Datasheet ADL5811 Datasheet (ANALOG DEVICES)

Page 1
High IP3, 700 MHz to 2800 MHz, Double Balanced,
Passive Mixer, IF Amplifier, and Wideband LO Amplifier

FEATURES

RF frequency: 700 MHz to 2800 MHz continuous LO frequency: 250 MHz to 2800 MHz, high-side or
low-side inject IF range: 30 MHz to 450 MHz Power conversion gain of 7.5 dB at 1900 MHz SSB noise figure of 10.7 dB at 1900 MHz Input IP3 of 27.5 dBm at 1900 MHz Input P1dB of 12.7 dBm at 1900 MHz Typical LO drive of 0 dBm Single-ended, 50 Ω RF port Single-ended or balanced LO input port Single-supply operation: 3.6 V to 5.0 V Serial port interface control on all functions Exposed paddle 5 mm × 5 mm, 32-lead LFCSP package

APPLICATIONS

Multiband/multistandard cellular base station receivers Wideband radio link diversity downconverters Multimode cellular extenders and broadband receivers
ADL5811

FUNCTIONAL BLOCK DIAGRAM

VPIF
IFGMNCIFOP
30 29 28 27 26 2532 31
1
NC
2
RFCT
3
NC
4
RFIN
5
NC
6
NC
BIAS
7
NC
NC
GEN
8
11 12 13 14 15 169 10
VLO4
COMM
VLO3
COMM
Figure 1.
IFONNCIFGD
ADL5811
SERIAL
PORT
INTERFACE
VLO2
COMM
COMM
24
NC
23
NC
22
NC
21
LOIP
20
LOIN
19
LE
18
DATA
17
CLK
VLO1
COMM
09912-001

GENERAL DESCRIPTION

The ADL5811 uses revolutionary new broadband, square wave limiting, local oscillator (LO) amplifiers to achieve an unprecedented radio frequency (RF) bandwidth of 700 MHz to 2800 MHz. Unlike conventional narrow-band sine wave LO amplifier solutions, this permits the LO to be applied either above or below the RF input over an extremely wide bandwidth. Because energy storage elements are not used, the dc current consumption also decreases with decreasing LO frequency.
The ADL5811 uses highly linear, doubly balanced, passive mixer cores along with integrated RF and LO balancing circuits to allow single-ended operation. The ADL5811 incorporates programmable RF baluns, allowing optimal performance over a 700 MHz to 2800 MHz RF input frequency. The balanced passive mixer arrangement provides outstanding LO-to-RF and LO-to­IF leakages, excellent RF-to-IF isolation, and excellent intermodulation performance over the full RF bandwidth.
The balanced mixer cores also provide extremely high input linearity, allowing the device to be used in demanding
wideband applications where in-band blocking signals may otherwise result in the degradation of dynamic range. Blocker noise figure performance is comparable to narrow-band passive mixer designs. High linearity IF buffer amplifiers follow the passive mixer cores, yielding typical power conversion gains of
7.5 dB, and can be used with a wide range of output impedances. For low voltage applications, the ADL5811 is capable of operation at voltages down to 3.6 V with substantially reduced current. Two logic bits are provided to power down (<1.5 mA) the circuit when desired.
All features of the ADL5811 are controlled via a 3-wire serial port interface, resulting in optimum performance and minimum external components.
The ADL5811 is fabricated using a BiCMOS high performance IC process. The device is available in a 32-lead, 5mm × 5mm, LFCSP package and operates over a −40°C to +85°C temperature range. An evaluation board is also available.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
Page 2
ADL5811

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Timing Characteristics ................................................................ 4
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Performance Characteristics ............................................. 7
3.6 V Performance...................................................................... 16
Spurious Performance................................................................ 17
Circuit Description......................................................................... 20
RF Subsystem.............................................................................. 20
LO Subsystem ............................................................................. 21
Applications Information.............................................................. 22
Basic Connections...................................................................... 22
IF Port.......................................................................................... 22
Bias Resistor Selection ............................................................... 22
VGS Programming.................................................................... 22
Low-Pass Filter Programming.................................................. 23
RF Balun Programming ............................................................ 23
Register Structure........................................................................... 24
Evaluation Board............................................................................ 25
Outline Dimensions....................................................................... 28
Ordering Guide .......................................................................... 28

REVISION HISTORY

7/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 28
Page 3
ADL5811

SPECIFICATIONS

VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
RF INPUT INTERFACE
Return Loss Tunable to >20 dB broadband via serial port 15 dB
Input Impedance 50 Ω
RF Frequency Range 700 2800 MHz
OUTPUT INTERFACE
Output Impedance Differential impedance, f = 200 MHz 260||1.0 Ω||pF
IF Frequency Range 30 450 MHz
DC Bias Voltage1 Externally generated VS V
LO INTERFACE
LO Power −6 0 +10 dBm
Return Loss 13 dB
Input Impedance 50 Ω
LO Frequency Range Low-side or high-side LO 250 2800 MHz
DYNAMIC PERFORMANCE
Power Conversion Gain Including 4:1 IF port transformer and PCB loss 7.5 dB
Voltage Conversion Gain Z
SSB Noise Figure 10.7 dB
SSB Noise Figure Under Blocking
Input Third-Order Intercept
Input Second-Order Intercept
Input 1 dB Compression Point 12.7 dBm
LO-to-IF Output Leakage Unfiltered IF output −40 dBm
LO-to-RF Input Leakage −25 dBm
RF-to-IF Output Isolation 26 dB
IF/2 Spurious −10 dBm input power −73 dBc
IF/3 Spurious −10 dBm input power −75 dBc
POWER INTERFACE
Supply Voltage, VS 3.6 5 5.5 V
Quiescent Current Resistor programmable IF current 185 mA
Power-Down Current 1.4 mA
1
Supply voltage must be applied from external circuit through choke inductors.
= 50 Ω, differential Z
SOURCE
= 200 Ω differential 13.9 dB
LOAD
5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered
= 1900 MHz, f
f
RF1
= 1901 MHz, fLO = 1697 MHz,
RF2
each RF tone at −10 dBm
= 1900 MHz, f
f
RF1
= 2000 MHz, fLO = 1697 MHz,
RF2
each RF tone at −10 dBm
20.7 dB
27.5 dBm
62 dBm
Rev. 0 | Page 3 of 28
Page 4
ADL5811
A

