Datasheet ADN2847 Datasheet (ANALOG DEVICES)

Page 1
3.3 V Dual-Loop 50 Mbps to 3.3 Gbps
Data Sheet

FEATURES

50 Mbps to 3.3 Gbps operation Single 3.3 V operation Typical rise/fall time: 80 ps Bias current range: 2 mA to 100 mA Modulation current range: 5 mA to 80 mA Monitor photodiode current: 50 μA to 1200 μA Dual MPD functionality for DWDM 50 mA supply current at 3.3 V Closed-loop control of power and extinction ratio Full current parameter monitoring Laser fail and laser degrade alarms Automatic laser shutdown (ALS) Optional clocked data Supports FEC rates 48-lead (7 mm × 7 mm) LFCSP package 32-lead (5 mm × 5 mm) LFCSP package
Laser Diode Driver
ADN2847

APPLICATIONS

SONET OC-1/3/12/48 SDH STM-0/1/4/16 Fibre Channel Gigabit Ethernet DWDM dual MPD wavelength control

GENERAL DESCRIPTION

The ADN2847 uses a unique control algorithm to control both average power and extinction ratio of the laser diode (LD) after initial factory setup. External component count and PCB area are low, as both power and extinction ratio control are fully integrated. Programmable alarms are provided for laser fail (end of life) and laser degrade (impending fail).
Optional dual MPD current monitoring is designed into the ADN2847 specifically for DWDM wavelength control.
The ADN2847 is specified for the −40°C to +85°C temperature range and is available in a 48-lead LFCSP package and a 32-lead LFCSP package.

FUNCTIONAL BLOCK DIAGRAM

V
CC
CLKSEL
MPD
GND
GND
GND
V
CC
IMPD
IMPD2
PSET
ERSET
IBMON
IMMON
IMPDMON
IMPDMON2
CONTROL
PAV C A PERCAP
GNDGND
CC
ALS
FAI L
DEGRADE
IMODN
I
MOD
I
BIAS
V
GND
IMODP
I
BIAS
ASET
ADN2847
GND
LBWSETIDTONE
Figure 1.
DATAP
DATAN
CLKP
CLKN
LD
V
CC
V
CC
R
Z
02745-001
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2003–2012 Analog Devices, Inc. All rights reserved.
Page 2
ADN2847 Data Sheet

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Timing Diagrams.......................................................................... 4
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution.................................................................................. 5
Die Pad Coordinates ........................................................................ 6
Pin Configurations and Function Descriptions ........................... 7
Theory of Operation ........................................................................ 9
Control........................................................................................... 9
Loop Bandwidth Selection .......................................................... 9
Alarms.............................................................................................9
Monitor Currents ....................................................................... 10
Dual MPD DWDM Function (48-Lead LFCSP Only) ......... 10
IDTONE (48-Lead LFCSP Only)............................................. 10
Data and Clock Inputs............................................................... 10
CCBIAS........................................................................................ 10
I
................................................................................................ 10
BIAS
Automatic Laser Shutdown....................................................... 10
Alarm Interfaces......................................................................... 11
Power Consumption .................................................................. 11
Laser Diode Interfacing............................................................. 11
Optical Supervisor...................................................................... 11
Outline Dimensions....................................................................... 14
Ordering Guide .......................................................................... 15

REVISION HISTORY

3/12—Rev. A to Rev. B
Added EPAD Notation .................................................................... 7
Updated Outline Dimensions....................................................... 14
Changes to Ordering Guide.......................................................... 15
10/06—Rev. 0 to Rev. A
Updated Format..................................................................Universal
Change to Data Sheet Title.............................................................. 1
Changes to Figure 1.......................................................................... 1
Changes to Specifications................................................................ 3
Added I
Changes to Laser Diode Interfacing Section............................... 11
Changes to Figure 14...................................................................... 12
Changes to Figure 15...................................................................... 13
Changes to Ordering Guide.......................................................... 15
1/03—Revision 0: Initial Version
Section ......................................................................... 10
BIAS
Rev. B | Page 2 of 16
Page 3
Data Sheet ADN2847

