH1 rms 115µV
05725-032
VIN 1V/DIV C
= C
= 0.1µF
IN
OUT
1
2
V
OUT
500mV/DI V
TIME (100µs/ DIV)
05725-035
Figure 31. ADR127 Turn-Off Response
Rev. B | Page 11 of 20
Page 12
ADR121/ADR125/ADR127
CIN = C
OUT
= 0.1µF
VIN 1V/DIV C
= C
= 0.1µF
IN
OUT
1
V
OUT
1V/DIV
2
TIME (100µs/ DIV)
05725-036
1
2
Figure 32. ADR121 Turn-On Response
CIN = C
OUT
VIN 1V/DIV C
= C
= 0.1µF
IN
OUT
1
V
OUT
2
1V/DIV
TIME (40µs/DIV)
05725-037
1
2
Figure 33. ADR121 Turn-On Response
V
IN
2V/DIV
V
OUT
2V/DIV
TIME (100µs/ DIV)
Figure 35. ADR125 Turn-On Response
= 0.1µF
V
IN
2V/DIV
V
OUT
2V/DIV
TIME (20µs/DIV)
Figure 36. ADR125 Turn-On Response
05725-039
05725-040
CIN = C
VIN 1V/DIV C
= C
= 0.1µF
IN
OUT
1
V
OUT
1V/DIV
2
TIME (200µ s/DIV)
05725-038
1
2
Figure 34. ADR121 Turn-Off Response
= 0.1µF
OUT
V
IN
2V/DIV
V
OUT
2V/DIV
TIME (20µs/DIV)
Figure 37. ADR125 Turn-Off Response
05725-041
Rev. B | Page 12 of 20
Page 13
ADR121/ADR125/ADR127
V
CIN = C
1
= 0.1µF
OUT
VIN 1V/DIV LINE INTE RRUPTION
2.50V
VIN500mV/DIV C
= C
= 0.1µF
IN
OUT
625LOAD 2mA SINKING
2
1.25V
2
V
OUT
500mV/DIV
Figure 38. ADR127 Line Transient Response
CIN = C
1
2
= 0.1µF
OUT
VIN 1V/DIV LINE INTERRUPT ION
V
OUT
500mV/DIV
Figure 39. ADR121 Line Transient Response
CIN = C
1
= 0.1µF
OUT
VIN 1V/DIV LINE INTERRUPT ION
TIME (200µs/DIV)
TIME (400µ s/DIV)
1
05725-042
V
OUT
20mV/DIV
TIME (40µs/DIV)
05725-045
Figure 41. ADR127 Load Transient Response (Sinking)
VIN500mV/DIV C
= C
= 0.1µF
IN
OUT
250LOAD 5mA SOURCING
1
2
V
OUT
100mV/DIV
05725-043
TIME (40µs/DIV)
1.25
0V
05725-046
Figure 42. ADR127 Load Transient Response (Sourcing)
5V
VIN1V/DIV
= C
C 1250LOAD 2mA SINKING
= 0.1µF
IN
OUT
2.5V
2
V
OUT
500mV/DIV
Figure 40. ADR125 Line Transient Response
TIME (400µ s/DIV)
05725-044
1
2
V
OUT
10mV/DIV
TIME (40µs/DIV)
Figure 43. ADR121 Load Transient Response (Sinking)
05725-047
Rev. B | Page 13 of 20
Page 14
ADR121/ADR125/ADR127
0
–20
–40
–60
–100
(dB)
–120
–140
–160
–180
–200
–80
1
10 100M
100 1k 10k 100k 1M 10M
Figure 47. ADR121/ADR125/ADR127 PSRR
50
45
40
35
30
25
20
15
OUTPUT IMPEDANCE (Ω)
10
5
0
10
1
100
FREQUENCY (Hz)
1k 10k 100k
ADR127
ADR121
ADR125
Figure 48. ADR121/ADR125/ADR127 Output Impedance vs. Frequency
05725-051
5725-054
VIN1V/DIV C
= C
= 0.1µF
IN
OUT
500LOAD
1
2
V
OUT
100mV/DIV
5mA SOURCING
TIME (40µs/DIV)
Figure 44. ADR121 Load Transient Response (Sourcing)
VIN2V/DIV C
= C
= 0.1µF
IN
OUT
2.5kLOAD 2mA SINKING
1
2
V
OUT
20mV/DIV
TIME (40µs/DIV)
Figure 45. ADR125 Load Transient Response (Sinking)
2.5V
0V
05725-048
10V
5V
05725-049
5V
VIN2V/DIV C
= C
= 0.1µF
IN
OUT
1kLOAD
V
OUT
100mV/DIV
5mA SOURCING
TIME (40µs/DIV)
1
2
0V
05725-050
Figure 46. ADR125 Load Transient Response (Sourcing)
Rev. B | Page 14 of 20
Page 15
ADR121/ADR125/ADR127
(
Δ
(
=
T