TIMING CHARACTERISTICS

Low logic level ≤ 0.4 V, and high logic level ≥ 1.4 V.
Table 2. Serial Interface Timing
Parameter Limit Unit Test Conditions/Comments
t1 20 ns minimum LE setup time t2 10 ns minimum DATA-to-CLK setup time t3 10 ns minimum DATA-to-CLK hold time t4 25 ns minimum CLK high duration t5 25 ns minimum CLK low duration t6 10 ns minimum CLK-to-LE setup time t7 20 ns minimum LE pulse width

Timing Diagram

CLK
t
4
t
5
t
2
D
DB23 (MSB) DB22
TA
LE
t
3
DB2 DB1
(CONTROL BIT C2)(CONTROL BIT C3)
DB0 ( LSB)
(CONTROL BIT C1)
t
t
t
7
6
1
09912-002
Figure 2. Timing Diagram
Rev. 0 | Page 4 of 28
Page 5
ADL5811

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage, V CLK, DATA, LE 5.5 V IF Output Bias 6.0 V RF Input Power 20 dBm LO Input Power 13 dBm Internal Power Dissipation 1.1 W θJA (Exposed Paddle Soldered Down) 25°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
5.5 V
POS
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. 0 | Page 5 of 28
Page 6
ADL5811

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

VPIF
IFGMNCIFOP
IFONNCIFGD
32313029282726
1
NC
2
RFCT
NC
3 4 5 6 7 8
ADL5811
TOP VIEW
(Not to Scale)
9
10111213141516
VLO4
VLO3
COMM
COMM
RFIN
NC NC NC NC
NOTES
1. NC = NO CO NNECT. CAN BE GROUNDED.
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1, 3, 5 to 8, 22 to 24, 27, 30 NC No Connect. Can be grounded. 2 RFCT RF Balun Center Tap (AC Ground). 4 RFIN RF Input. Should be ac-coupled. 9, 11, 13, 15 VLO4, VLO3, VLO2, VLO1 Positive Supply Voltages for LO Amplifier. 10, 12, 14, 16, 25 COMM Ground. 17, 18, 19 CLK, DATA, LE Serial Port Interface Control. 20 LOIN Ground Return for LO Input. 21 LOIP LO Input. Should be ac-coupled. 26 IFGD Supply Return for IF Amplifier. Must be grounded. 28, 29 IFOP, IFON
IF Differential Open-Collector Outputs. Should be pulled up to V
external inductors. 31 IFGM IF Amplifier Bias Control. 32 VPIF Supply Voltage for IF Amplifier. EPAD Exposed pad must be connected to ground.
COMM
25
NC
24 23
NC NC
22
LOIP
21 20
LOIN
19
LE
18
DATA CLK
17
VLO2
VLO1
COMM
COMM
09912-003
using
CC
Rev. 0 | Page 6 of 28
Page 7
ADL5811