SPECIFICATIONS

VCC = 3.0 V to 3.6 V. Temperature range: −40°C to +85°C. All specifications T at T
= 25°C.
A
Table 1.
Parameter Min Typ Max Unit Conditions/Comments
LASER BIAS CURRENT (I
Output Current I I
when ALS is asserted 0.1 mA
BIAS
, ALS)
BIAS
2 100 mA
BIAS
ALS Assertion Time 5 μs I
I
Compliance Voltage 1.2 VCC V
BIAS
CCBIAS Compliance Voltage 1.2 VCC V
MODULATION CURRENT (IMODP, IMODN)1
Output Current I
5 80 mA
MOD
Compliance Voltage 1.5 VCC V I
when ALS is Asserted 0.1 mA
MOD
Rise Time2 80 120 ps See Figure 3 for device rise time histogram Fall Time2 80 120 ps See Figure 4 for device fall time histogram Random Jitter2 1 1.5 ps RMS Pulse Width Distortion2 15 ps I
MONITOR PD (MPD, MPD2)
Current 50 1200 μA Average current Compliance Voltage 1.65 V
POWER SET INPUT (PSET)
Capacitance 80 pF Monitor Photodiode Current into RPSET Resistor 50 1200 μA Average current Voltage 1.1 1.2 1.3 V
EXTINCTION RATIO SET INPUT (ERSET)
Allowable Resistance Range 1.2 25 Voltage 1.1 1.2 1.3 V
ALARM SET (ASET)
Allowable Resistance Range 1.2 25 Voltage 1.1 1.2 1.3 V Hysteresis 5 %
CONTROL LOOP Low Loop Bandwidth selection
Time Constant 0.22 sec LBWSET = GND
2.25 sec LBWSET = VCC
DATA INPUTS (DATAP, DATAN, CLKP, CLKN)3
V p-p (Single-Ended, Peak-to-Peak) 100 500 mV Data and clock inputs are ac-coupled Input Impedance (Single-Ended) 50 Ω
4
t
50 ps See Figure 2
SETUP
4
t
100 ps See Figure 2
HOLD
LOGIC INPUTS (ALS, LBWSET, CLKSEL)
VIH 2.4 V VIL 0.8 V
ALARM OUTPUTS (FAIL, DEGRADE) Internal 30 kΩ Pull-Up
V
2.4 V
OH
VOL 0.8 V
IDTONE
Compliance Voltage VCC − 1.5 V
I
Ratio 2
OUT/IIN
5
f
0.01 1 MHz
IN
MIN
to T
, unless otherwise noted. Typical values specified
MAX
< 10% of nominal
BIAS
= 40 mA
MOD
User to supply current sink in the range of 50 μA to 4 mA
Rev. B | Page 3 of 16
Page 4
ADN2847 Data Sheet
Parameter Min Typ Max Unit Conditions/Comments
IBMON, IMMON, IMPDMON, IMPDMON2
IBMON, IMMON Division Ratio 100 A/A
IMPDMON, IMPDMON2 1 A/A
IMPDMON to IMPDMON2 Matching 2 % I
Compliance Voltage 0 VCC −1.2 V SUPPLY
6
I
50 mA I
CC
7
V
3.0 3.3 3.6 V
CC
1
The high speed performance for the die version of ADN2847 can be achieved when using the bonding diagram shown in Figure 6.
2
Measured into a 25 Ω load using a 11110000 pattern at 2.5 Gbps.
3
When the voltage on DATAP is greater than the voltage on DATAN, the modulation current flows in the IMODP pin.
4
Guaranteed by design and characterization. Not production tested.
5
IDTONE can cause eye distortion.
6
I
for power calculation in the P section is the typical ICC given. ower Consumption
CCMIN
7
All VCC pins should be shorted together.

TIMING DIAGRAMS

= 1200 μA
MPD
= I
BIAS
MOD
= 0
DA TAP/ D ATAN
CLKP
40
30
20
COUNT (%)
10
0
76
78 82 84 86 88 90 92 94 96 98 10080
RISE TIME (ps)
Figure 3. Rise Time Distribution Under Worst-Case Operating Conditions
SETUP
t
S
Figure 2. Setup and Hold Time
40
30
20
COUNT (%)
10
2745-007
Figure 4. Fall Time Distribution Under Worst-Case Operating Conditions
HOLD
t
H
0
80
82 86 88 90 92 94 96 98 100 102 10484
02745-002
FAL L TI ME ( p s )
02745-008
Rev. B | Page 4 of 16
Page 5
Data Sheet ADN2847

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 2.
Parameter Rating
VCC to GND 4.2 V Digital Inputs (ALS, LBWSET, CLKSEL) −0.3 V to VCC + 0.3 V IMODN, IMODP V Operating Temperature Range Industrial −40°C to +85°C Storage Temperature Range −65°C to +150°C Junction Temperature (TJ max) 150°C Power Dissipation1 (W)
Lead Temperature (Soldering 10 sec) 300°C
1
Power consumption formulae are provided in the Power Consumption
section.
+ 1.2 V
CC
(TJ max − TA)/ θJA