TERMINOLOGY

Temperature Coefficient
The change in output voltage with respect to operating temperature change normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined as follows:
TCV
[]
OUT
Cppm/ ×
()( )
C25
() ()
O
UT
=°
TVTV
1OUT2
×°
TTV
6
(1)
10
12OUT
where:
V
OUT
V
OUT(T1
V
OUT(T2
(25°C) = V
) = V ) = V
at 25°C.
OUT
at Temperature 1.
OUT
at Temperature 2.
OUT
Line Regulation
The change in the output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in percent per volt, parts-per-million per volt, or microvolts per voltage change in input voltage.
Load Regulation
The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance.
Long-Term Stability
Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1000 hours at 25°C.
O
UT
[]
V
OUT
)()
=Δ
tVtVV
1
O0OUT
UT
() ()
tVtV
1OUT0OUT
()
tV
0OUT
(2)
6
10ppm ×
where:
V V
OUT(t0
OUT(t1
) = V ) = V
at 25°C at Time 0.
OUT
at 25°C after 1000 hours operating at 25°C.
OUT
Thermal Hysteresis
The change in output voltage after the device is cycled through temperatures from +25°C to −40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle.
)
VVV
C25 °
()
O
V
[]
ppm ×
_
HYSOUT
UT
=
V
OU
(3)
TCOUTOUTHYSOUT
__
VV
C25
°
_
TCOUT
6
()
C25
°
10
where:
V V
OUT
OUT_TC
(25°C) = V
= V
at 25°C.
OUT
at 25°C after temperature cycle at +25°C to
OUT
−40°C to +125°C and back to +25°C.
Rev. B | Page 15 of 20
Page 16
ADR121/ADR125/ADR127

THEORY OF OPERATION

The ADR12x band gap references are the high performance solution for low supply voltage and low power applications. The uniqueness of these products lies in their architecture.

POWER DISSIPATION CONSIDERATIONS

The ADR12x family is capable of delivering load currents up to 5 mA with an input range from 3.0 V to 18 V. When this device is used in applications with large input voltages, care must be taken to avoid exceeding the specified maximum power dissipation or junction temperature because this could result in premature device failure.
Use the following formula to calculate a device’s maximum junction temperature or dissipation:
TT
J
P
= (4)
D
where:
T
is the junction temperature.
J
T
is the ambient temperature.
A
P
is the device power dissipation.
D
θ
is the device package thermal resistance.
JA
A
θ
JA

INPUT CAPACITOR

Input capacitors are not required on the ADR12x. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input may improve transient response in applications where there is a sudden supply change. An additional 0.1 μF capacitor in parallel also helps reduce noise from the supply.

OUTPUT CAPACITOR

The ADR12x requires a small 0.1 μF capacitor for stability. Additional 0.1 μF to 10 μF capacitance in parallel can improve load transient response. This acts as a source of stored energy for a sudden increase in load current. The only parameter affected with the additional capacitance is turn-on time.
Rev. B | Page 16 of 20
Page 17
ADR121/ADR125/ADR127
–V
V

APPLICATIONS INFORMATION

BASIC VOLTAGE REFERENCE CONNECTION

The circuit in Figure 49 illustrates the basic configuration for the ADR12x family voltage reference.
1
NC
ADR12x
GND
2
V
3
IN
+ +
0.1µF 0.1µF
Figure 49. Basic Configuration for the ADR12x Family
6
NC
NC
5
V
OUT
OUTPUTINPUT
4
05725-002