TYPICAL PERFORMANCE CHARACTERISTICS

VS = 5 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
220
TA = –40°C
= +25°C
T
A
210
200
190
180
170
160
150
SUPPLY CURRENT (mA)
140
130
120
= +85°C
T
A
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUE NCY (MHz)
Figure 4. Supply Current vs. RF Frequency
10
TA = –40°C T
= +25°C
A
T
= +85°C
9
A
8
7
6
5
CONVERSIO N GAIN (dB)
4
3
2
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUE NCY (MHz)
Figure 5. Power Conversion Gain vs. RF Frequency
45
TA = –40°C T
= +25°C
A
T
= +85°C
A
40
35
30
25
INPUT IP3 (dBm)
20
15
10
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 6. Input IP3 vs. RF Frequency
09912-004
09912-005
09912-006
90
TA = –40°C T
= +25°C
A
T
= +85°C
80
A
70
60
50
40
INPUT IP2 (dBm)
30
20
10
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUE NCY (MHz)
Figure 7. Input IP2 vs. RF Frequency
20
TA = –40°C T
= +25°C
A
18
T
= +85°C
A
16
14
12
10
8
INPUT P1dB (dBm)
6
4
2
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 8. Input P1dB vs. RF Frequency
16
TA = –40°C
= +25°C
T
A
15
= +85°C
T
A
14
13
12
11
10
NOISE FIGURE (dB)
9
8
7
6
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQ UENCY (MHz)
Figure 9. SSB Noise Figure vs. RF Frequency
09912-007
09912-008
09912-009
Rev. 0 | Page 7 of 28
Page 8
ADL5811
235
RF = 1900MHz
225
215
205
195
185
175
165
SUPPLY CURRENT (mA)
155
145
135
–40 –30 –20 –10 01020304050607080
TEMPERAT URE (°C)
V
POS
V
POS
V
POS
Figure 10. Supply Current vs. Temperature
10.0
RF = 1900MHz
9.5
9.0
8.5
8.0
7.5
7.0
6.5
CONVERSION GAIN (dB)
6.0
5.5
5.0
–40 –30 –20 –10 0 1020304050607080
TEMPERATURE (°C)
V
POS
V
POS
V
POS
Figure 11. Power Conversion Gain vs. Temperature
35
RF = 1900MHz
33
31
29
27
25
23
INPUT IP3 (dBm)
21
19
17
15
–40 –30 –20 –10 0 1020304050607080
TEMPERATURE (°C)
V
POS
V
POS
V
POS
Figure 12. Input IP3 vs. Temperature
= 4.75V = 5.00V = 5.25V
= 4.75V = 5.00V = 5.25V
= 4.75V = 5.00V = 5.25V
09912-010
09912-011
09912-012
80
RF = 1900MHz
75
70
65
60
55
50
INPUT IP2 (dBm)
45
40
35
30
–40 –30 –20 –10 0 1020304050607080
TEMPERATURE (°C)
V
POS
V
POS
V
POS
Figure 13. Input IP2 vs. Temperature
20
RF = 1900MHz
18
16
14
12
10
INPUT P1dB (dBm)
8
6
4
–40 –30 –20 –10 0 1020304050607080
TEMPERATURE (°C)
V
POS
V
POS
V
POS
Figure 14. Input P1dB vs. Temperature
15
RF = 1900MHz
14
13
12
11
10
SSB NOISE FIGURE ( dB)
9
8
–40 –30 –20 –10 0 1020304050607080
TEMPERATURE (°C)
V
POS
V
POS
V
POS
Figure 15. SSB Noise Figure vs. Temperature
= 4.75V = 5.00V = 5.25V
= 4.75V = 5.00V = 5.25V
= 4.75V = 5.00V = 5.25V
09912-013
09912-014
09912-015
Rev. 0 | Page 8 of 28
Page 9
ADL5811
200
195
TA = 25°C
RF = 900MHz RF = 1900MHz RF = 2500MHz
80
70
TA = 25°C
190
185
180
175
SUPPLY CURRENT (mA)
170
165
160
30 80 130 180 230 280 330 380 430
IF FREQUENCY (MHz)
Figure 16. Supply Current vs. IF Frequency
11
TA = 25°C
10
9
8
7
6
CONVERSION GAIN (dB)
5
RF = 900MHz RF = 1900MHz RF = 2500MHz
60
50
40
30
INPUT IP2 (dBm)
20
RF = 900MHz
10
RF = 1900MHz RF = 2500MHz
0
30 80 130 180 230 280 330 380 430
09912-016
IF FREQUENCY (MHz)
09912-019
Figure 19. Input IP2 vs. IF Frequency
18
TA = 25°C
16
14
12
10
8
INPUT P1dB (dBm)
6
4
RF = 900MHz RF = 1900MHz RF = 2500MHz
4
30 80 130 180 230 280 330 380 430
IF FREQUENCY (MHz)
Figure 17. Power Conversion Gain vs. IF Frequency
30
TA = 25°C
39
28
27
26
25
INPUT IP3 (dBm)
24
23
22
30 80 130 180 230 280 330 380 430
IF FREQUENCY (MHz)
RF = 900MHz RF = 1900MHz RF = 2500MHz
Figure 18. Input IP3 vs. IF Frequency
2
30 80 130 180 230 280 330 380 430
09912-017
IF FREQ UENCY (MHz)
09912-020
Figure 20. Input P1dB vs. IF Frequency
20
TA = 25°C
18
16
14
12
10
SSB NOISE FIGURE (dB)
8
6
4
30 80 130 180 230 280 330 380 430
09912-018
IF FREQ UENCY (MHz)
RF = 900MHz RF = 1900MHz RF = 2500MHz
09912-021
Figure 21. SSB Noise Figure vs. IF Frequency
Rev. 0 | Page 9 of 28
Page 10
ADL5811
11
10
TA = 25°C
RF = 900MHz RF = 1900MHz RF = 2500MHz
20
18
TA = 25°C
RF = 900MHz RF = 1900MHz RF = 2500MHz
9
8
7
6
CONVERSION GAIN (dB)
5
4
3
6 4 20246810
LO POWER (dBm)
Figure 22. Power Conversion Gain vs. LO Power
35
TA = 25°C
33
31
29
27
25
23
INPUT IP3 (dBm)
21
19
17
15
6–4–20246810
LO POWER (dBm)
RF = 900MHz RF = 1900MHz RF = 2500MHz
Figure 23. Input IP3 vs. LO Power
80
TA = 25°C
70
16
14
12
10
INPUT P1dB (dBm)
8
6
4
6 4 20246810
09912-022
LO POWER (d Bm)
09912-025
Figure 25. Input P1dB vs. LO Power
40
TA = –40°C T
= +25°C
A
–45
T
= +85°C
A
–50
–55
–60
–65
–70
IF/2 SPURIOUS (dBc)
–75
–80
–85
–90
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-023
RF FREQUENC Y (MHz)
09912-026
Figure 26. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm
55
TA = –40°C T
= +25°C
A
T
= +85°C
A
–60
60
50
40
INPUT IP2 (dBm)
30
20
RF = 900MHz RF = 1900MHz RF = 2500MHz
10
6 4 20 2 4 6 810
LO POWER (dBm)
Figure 24. Input IP2 vs. LO Power
09912-024
–65
–70
–75
IF/3 SPURIOUS (dBc)
–80
–85
–90
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUE NCY (MHz)
Figure 27. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm
09912-027
Rev. 0 | Page 10 of 28
Page 11
ADL5811
100
80
MEAN: 7.5 SD: 0.12%
500
400
TA = 25°C
RF = 900MHz RF = 1900MHz RF = 2500MHz
10
8
PERCENTAGE (%)
PERCENTAGE (%)
60
40
20
0
100
80
60
40
20
0
100
80
7.57.3 7.7 7.97.1
CONVERSION GAIN (dB)
Figure 28. Conversion Gain Distribution
MEAN: 27.5 SD: 0.36%
27.525.5 29.5 31.523.5
INPUT IP3 (dBm)
Figure 29. Input IP3 Distribution
MEAN: 11.68 SD: 0.36%
300
200
RESISTANCE ( )
100
0
80 130 180 230 280 330 380 43030