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type θJA Unit
48-lead LFCSP 25 °C/W 32-lead LFCSP 32 °C/W

ESD CAUTION

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. B | Page 5 of 16
Page 6
ADN2847 Data Sheet
m
m

DIE PAD COORDINATES

2280µm
2620µ
2280µ
GND2
GND2
IBMON
GND2
V
2
CC
IMODN
IMODN
GND2
IMODP IMODP
GND2
GND2
I
BIAS
I
BIAS
CCBIAS
ASET
GND GND4
LBWSET
ERSET
IMMON
PSET
V
3GNDCLKSEL
CC
IMPD
GND
FAIL
ALS
IMPDMON2
DEGRADEIDTONE
GNDGND3
GND
CLKN
CLKP
GND1
DATAP
DATAN
GND1
V
1
CC
GND
PAVC AP
ERCAP
4IMPD2IMPDMON
V
CC
Figure 5. Metallization Photograph
Table 4. Die Pad Coordinates
1
Pad Number Pad Name x[μm] y[μm]
1 TP1 (GND) −996 1026 2 LBWSET −996 853 3 ASET −996 679 4 ERSET −996 506 5 PSET −996 332 6 TP2 (GND) −996 159 7 IMPD −996 −15 8 IMPDMON −996 506 9 IMPDMON2 −996 −361 10 IMPD2 −996 −534 11 GND4 −996 −724 12 VCC4 −995 −964 13 ERCAP −925 −1191 14 PAVCAP −777 −1191 15 TP3 (GND) −606 −1191 16 VCC1 −389 −1191 17 GND1 −200 −1191 18 DATAN −70 −1191 19 DATAP 83 −1191 20 GND1 263 −1191 21 CLKP 442 −1191 22 CLKN 596 −1191 23 TP4 (GND) 762 −1191 24 TP5 (GND) 996 −1109
1
With the origin in the center of the die (see Figure 5).
DIE ROTATED 90° IN PACKAGE
LEFT RIGHT
1
BOTTOM
02745-003
TOP
2620µm
02745-004
Figure 6. Bonding Diagram
Pad Number Pad Name x[μm] y[μm]
25 TP6 (GND) 996 −935 26 CLKSEL 996 −762 27 DEGRADE 996 −589 28 FAIL 996 −415 29 ALS 996 −242 30 VCC3 996 −19 31 GND3 996 251 32 IMMON 996 441 33 IBMON 996 614 34 GND2 996 804 35 IDTONE 995 993 36 GND2 995 1133 37 GND2 867 1191 38 VCC2 713 1191 39 IMODN 500 1191 40 IMODN 396 1191 41 GND2 242 1191 42 IMODP 88 1191 43 IMODP −16 1191 44 GND2 −239 1191 45 GND2 −443 1191 46 I 47 I
−633 1191
BIAS
−772 1191
BIAS
48 CCBIAS −912 1191
Rev. B | Page 6 of 16
Page 7
Data Sheet ADN2847
6