STACKING REFERENCE ICs FOR ARBITRARY OUTPUTS

Some applications may require two reference voltage sources that are a combined sum of the standard outputs. Figure 50 shows how this stacked output reference can be implemented.
1
NC
ADR12x
2
GND
V
IN
V
3
IN
U2
1
NC
ADR12x
2
GND
V
3
IN
U1
Figure 50. Stacking References with the ADR12x
Two reference ICs are used and fed from an unregulated input, V
. The outputs of the individual ICs are connected in series,
IN
which provides two output voltages, V the terminal voltage of U1, whereas V voltage and the terminal of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Tab le 6). For example, if U1 and U2 are ADR127s and V
1.25 V and V
OUT2
is 2.5 V.
6
NC
5
NC
V
4
OUT
6
NC
5
NC
V
4
OUT
and V
OUT1
OUT2
OUT2
is the sum of this
≥ 3.95 V, V
IN
V
0.1µF0.1µF
V
0.1µF0.1µF
. V
OUT2
OUT1
OUT1
OUT1
05725-003
is
is
Table 6. Required Outputs
U1/U2 V
V
OUT2
OUT1
ADR127/ADR121 1.25 V 3.75 V ADR127/ADR125 1.25 V 6.25 V ADR121/ADR125 2.5 V 7.5 V

NEGATIVE PRECISION REFERENCE WITHOUT PRECISION RESISTORS

A negative reference is easily generated by adding an op amp, for example, the AD8603, and is configured as shown in Figure 51. V
is at virtual ground and, therefore, the negative
OUT
reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output.
+V
DD
REF
AD8603
Figure 51. Negative Reference
1
2
3
–V
NC
ADR127
GND
V
IN
V+
V–
+
DD
2
3
0.1µF
6
NC
NC
5
V
4
OUT
1k
05725-055

GENERAL-PURPOSE CURRENT SOURCE

In low power applications, the need can arise for a precision current source that can operate on low supply voltages. The ADR12x can be configured as a precision current source (see Figure 52). The circuit configuration shown is a floating current source with a grounded load. The reference’s output voltage is bootstrapped across R load. With this configuration, circuit precision is maintained for load currents ranging from the reference’s supply current, typi­cally 85 μA, to approximately 5 mA.
+
DD
, which sets the output current into the
SET
1
NC
NC
6
ADR12x
2
GND
V
3
IN
I
SY
5
NC
V
4
OUT
I
SET
R
SET
P1
R
L
05725-005
Figure 52. ADR12x Trim Configuration
Rev. B | Page 17 of 20
Page 18
ADR121/ADR125/ADR127
R

OUTLINE DIMENSIONS

INDICATO

ORDERING GUIDE

Initial
Accuracy
mV ±%
Model
ADR121AUJZ-REEL7 ADR121AUJZ-R2
1
2.5 2.5 0.24 25 −40°C to +125°C 6-Lead TSOT UJ-6 250 R0N
ADR121BUJZ-REEL7 ADR125AUJZ-REEL7 ADR125AUJZ-R2
1
5.0 5.0 0.24 25 −40°C to +125°C 6-Lead TSOT UJ-6 250 R0Q
ADR125BUJZ-REEL7 ADR127AUJZ-REEL7 ADR127AUJZ-R2
1
1.25 3 0.24 25 −40°C to +125°C 6-Lead TSOT UJ-6 250 R0S
ADR127BUJZ-REEL7
1
Z = RoHS Compliant Part.
Output Voltage
)
(V
OUT
1
2.5 2.5 0.24 25 −40°C to +125°C 6-Lead TSOT UJ-6 3,000 R0N
1
2.5 2.5 0.12 9 −40°C to +125°C 6-Lead TSOT UJ-6 3,000 R0P
1
5.0 5.0 0.24 25 −40°C to +125°C 6-Lead TSOT UJ-6 3,000 R0Q
1
5.0 5.0 0.12 9 −40°C to +125°C 6-Lead TSOT UJ-6 3,000 R0R
1
1.25 3 0.24 25 −40°C to +125°C 6-Lead TSOT UJ-6 3,000 R0S
1
1.25 1.5 0.12 9 −40°C to +125°C 6-Lead TSOT UJ-6 3,000 R0T
2.90 BSC
4526
1.60 BSC
13
PIN 1
*
0.90
0.87
0.84
0.10 MAX
*
COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
1.90
BSC
0.50
0.30
2.80 BSC
0.95 BSC
*
1.00 MAX
SEATING PLANE
0.20
0.08 8° 4° 0°
Figure 53. 6-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-6)
Dimensions shown in millimeters
Temperature Coefficient (ppm/°C)
Temperature Range
Package Description
0.60
0.45
0.30
Package Option
Ordering Quantity Branding
Rev. B | Page 18 of 20
Page 19
ADR121/ADR125/ADR127
NOTES
Rev. B | Page 19 of 20
Page 20
ADR121/ADR125/ADR127
NOTES
©2006–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05725-0-1/08(B)
Rev. B | Page 20 of 20
Loading...