09912-028
IF FREQUENCY (MHz)
6
4
CAPACITANCE (pF )
2
0
09912-031
Figure 31. IF Output Impedance (R Parallel C Equivalent)
0
TA = +25°C
–5
–10
–15
–20
–25
–30
RF PORT RET URN LOSS (dB)
–35
–40
700 900 1100 1300 1500 1700 1900 2100 2300 2500
09912-029
RF FREQUENCY (MHz)
2700
09912-032
Figure 32. RF Port Return Loss, Fixed IF vs. RF Frequency
0
TA = 25°C
–3
–6
60
40
PERCENTAGE (%)
20
0
10.5 11.0 11.5 12.0 12.5
INPUT P1dB (dBm)
Figure 30. Input P1dB Distribution
09912-030
Rev. 0 | Page 11 of 28
–9
–12
–15
LO RETURN L OSS (dB)
–18
–21
–24
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
LO FREQUENCY (MHz)
Figure 33. LO Return Loss
09912-033
Page 12
ADL5811
A
0
TA = –40°C
= +25°C
T
A
= +85°C
T
–10
A
–20
–30
TION (dB)
–40
–50
RF-TO-IF ISOL
–60
–70
2XLO LEAKAGE (dBm)
–10
–20
–30
–40
–50
–60
0
2LO-TO-IF 2LO-TO-RF
TA = 25°C
–80
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 34. RF-to-IF Isolation vs. RF Frequency
0
TA = –40°C T
= +25°C
A
T
= +85°C
–10
A
–20
–30
–40
–50
LO-TO-IF LEAKAGE ( dBm)
–60
–70
–80
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
LO FRE QUENCY (MHz)
Figure 35. LO-to-IF Leakage vs. LO Frequency
0
TA = –40°C T
= +25°C
A
T
= +85°C
–10
A
–20
–30
–40
–50
–60
LO-TO-RF LEAKAGE (d Bm)
–70
–80
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
LO FRE QUENCY (MHz)
Figure 36. LO-to-RF Leakage vs. LO Frequency
–70
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
09912-034
LO FREQ UENCY (MHz)
09912-037
Figure 37. 2XLO Leakage vs. LO Frequency
10
3LO-TO-IF 3LO-TO-RF
–20
–30
–40
–50
3XLO LE AKAGE (dBm)
–60
–70
–80
500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
09912-035
LO FREQ UENCY (MHz)
TA = 25°C
09912-038
Figure 38. 3XLO Leakage vs. LO Frequency
14
TA = +25°C
13
12
NOISE FI GURE
11
10
9
8
7
CONVERSIO N GAIN (dB)
6
5
VGS = 0 VGS = 1
4
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-036
GAIN
VGS = 2
VGS = 4
VGS = 3
VGS = 5
RF FREQUE NCY (MHz)
VGS = 6 VGS = 7
16
15
14
13
12
11
10
9
SSB NOISE F IGURE (d B)
8
7
09912-0139
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency
for All VGS Settings
Rev. 0 | Page 12 of 28
Page 13
ADL5811
35
VGS = 0
VGS = 2
VGS = 4
VGS = 1
VGS = 3
30
INPUT IP3
25
20
15
INPUT IP3 (dBm)
10
5
INPUT P1dB
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 27 00
RF FREQUE NCY (MHz)
VGS = 5
VGS = 6 VGS = 7
TA = +25°C
Figure 40. Input IP3 and Input P1dB vs. RF Frequency for All VGS Settings
35
RF = 900MHz RF = 1900MHz RF = 2500MHz
30
25
20
15
10
SSB NOISE FIGURE (dB)
5
0
30 25 20 15 10 50 510
BLOCKER POW ER (dBm)
TA = +25°C
Figure 41. SSB Noise Figure vs. 10 MHz Offset Blocker Level
27
24
21
18
15
INPUT P1dB (dBm)
12
9
6
09912-140
240
TA = 25°C
220
200
180
160
140
SUPPLY CURRENT (mA)
120
100
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
IF BIAS RESISTOR VALUE ()
RF = 900MHz RF = 1900MHz RF = 2500MHz
09912-042
Figure 42. Supply Current vs. IF Bias Resistor Value
20
TA = 25°C
18
16
14
12
10
8
6
CONVERSIO N GAIN AND SSB NOI SE FIG URE (dB)
4
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1 800
09912-141
INPUT IP3
NOISE F IGURE
GAIN
IF BIAS RESISTOR VALUE ()
RF = 900MHz RF = 1900MHz RF = 2500MHz
32
28
24
20
16
12
INPUT IP3 (dBm)
8
4
0
09912-043
Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs.
IF Bias Resistor Value
Rev. 0 | Page 13 of 28
Page 14
ADL5811
11
RFB = 0 RFB = 1 RFB = 2
10
RFB = 3 RFB = 4
9
RFB = 5 RFB = 6 RFB = 7
8
7
6
5
4
CONVERSION GAIN (dB)
3
2
1
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
TA = +25°C
Figure 44. Conversion Gain vs. RF Frequency for All RFB Settings
32
RFB = 0 RFB = 1
31
RFB = 2 RFB = 3 RFB = 4
30
RFB = 5 RFB = 6 RFB = 7
29
28
27
26
INPUT IP3 (dBm)
25
24
23
22
700 900 1100 1300 1500 1700 1900 2100 2300 2500 270 0
RF FREQUE NCY (MHz)
TA = +25°C
Figure 45. Input IP3 vs. RF Frequency for All RFB Settings
09912-044
09912-045
18
RFB = 0 RFB = 1 RFB = 2
17
RFB = 3 RFB = 4
16
RFB = 5 RFB = 6 RFB = 7
15
14
13
12
INPUT P1dB (dBm)
11
10
9
8
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQ UENCY (MHz)
TA = +25°C
Figure 46. Input P1dB vs. RF Frequency for All RFB Settings
16
RFB = 0 RFB = 1 RFB = 2
15
RFB = 3 RFB = 4
14
RFB = 5 RFB = 6 RFB = 7
13
12
11
10
9
SSB NOISE F IGURE (d B)
8
7
6
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
TA = +25°C
Figure 47. SSB Noise Figure vs. RF Frequency for All RFB Settings
09912-046
09912-047
Rev. 0 | Page 14 of 28
Page 15
ADL5811
12
LPF = 0 LPF = 1 LPF = 2
10
LPF = 3
8
6
4
2
CONVERSION GAIN (dB)
0
RFB0
RFB7
TA = +25°C
21
LPF = 0 LPF = 1 LPF = 2
19
LPF = 3
17
15
13
11
INPUT P1dB (dBm)
9
7
RFB0
TA = +25°C
RFB7
–2
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 48. Conversion Gain vs. RF Frequency for All LPF Settings at
RFB7 and RFB0
35
TA = +25°C
33
31
29
27
25
23
INPUT IP3 (dBm)
21
19
LPF = 0 LPF = 1
17
LPF = 2 LPF = 3
15
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQ UENCY (MHz)
RFB0
RFB7
Figu re 49. Input I P3 vs. RF Frequency for All LPF Settings at RFB7 and RFB0
5
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-048
RF FREQUENCY (MHz)
09912-050
Figure 50. Input P1dB vs. RF Frequency for All LPF Settings at RFB7 and RFB0
20
LPF = 0 LPF = 1
18
LPF = 2 LPF = 3
16
14
12
10
8
SSB NOISE FIGURE (dB)
6
4
2
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-049
RFB7
RF FREQUENCY (MHz)
RFB0
TA = +25°C
09912-051
Figure 51. SSB Noise Figure vs. RF Frequency for
All LPF Settings at RFB7 and RFB0
Rev. 0 | Page 15 of 28
Page 16
ADL5811