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

BIAS
BIAS
48 CCBIAS
47 I
46 I
45 GND2
44 GND2
43 IMODP
42 IMODP
41 GND2
40 IMODN
TP1 1
LBWSET 2
ASET 3
ERSET 4
PSET 5
TP2 6
IMPD 7
IMPDMON 8
IMPDMON2 9
IMPD2 10
GND4 11
V
4 12
CC
NOTES
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE MUST BE CONNECTED TO V THE GND PL ANE.
PIN 1 INDICATOR
(Not to Scale)
TP3 15
ERCAP 13
PAVCAP 14
ADN2847
TOP VIEW
1 16
CC
V
GND1 17
DATAP 19
DATAN 18
CLKP 21
GND1 20
Figure 7. 48-Lead LFCSP
2
CC
39 IMODN
38 V
TP4 23
CLKN 22
37 GND2
TP5 24
CC
36 GND2 35 IDTONE 34 GND2 33 IBMON 32 IMMON 31 GND3 30 V
3
CC
29 ALS 28 FAIL 27 DEGRADE 26 CLKSEL 25 TP6
OR
BIAS
30 GND2
32 CCBIAS
31 I
LBWSET 1
ASET 2
ERSET 3
PSET 4
IMPD 5
IMPDMON
GND4 7
V
4 8
CC
NOTES
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE MUST BE CONNECTED TO V THE GND PLANE.
02745-005
PIN 1 INDICATOR
ADN2847
TOP VIEW
1 11
CC
V
ERCAP 9
PAVCAP 10
Figure 8. 32-Lead LFCSP
29 GND2
DATAN 12
28 IMODP
DATAP 13
27 GND2
26 IMODN
CLKP 15
GND1 14
2
CC
25 V
CLKN 16
Table 5. Pin Function Descriptions
Pin Number
48-Lead 32-Lead Mnemonic Description
1 N/A TP1 Test Pin. In normal operation, TP1 = GND. 2 1 LBWSET Select Low Loop Bandwidth. 3 2 ASET Alarm Current Threshold Setting Pin. 4 3 ERSET Extinction Ratio Set Pin. 5 4 PSET Average Optical Power Set Pin. 6 N/A TP2 Test Pin. In normal operation, TP2 = GND. 7 5 IMPD Monitor Photodiode Input. 8 6 IMPDMON Mirrored Current from Monitor Photodiode. 9 N/A IMPDMON2 Mirrored Current from Monitor Photodiode 2. (For use with two MPDs). 10 N/A IMPD2 Monitor Photodiode Input 2. (For use with two MPDs). 11 7 GND4 Supply Ground. 12 8 VCC4 Supply Voltage. 13 9 ERCAP Extinction Ratio Loop Capacitor. 14 10 PAVCAP Average Power Loop Capacitor. 15 N/A TP3 Test Pin. In normal operation, TP3 = GND. 16 11 VCC1 Supply Voltage. 17 N/A GND1 Supply Ground. 18 12 DATAN Data, Negative Differential Terminal. 19 13 DATAP Data, Positive Differential Terminal. 20 14 GND1 Supply Ground. 21 15 CLKP Data Clock Positive Differential Terminal. Used if CLKSEL = VCC. 22 16 CLKN Data Clock Negative Differential Terminal. Used if CLKSEL = VCC. 23 N/A TP4 Test Pin. In normal operation, TP4 = GND. 24 N/A TP5 Test Pin. In normal operation, TP5 = GND. 25 N/A TP6 Test Pin. In normal operation, TP6 = GND. 26 17 CLKSEL Clock Select. Active = VCC. Used if data is clocked into chip. 27 18 DEGRADE Degrade Alarm Output. 28 19 FAIL Fail Alarm Output. 29 20 ALS Automatic Laser Shutdown.
24 IBMON 23 IMMO N 22 GND3
3
21 V
CC
20 ALS 19 FAIL 18 DEGRADE 17 CLKSEL
OR
CC
02745-006
Rev. B | Page 7 of 16
Page 8
ADN2847 Data Sheet
Pin Number
48-Lead 32-Lead Mnemonic Description
30 21 VCC3 Supply Voltage. 31 22 GND3 Supply Ground. 32 23 IMMON Modulation Current Mirror Output. 33 24 IBMON Bias Current Mirror Output. 34 N/A GND2 Supply Ground. 35 N/A IDTONE IDTONE. Requires external current sink to ground. 36 N/A GND2 Supply Ground. 37 N/A GND2 Supply Ground. 38 25 VCC2 Supply Voltage. 39 26 IMODN Modulation Current Negative Output. Connect via a matching resistor to VCC. 40 N/A IMODN Modulation Current Negative Output. Connect via a matching resistor to VCC. 41 27 GND2 Supply Ground. 42 28 IMODP Modulation Current Positive Output. Connect to laser diode. 43 N/A IMODP Modulation Current Positive Output. Connect to laser diode. 44 29 GND2 Supply Ground. 45 30 GND2 Supply Ground. 46 31 I 47 N/A I 48 32 CCBIAS
EP EP EPAD
Laser Diode Bias Current.
BIAS
Laser Diode Bias Current.
BIAS
Extra Laser Diode Bias. (Connected to Vcc when dc-coupled to laser diode. Connected to I when ac-coupled to laser diode).
Exposed Pad. The exposed pad on the bottom of the package must be connected to V the GND plane.
BIAS
or
CC
Rev. B | Page 8 of 16
Page 9
Data Sheet ADN2847
=

THEORY OF OPERATION

Laser diodes have current-in to light-out transfer functions, as shown in Figure 9. Two key characteristics of this transfer function are the threshold current, I
, and the slope in the
TH
linear region beyond the threshold current, referred to as slope efficiency (LI).
P1
ER =
P0
P1 + P0
=
P
AV
P1
P
AV
OPTICAL P OWER
P0
Figure 9. Laser Transfer Function
2
P
P
LI =
CURRENT
I
02745-009
I
I
TH