3.6 V PERFORMANCE

VS = 3.6 V, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, RF power = −10 dBm, LO power = 0 dBm, R1 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
150
140
130
TA = –40°C T
= +25°C
A
T
= +85°C
A
80
70
60
TA = –40°C T
= +25°C
A
T
= +85°C
A
120
110
100
SUPPLY CURRENT (mA)
90
80
70
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 52. Supply Current vs. RF Frequency at 3.6 V
14
TA = –40°C T
= +25°C
A
T
= +85°C
A
12
10
8
6
4
CONVERSIO N GAIN (dB)
2
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 53. Power Conversion Gain vs. RF Frequency at 3.6 V
35
TA = –40°C T
= +25°C
A
T
= +85°C
A
30
25
20
15
INPUT IP3 (dBm)
10
5
50
40
30
INPUT IP2 (dBm)
20
10
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
09912-052
RF FREQUENCY (MHz)
09912-055
Figure 55. Input IP2 vs. RF Frequency at 3.6 V
24
TA = –40°C T
= +25°C
A
T
= +85°C
21
A
18
15
12
9
INPUT P1dB (dBm)
6
3
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 270 0
09912-053
RF FREQUENCY (MHz)
09912-056
Figure 56. Input P1dB vs. RF Frequency at 3.6 V
24
TA = –40°C T
= +25°C
A
T
= +85°C
21
A
18
15
12
9
SSB NOISE F IGURE (dB)
6
3
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 54. Input IP3 vs. RF Frequency at 3.6 V
09912-054
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700
RF FREQUENCY (MHz)
Figure 57. SSB Noise Figure vs. RF Frequency at 3.6 V
09912-057
Rev. 0 | Page 16 of 28
Page 17
ADL5811

SPURIOUS PERFORMANCE

(N × fRF) − (M × fLO) spur measurements were made using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm.

5 V Performance

VS = 5 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = 910 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
Table 5. RF = 900 MHz, LO = 697 MHz
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 −54.2 −31.4 −41.5 −29.4 −58.5 −49.3 −70.5 −52.9 1 −37.8 0.0 −38.7 −19.6 −51.6 −38.0 −62.9 −52.4 −70.2 −57.9 2 −65.0 −54.4 −69.6 −53.4 −72.5 −82.3 −93.5 −97.4 −93.0 −98.8 <−100 <−100 3 −94.0 −86.7 <−100 −91.0 <−100 −95.3 <−100 <−100 <−100 <−100 <−100 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 <−100 <−100 <−100 <−100 14 <−100 <−100 <−100 <−100 <−100 <−100 15 <−100 <−100 <−100 <−100 <−100
M
Table 6. RF = 1900 MHz, LO = 1697 MHz
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 −34.9 −30.7 −66.0 1 −33.2 0.0 −56.6 −51.3 −77.8 2 −75.0 −78.5 −71.5 −85.2 −80.3 <−100 3 <−100 <−100 <−100 −89.5 −94.8 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 <−100 14 <−100 <−100 <−100 15 <100 <100
M
Rev. 0 | Page 17 of 28
Page 18
ADL5811
Table 7. RF = 2500 MHz, LO = 2297 MHz
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 −28.6 −45.7 1 −32.5 0.0 −53.0 −52.4 2 −91.2 −82.8 −60.5 −80.8 −97.3 3 <−100 <−100 −87.7 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 <−100 14 <−100 <−100 <−100 15 <100 <100

3.6 V Performance

VS = 3.6 V, TA = 25°C, RF power = −10 dBm, LO power = 0 dBm, R1 = 800 Ω, ZO = 50 Ω, optimum SPI settings, unless otherwise noted.
M
Table 8. RF = 900 MHz, LO = 697 MHz
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 −45.5 −35.1 −44.1 −30.2 −49.9 −48.7 −66.6 −66.5 1 −41.0 0.0 −37.3 −18.9 −54.8 −40.4 −62.4 −53.2 −73.0 −66.8 2 −59.2 −54.7 −78.2 −54.8 −62.8 −83.1 −78.3 −96.1 −79.5 −96.2 −96.2 <−100 3 −90.0 −81.9 <−100 −73.9 −89.6 −79.4 <−100 −95.3 <−100 <−100 <−100 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 <−100 <−100 <−100 <−100 14 <−100 <−100 <−100 <−100 <−100 <−100 15 <−100 <−100 <−100 <−100 <−100
M
Rev. 0 | Page 18 of 28
Page 19
ADL5811
Table 9. RF = 1900 MHz, LO = 1697 MHz
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 −46.6 −30.5 −78.5 1 −33.4 0.0 −57.0 −53.8 −79.5 2 −68.9 −77.2 −69.2 −72.8 −75.2 <−100 3 <−100 <−100 <−100 −74.4 −94.0 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 <−100 14 <−100 <−100 <−100 15 <−100 <−100
Table 10. RF = 2500 MHz, LO = 2297 MHz
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 −30.0 −51.1 1 −32.1 0.0 −53.6 −51.7 2 −89.0 −78.0 −65.5 −72.9 −88.2 3 <−100 <−100 −73.5 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 <−100 14 <−100 <−100 <−100 15 <−100 <−100
M
M
Rev. 0 | Page 19 of 28
Page 20
ADL5811

CIRCUIT DESCRIPTION

The ADL5811 consists of two primary components: the RF subsystem and the LO subsystem. The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance device with excellent electrical, mechanical, and thermal properties. The wideband frequency response and flexible frequency programming simplifies the receiver design, saves on-board space, and minimizes the need for external components.
The RF subsystem consists of an integrated, tunable, low loss RF balun; a double balanced, passive MOSFET mixer; a tunable sum termination network; and an IF amplifier.
The LO subsystem consists of a multistage limiting LO amplifier. The purpose of the LO subsystem is to provide a large, fixed amplitude, balanced signal to drive the mixer independent of the level of the LO input. A block diagram of the device is shown in Figure 58.
VPIF
IFGM
NC
IFOP
IFON
NC
IFGD
COMM
24
NC
23
NC
22
NC
21
LOIP
20
LOIN
19
LE
18
DATA
17
CLK
VLO1
COMM
COMM
09912-162
NC
RFCT
NC
RFIN
NC
NC
NC
NC
30 29 28 27 26 2532 31
1
2
3
4
5
6
BIAS
7
GEN
8
11 12 13 14 15 169 10
VLO4
VLO3
COMM
Figure 58. Block Diagram
SERIAL
INTERFACE
VLO2
COMM
ADL5811
PORT

RF SUBSYSTEM

The single-ended, 50 Ω RF input is internally transformed to a balanced signal using a tunable, low loss, unbalanced-to-balanced (balun) transformer. This transformer is made possible by an extremely low loss metal stack, which provides both excellent balance and dc isolation for the RF port. Although the port can be dc connected, it is recommended that a blocking capacitor be used to avoid running excessive dc current through the part. The RF balun can easily support an RF input frequency range of 700 MHz to 2800 MHz. This balun is tuned over the frequency range by SPI controlled switched capacitor networks at the input and output of the RF balun.
The resulting balanced RF signal is applied to a passive mixer that commutates the RF input in accordance with the output of the LO subsystem. The passive mixer is essentially a balanced, low loss switch that adds minimum noise to the frequency translation. The only noise contribution from the mixer is due to the resistive loss of the switches, which is in the order of a few ohms.
Because the mixer is inherently broadband and bidirectional, it is necessary to properly terminate all idler (M × N product) frequencies generated by the mixing process. Terminating the mixer avoids the generation of unwanted intermodulation products and reduces the level of unwanted signals at the input of the IF amplifier, where high peak signal levels can compromise the compression and intermodulation performance of the system. This termination is accomplished by the addition of a programmable low-pass filter network between the IF amplifier and the mixer and in the feedback elements in the IF amplifier.
The IF amplifier is a balanced feedback design that simultaneously provides the desired gain, noise figure, and input impedance that is required to achieve the overall performance. The balanced open-collector output of the IF amplifier, with an impedance modified by the feedback within the amplifier, permits the output to be connected directly to a high impedance filter, a differential amplifier, or an analog-to-digital converter (ADC) input while providing optimum second-order intermodulation suppression. The differential output impedance of the IF amplifier is approximately 200 Ω. If operation in a 50 Ω system is desired, the output can be transformed to 50 Ω by using a 4:1 transformer or an LC impedance matching network.
The intermodulation performance of the design is generally limited by the IF amplifier. The IP3 performance can be optimized by adjusting the low-pass filter between the mixer and the IF amplifier. Further optimization can be made by adjusting the IF current with an external resistor.
Figure 42 and Figure 43 illustrate how various IF resistors affect the performance with a 5 V supply. Additionally, dc current can be saved by increasing the IF resistor. It is permissible to reduce the IF amplifier’s dc supply voltage to as low as 3.3 V, further reducing the dissipated power of the part. (Note that no performance enhancement is obtained by reducing the value of these resistors, and excessive dc power dissipation may result.)
Because the mixer is bidirectional, the tuning of the RF and IF ports is linked and it is possible for the user to optimize gain, noise figure, IP3, and impedance match via the SPI. This feature permits high performance operation and is achieved entirely using SPI control. Additionally, the performance of the mixer can be improved by setting the optimum gate voltage on the passive mixer, which is also controlled by the SPI to enable optimum performance of the part. See the Applications Information section for examples of this tuning.
Rev. 0 | Page 20 of 28
Page 21
ADL5811