CONTROL

A monitor photodiode (MPD) is required to control the LD. The MPD current is fed into the ADN2847 to control the power and extinction ratio, continuously adjusting the bias current and modulation current in response to the changing threshold current and light-to-current slope efficiency of the laser.
The ADN2847 uses automatic power control (APC) to maintain a constant average power over time and temperature.
The ADN2847 uses closed-loop extinction ratio control to allow optimum setting of the extinction ratio for every device. Thus, SONET/SDH interface standards can be met over device variation, temperature, and laser aging. Closed-loop modulation control eliminates the need to either overmodulate the LD or include external components for temperature compensation. This reduces research and development time and second sourcing issues caused by characterizing LDs.
Average power and extinction ratio are set using the PSET pin and the ERSET pin, respectively. Potentiometers are connected between these pins and ground. The potentiometer R to change the average power. The potentiometer R to adjust the extinction ratio. Both PSET and ERSET are kept
1.2 V above GND.
The R
PSET
and R
potentiometers can be calculated using the
ERSET
following formulas:
V2.1
R =
PSET
R
=
ERSET
()
I
AV
V2.1
I
_
CWMPD
×
P
CW
ER ER
1
1
+
()
P
×
AV
ERSET
is used
PSET
is used
where:
I
is the average MPD current.
AV
P
is the dc optical power specified on the laser data sheet.
CW
I
is the MPD current at that specified PCW.
MPD_CW
P
is the average power required.
AV
ER is the desired extinction ratio (ER = P1/P0).
Note that I
ERSET
and I
changes from device to device; however,
PSET
the control loops determines actual values. It is not required to know exact values for LI or MPD optical coupling.

LOOP BANDWIDTH SELECTION

For continuous operation, the user should hardwire the LBWSET pin high and use 1 F capacitors to set the actual loop bandwidth. These capacitors are placed between the PAVCAP pin and the ERCAP pin and ground. It is important that these capacitors are low leakage multilayer ceramics with an insulation resistance greater than 100 G or a time constant of 1000 seconds, whichever is less.
Table 6.
Operation Mode LBWSET
Continuous
High 1 μF 1 μF
Recommended PAVCAP
Recommended ERCAP
50 Mbps to
3.3 Gbps Optimized for
Low 22 nF 22 nF
2.5 Gbps to
3.3 Gbps
Setting LBSET low and using 22 nF capacitors results in a shorter loop time constant (a 10× reduction over using 1 F capacitors and keeping LBWSET high.)

ALARMS

The ADN2847 is designed to allow interface compliance to ITUT-G958 (11/94) section 10.3.1.1.2 (transmitter fail) and section 10.3.1.1.3 (transmitter degrade). The ADN2847 has two active high alarms, DEGRADE and FAIL. A resistor between ground and the ASET pin is used to set the current at which these alarms are raised. The current through the ASET resistor is a ratio of 100:1 to the FAIL alarm threshold. The DEGRADE alarm is raised at 90% of this level.
Example:
II
DEGRADEFAIL
I
R
ASET
ASET
I
FAIL
100
I
ASET
mA50
100
V2.1
2.1
A500
where the smallest valid value for corresponds to the I
maximum of 100 mA.
BIAS
mA45somA50 =
A500
===
k4.2
===
R
is 1.2 k, because this
ASET
Rev. B | Page 9 of 16
Page 10
ADN2847 Data Sheet
The laser degrade alarm, DEGRADE, is provided to give a warning of imminent laser failure if the laser diode degrades further or environmental conditions continue to stress the LD, such as increasing temperature.
The laser fail alarm, FAIL, is activated when the transmitter can no longer be guaranteed to be SONET/SDH compliant. This occurs when one of the following conditions arises:
The ASET threshold is reached.
The ALS pin is set high. This shuts off the modulation and
bias currents to the LD, resulting in the MPD current dropping to zero. This gives closed-loop feedback to the system that ALS has been enabled.
DEGRADE is raised only when the bias current exceeds 90% of ASET current.

MONITOR CURRENTS

IBMON, IMMON, IMPDMON, and IMPDMON2 are current controlled current sources from V
. They mirror the bias,
CC
modulation, and MPD current for increased monitoring functionality. An external resistor to GND gives a voltage proportional to the current monitored.
If the monitoring functions IMPDMON and IMPDMON2 are not required, the IMPD pin and the IMPD2 pin must be grounded and the monitor photodiode output must be connected directly to the PSET pin.

DUAL MPD DWDM FUNCTION (48-LEAD LFCSP ONLY)

The ADN2847 has circuitry for a second monitor photodiode, MPD2. The second photodiode current is mirrored to IMPDMON2 for wavelength control purposes and is summed internally with the first monitor photodiode current for the power control loop. For single MPD circuits, the MPD2 pin is tied to GND.
This enables the system designer to use the two currents to control the wavelength of the laser diode using various optical filtering techniques inside the laser module.
If the monitor current functions IMPDMON and IMPDMON2 are not required, then the IMPD pin and IMPD2 pin can be grounded and the monitor photodiode output can be connected directly to PSET.

IDTONE (48-LEAD LFCSP ONLY)

The IDTONE pin is supplied for fiber identification/supervisory channels or control purposes in WDM. This pin modulates the optical one level over a possible range of 2% of minimum I to 10% of maximum I
. The level of modulation is set by con-
MOD
necting an external current sink between the IDTONE pin and ground. There is a gain of two from this pin to the I
MOD
Figure 12 shows how the AD9850/AD9851 or the AD9834 can be used with the ADN2847 to allow fiber identification.
MOD
current.
If the ID_TONE function is not used, the IDTONE pin should be tied to V
. Note that using IDTONE during transmission
CC
can cause optical eye degradation.

DATA AND CLOCK INPUTS

Data and clock inputs are ac-coupled (10 nF capacitors are recommended) and terminated via a 100  internal resistor between DATAP and DATAN, and also between the CLKP pin and the CLKN pin. There is a high impedance circuit to set the common-mode voltage that is designed to allow for maximum input voltage headroom over temperature. It is necessary that ac coupling is used to eliminate the need for matching between common-mode voltages.
ADN2847
DATA P
DATA N
Figure 10. AC Coupling of Data Inputs
5050
V
(TO FLIP-FLOPS)
REG
R
R = 2.5k, DATA R = 3kΩ, CLK
400µA TYP
02745-010
For input signals that exceed 500 mV p-p single-ended, it is necessary to insert an attenuation circuit as shown in Figure 11.
R1
R2
NOTES
1. R
IN
IMPEDANCE OF THE ADN2847.
DATA P/CLK P
R3
DATAN/CLKN
= 100 = THE DI FFERENTI AL INPUT
Figure 11. Attenuation Circuit
ADN2847
R
IN
02745-011

CCBIAS

When the laser is used in ac-coupled mode, the CCBIAS pin and the I coupled mode, CCBIAS should be tied to V
I
BIAS
pin should be tied together (Figure 15). In dc-
BIAS
.
CC
To achieve optimum eye quality, one pull-up resistor (RZ) is necessary, as shown in both circuits in Figure 14 and Figure 15. The recommended resistor R
value is approximately
Z
200 Ω ~ 500 Ω.

AUTOMATIC LASER SHUTDOWN

The ADN2847 ALS allows compliance to ITU-T-G958 (11/94), section 9.7. When ALS is logic high, both bias and modulation currents are turned off. Correct operation of ALS can be confirmed if the FAIL alarm is raised when ALS is asserted. Note that this is the only time DEGRADE is low while FAIL is high.
Rev. B | Page 10 of 16
Page 11
Data Sheet ADN2847
V
REF CLOCK
20MHz TO 180MHz
CLKIN
AD9850/AD9851
AD9834
R
CONTROLL ER
9
DDS
SET
1.25mA TO 20mA
21
20
I
12
OUT
37.5µA TO 600µA
I
OUT
50
50
LP FILTER
(DC-COUPLED)
Figure 12. Application Circuit to Allow Fiber Identification Using the AD9850/AD9851

ALARM INTERFACES

The FAIL and DEGRADE outputs have an internal pull-up resistor of 30 k, used to pull the digital high value to V
.
CC
However, the alarm can be overdriven with an external resistor allowing alarm interfacing to non-V output levels must be below the V
levels. Non-VCC alarm
CC
used for the ADN2847.
CC

POWER CONSUMPTION

The ADN2847 die temperature must be kept below 125°C. Both LFCSP packages have an exposed paddle that should be connected in such a manner that is at the same potential as the ADN2847 ground pins. The θ
for both packages is specified in the
JA
Absolute Maximum Ratings section. Power consumption can be calculated using
I
= I
CC
P = V
T
DIE
Thus, the maximum combination of I
CCMIN
× ICC + (I
CC
= T
+ 0.3 I
AMBIENT
MOD
× V
BIAS
+θJA × P
BIAS_PIN
) + I
MOD
BIAS
(V
+ I
MODP_PIN
must be
MOD
+ V
MODN_PIN
)/2
calculated, where:
I
= 50 mA (typical value of ICC provided in the
CCMIN
Specifications section)
I
= I
BIAS
T
DIE
T
AMBIENT
V
BIAS_PIN
V
MODP_PIN
V
MODN_PIN
= 0
MOD
= die temperature
= ambient temperature
= voltage at I
BIAS
pin = average voltage at IMODP pin = average voltage at IMODN pin