LO SUBSYSTEM

The LO amplifier is designed to provide a large signal level to the mixer to obtain optimum intermodulation and compression performance. The resulting LO amplifier provides very high performance over a wide range of LO input frequencies.
The ideal waveshape for switching the passive mixer is a square wave at the LO frequency to cause the mixer to switch through its resistive region (from on to off and off to on) as rapidly as possible. While it has always been possible to generate such a square wave, the amount of dc current required to generate a large amplitude square wave at high frequencies has made it impractical to create such a mixer. Novel circuitry within the
ADL5811 permits the generation of a near-square wave output
at frequencies of up to 2800 MHz with dc current that compares favorably with that employed by narrow-band passive mixers.
The input stages of the LO amplifier provide common-mode rejection, permitting the LO input to be driven either single ended or balanced. For a single-ended input, either LOIP or LOIN can be grounded. It is desirable to dc block the LO inputs to avoid damaging the part by the accidental application of a large dc voltage to the part. In addition, the LO inputs are internally dc blocked.
Because the LO amplifier is inherently wideband, the ADL5811 can be driven with either high-side or low-side LO by simply setting the optimum RF balun and LPF inputs to the SPI.
The LO amplifier converts a variable level, single or balanced input signal (−6 dBm to +10 dBm) to a hard voltage limited, balanced signal internally to drive the mixer. Excellent performance can be
obtained with a 0 dBm input level; however, the circuit continues to function at considerably lower levels of LO input power.
The performance of this amplifier is critical in achieving a high intercept passive mixer without degrading the noise floor of the system. This is a critical requirement in an interferer rich environment, such as cellular infrastructure, where blocking interferers can limit mixer performance. Blocking dynamic range can benefit from a higher level of LO drive, which pushes the LO amplifier stages harder into compression and causes them to switch harder and to limit the small signal gain of the chain. Both of these conditions are beneficial to low noise figure under blocking. NF under blocking can be improved several decibels for LO input power levels above 0 dBm.
The LO amplifier topology inherently minimizes the dc current based on the LO operating voltage and the LO operating frequency. It is permissible to reduce the LO supply voltage down as low as
3.6 V, which drops the dc current rapidly. The mixer dynamic range varies accordingly with the LO supply voltage. No external biasing resistor is required for optimizing the LO amplifier.
In addition, the ADL5811 has a power-down mode that can be used with any supply voltage applied to the part.
All of the SPI inputs are designed to work with any logic family that provides a Logic 0 input level of less than 0.4 V and a Logic 1 input level that exceeds 1.4 V.
All pins, including the RF pins, are ESD protected and have been tested up to a level of 2000 V HBM and 1250 V CDM.
Rev. 0 | Page 21 of 28
Page 22
ADL5811

APPLICATIONS INFORMATION

BASIC CONNECTIONS

The ADL5811 mixer is designed to downconvert radio frequencies (RF) primarily between 700 MHz and 2800 MHz to lower intermediate frequencies (IF) between 30 MHz and 450 MHz. Figure 59 depicts the basic connections of the mixer. It is recommended to ac couple RF and LO input ports to prevent nonzero dc voltages from damaging the RF balun or LO input circuit. A RFIN capacitor value of 22 pF is recommended.

IF PORT

The mixer differential IF interface requires pull-up choke inductors to bias the open-collector outputs and to set the output match. The shunting impedance of the choke inductors used to couple dc current into the IF amplifier should be selected to provide the desired output return loss.
The real part of the output impedance is approximately 200 Ω, as seen in Figure 31, which matches many commonly used SAW filters without the need for a transformer. This results in a voltage conversion gain that is approximately 6 dB higher than the power conversion gain. When a 50 Ω output impedance is needed, use a 4:1 impedance transformer, as shown in Figure 59.
L1
C8
0.1µF
C2
0.1µF
C7
100pF
C6
22pF
470nH
L2
470nH
R1
910
PAD
32313029282726
PAD
1
NC
2
RFCT
3
NC
4
RFIN
5
NC
6
NC
7
NC
8
NC
VCC
C1
0.1µF
RFIN
VPIF
IFGM
ADL5811

BIAS RESISTOR SELECTION

An external resistor, R1, is used to adjust the bias current of the integrated amplifier at the IF terminal. It is necessary to have a sufficient amount of current to bias both the internal IF amplifier to optimize dc current vs. optimum input IP3 performance. Figure 42 and Figure 43 provide the reference for the bias resistor selection when lower power consumption is considered at the expense of conversion gain and input IP3 performance.