LASER DIODE INTERFACING

Many laser diodes designed for 2.5 Gbps operation are packaged with an internal resistor to bring the effective impedance up to 25  to minimize transmission line effects. In high current applications, the voltage drop across this resistor combined with the laser diode forward voltage makes direct connection between the laser and the driver impractical in a 3 V system.
10kHz TO 1MHz
1/2
AD8602
0.125mA TO 2mA
BC550
35
IDTONE
ADN2847
500
BC550
AD8602
1.3k
1/2
50µA TO 800µ A
1k
32
IMMON
02745-012
AC coupling the driver to the laser diode removes this headroom constraint.
Caution must be taken when choosing component values for ac coupling (see Figure 15) to ensure that the time constants (L/R and RC) are sufficiently long for the data rate and expected number of consecutive identical digits (CIDs). Failure to do this can lead to pattern dependent jitter and vertical eye closure.
For designs with low series resistance, or where external components become impractical, the ADN2847 supports direct connection to the laser diode (see Figure 14). In this case, care must be taken to ensure that the voltage drop across the laser diode does not violate the minimum compliance voltage on the IMODP pin.

OPTICAL SUPERVISOR

The PSET and ERSET potentiometers can be replaced with a dual-digital potentiometer, the ADN2850 (see Figure 13). The ADN2850 provides an accurate digital control for the average optical power and extinction ratio and ensures excellent stability over temperature.
CC
V
V
CC
IMPD
ADN2847
Tx
Rx
CLK
CS
ADN2850
SDI
SDO
CLK
CS
DAC1
DAC2
PSET
ERSET
DATA P DATA N
IDTONE
DATA P
IMODP
I
BIAS
DATA N
IDTONE
Figure 13. Application Using the ADN2850 a Dual 10-Bit Digital Potentiometer with an Extremely Low Temperature Coefficient
as an Optical Supervisor
CC
V
CC
R
Z
02745-013
Rev. B | Page 11 of 16
Page 12
ADN2847 Data Sheet
MPD LD
FAI L
10nF
10nF
10nF
10nF
DEGRADE
CLKN
CLKP
DATA P
DATA N
ALS
V
CC
36
GND2
37
GND2
V
2
48
CC
IMODN
IMODN
GND2
IMODP
IMODP
GND2
GND2
I
BIAS
I
BIAS
CCBIAS
1
V
CC
10µH
LD = LASER DIODE MPD = MONITOR PHOTODIODE
*
V
CC
*
*
*
V
CC
R
Z
V
CC
GND2
IBMON
IDTONE
ERSET
ASET
LBWSET
GND
** **
1k
1.5k1.5k
GND3
IMMON
ADN2847
GND
PSET
25
3
CC
ALS
FAI L
V
IMPDMON2
IMPDMON
IMPD
1.5k
100nF 100nF 100nF 100nF 10µF
GND
24
GND
CLKSEL
DEGRADE
IMPD2
GND4
GND
CLKN
CLKP
GND1
DATA P
DATA N
GND1
V
CC
GND
PAV C A P
ERCAP
4
CC
V
12
V
CC
1
22nF
22nF
13
VCCs SHOULD HAVE BYPAS S CAPACITORS AS
CLOSE AS POS SIBLE TO T HE ACTUAL SUPPLY PI NS ON THE ADN2847 AND THE L ASER DIODE US ED. CONSERVATIVE DECOUPLING WOULD I NCLUDE 100pF CAPACIT ORS IN PARAL LEL WI TH 10nF CAPACITORS.
GND
NOTES * DESIGNATES COMPONENTS THAT NEED TO BE OPTIMIZED FOR THE TYPE OF LASER USED. ** FOR DIGITAL PROGRAMMING, THE ADN2850 OR THE ADN2860 OPTICAL SUPERVIS OR CAN BE USED.
GND
02745-014
Figure 14. DC-Coupled 3.3 Gbps Test Circuit, Data Not Clocked
Rev. B | Page 12 of 16
Page 13
Data Sheet ADN2847
MPD LD
FAI L
10nF
10nF
10nF
10nF
DEGRADE
CLKN
CLKP
DATAP
DATAN
10µF
ALS
V
CC
*
*
*
V
CC
*
1µH
LD = LASER DIODE MPD = MONIT OR PHOTO DIODE
*
*
*
37
*
*
*
V
CC
R
Z
48
36
GND2
V
2
CC
IMODN
IMODN
GND2
IMODP
IMODP
GND2
GND2
I
BIAS
I
BIAS
CCBIAS
1
GND2
GND
V
CC
1.5k
GND2
IBMON
IDTONE
ERSET
ASET
LBWSET
** **
1k
1.5k
GND3
IMMON
ADN2847
GND
PSET
25
3
CC
ALS
FAI L
V
IMPDMON2
IMPDMON
IMPD
1.5k
100nF 100nF 100n F 100nF
DEGRADE
IMPD2
CLKSEL
GND4
GND
GND
GND
CLKN
CLKP
GND1
DATA P
DATA N
GND1
V
CC
GND
PAVCAP
ERCAP
4
CC
V
12
V
CC
1
24
GND
1µF
1µF
13
VCCs SHOULD HAVE BYPASS CAPACITORS AS CLOSE AS POSSIBLE TO THE ACTUAL SUPPLY PINS ON THE ADN2847 AND THE L ASER DIODE USED. CONSERVATIV E DECOUPLING WOULD INCL UDE 100pF CAPACIT ORS IN PARAL LEL W ITH 10nF CAPACITORS.
NOTES * DES IGNATES CO MPONENTS THAT NEED TO BE OPTI MIZED FO R THE TYPE OF LASER US ED. ** FOR DIG ITAL PROGRAMMI NG, THE ADN2850 OR THE ADN2860 OPTICAL SUPE RVISOR CAN BE USED.
Figure 15. AC-Coupled 50 Mbps to 3.3 Gbps Test Circuit, Data Not Clocked
02745-016
Figure 16. 2.5 Gbps Optical Eye at 25°C. Average Power = 0 dBm,
Extinction Ratio = 10 dB, PRBS 31 Pattern. Eye Obtained Using a DFB Laser.
Extinction Ratio = 10 dB, PRBS 31 Pattern. Eye Obtained Using a DFB Laser.
Rev. B | Page 13 of 16
GND
02745-017
Figure 17. 2.5 Gbps Optical Eye at 85°C. Average Power = 0 dBm,
02745-015
Page 14
ADN2847 Data Sheet
C
S
C
S

OUTLINE DIMENSIONS

INDI
EATING
PLANE
PIN 1
ATO R
0.80
0.75
0.70
5.10
5.00 SQ
4.90
0.05 MAX
0.02 NOM
0.20 REF
0.50
BSC
0.50
0.40
0.30
COPLANARIT Y
0.08
0.30
0.25
0.18
25
N
1
P
32
24
EXPOSED
PAD
17
BOTTOM VIEWTOP VIEW
1
8
916
FOR PROP ER CONNECTI ON OF THE EXPOSED PAD, REFER TO THE PIN CO NFIGURAT ION AND FUNCTIO N DESCRIPTIONS SECTION OF THIS DATA SHEET.
I
N
I
D
I
3.25
3.10 SQ
2.95
0.25 MIN
R
C
A
O
T
COMPLI ANT TO JEDE C STANDARDS MO- 220-WHHD.
112408-A
Figure 18. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
5 mm × 5 mm Body, Very Very Thin Quad
(CP-32-7)
Dimensions shown in millimeters
INDI
EATING
PLANE
PIN 1
ATO R
0.80
0.75
0.70
7.00
BSC SQ
0.50
BSC
TOP VIEW
COMPLI ANT TO JE DEC STANDARDS MO -220-WKKD.
0.45
0.40
0.35
0.20 REF
Figure 19. 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
7 mm × 7 mm Body, Very Very Thin Quad
(CP-48-4)
Dimensions shown in millimeters
0.30
0.23
0.18
37
36
25
24
0.05 MAX
0.02 NOM COPLANARIT Y
0.08
48
1
EXPOSED
PAD
12
BOTTOM VIEW
13
FOR PROP ER CONNECTI ON OF THE EXPOSED PAD, REFER TO THE PIN CO NFIGURAT ION AND FUNCTIO N DESCRIPTIONS SECTION OF THIS DATA SHEET.
P
N
I
5.20
5.10 SQ
5.00
0.25 MIN
N
1
I
R
O
C
I
A
T
D
112408-B
Rev. B | Page 14 of 16
Page 15
Data Sheet ADN2847

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option
ADN2847ACPZ-32 −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-7 ADN2847ACPZ-32-RL −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-7 ADN2847ACPZ-32-RL7 −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-7 ADN2847ACPZ-48 −40°C to +85°C 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-48-4
1
Z = RoHS Compliant Part.
Rev. B | Page 15 of 16
Page 16
ADN2847 Data Sheet
NOTES
©2003–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02745-0-3/12(B)
Rev. B | Page 16 of 16
Loading...