VGS PROGRAMMING

The ADL5811 allows programmability for internal gate-to-source voltages for optimizing mixer performance over the desired frequency bands. The ADL5811 defaults the VGS setting to 0. Power conversion gain, input IP3, NF, and input P1dB can be optimized, as shown in Figure 39 and Figure 40.
C3
NC
IFOP
120pF
C4
120pF
IFONNCIFGD
T1
TC4-1W+
C5 120pF
25
COMM
NC NC
NC LOIP LOIN
LE
DATA
CLK
24 23 22 21 20 19 18 17
R20 OPEN
R21 0
LE DATA CLK
IFOP
IFON
C17
22pF
LOIP
VLO4
COMM
VLO3
COMM
VLO2
COMM
VOL1
9
VCC
C23
10pF
VPOSAGND
RE
K
DBL
VCC
10111213141516
VCC
C20 10pF
COMM
VCC
C19 10pF
VCC
C18 10pF
09912-163
Figure 59. Basic Connections
Rev. 0 | Page 22 of 28
Page 23
ADL5811

LOW-PASS FILTER PROGRAMMING

The ADL5811 allows programmability for the low-pass filter terminating the mixer output. This filter helps to block sum term mixing products at the expense of some noise figure and gain and can significantly increase input IP3. The ADL5811 defaults the LPF setting to 0. Power conversion gain, input IP3, NF, and input P1dB can be optimized, as shown in Figure 48 to Figure 51.

RF BALUN PROGRAMMING

The ADL5811 allows programmability for the RF balun by allowing capacitance to be switched into both the input and the output, which allows the balun to be tuned to cover the entire frequency band (700 MHz to 2800 MHz). Under most circum­stances, the input and output can be tuned together though sometimes it may be advantageous for matching reasons to tune them separately. The ADL5811 defaults the RFB setting to 0. Power conversion gain, input IP3, NF, and input P1dB can be optimized, as shown in Figure 44 to Figure 47.
Rev. 0 | Page 23 of 28
Page 24
ADL5811

REGISTER STRUCTURE

Figure 60 illustrates the register map of the ADL5811. The
ADL5811 only uses Register 5. Because of this, set all of the
control bits to 5. When set to 0, the ENBL bit, DB7, enables the part. By setting this bit to 1, the mixer is powered down. The RFB IN CAP DAC and RFB OUT CAP DAC bits are used to tune the RF balun. In most cases, they are tuned together with the higher settings, 7, tuning for the low frequencies, and with the lower settings, 0, tuning for the high frequencies. There are times where it becomes advantageous to tune the input and output of the RF balun separately and that ability is provided.
The LPF bits control the low-pass filter settings at the IF output. The ability to tune the low-pass filter allows some trade-off between gain, noise figure, and input IP3 with higher settings, 7, providing higher input IP3 at the cost of some gain and noise figure, and lower settings, 0, providing higher gain and lower NF at the cost of lower input IP3. The VGS bits control the VGS settings of the mixer core and allow further tuning of the device.
Tabl e 1 1 lists the optimum settings characterized for each frequency band. All register bits default to 0.
RESERVED CONTROL BITSVGS LPF RFB OUT CAP DAC RFB IN CAP DAC RESERVED
DB23 DB22 D B21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 VGS2 VGS1 VGS 0 LPF1 LPF 0 0 CDO2 DCDO1 CDO0 0 CDI2 CDI1 CDI0 0 EN 0 0 0 0 C3(1) C2(0) C1(1)
VGS2 VGS1 VGS0 VGS SETTING
000 0
''' '
111 7
LPF1 LPF0 LOW PASS FILTER SETTING
00 0
'' '
11 3
CDO2 CDO1 CDO0 RF BALUN O UTPUT T UNING
000 0
''' '
111 7
Figure 60. ADL5811 Register Maps
CDI2 CDI1 CDI0 RF BALUN I NTPUT T UNING
000 0
''' '
111 7
ENBL
MEN MAIN ENABLE
0 DEVICE ENABLED 1 DEVICE DI SABLED
09912-160
Table 11. Optimum Settings
RF Frequency (MHz) LO Frequency (MHz) VGS LPF RFB OUT CAP DAC RFB IN CAP DAC
700 497 3 1 7 7 800 597 1 1 6 6 900 697 2 1 6 6 1000 797 1 1 4 4 1100 897 3 1 7 7 1200 997 3 3 5 5 1300 1097 3 3 5 5 1400 1197 3 3 4 4 1500 1297 3 3 4 4 1600 1397 3 3 3 3 1700 1497 3 3 3 3 1800 1597 3 3 3 3 1900 1697 3 3 2 2 2000 1797 3 3 2 2 2100 1897 3 3 1 1 2200 1997 2 3 2 2 2300 2097 3 2 2 2 2400 2197 2 2 2 2 2500 2297 3 3 1 1 2600 2397 3 2 2 2 2700 2497 1 2 2 2 2800 2597 3 2 1 1
Rev. 0 | Page 24 of 28
Page 25
ADL5811
VCC

EVALUATION BOARD

An evaluation board is available for the ADL5811. The standard evaluation board schematic is presented in Figure 61. The USB interface circuitry schematic is presented in Figure 64. The evaluation board layout is shown in Figure 62 and Figure 63.
L1
470nH
C8
0.1µF
C2
0.1µF
C7
100pF
C6
22pF
L2
470nH
910
PAD
1
NC
2
RFCT
3
NC
4
RFIN
5
NC
6
NC
7
NC
8
NC
C1
0.1µF
RFIN
R1
32313029282726
PAD
VPIF
IFGM
ADL5811
The evaluation board is fabricated using Rogers® 3003 material. Tabl e 12 details the configuration for the mixer characterization. The evaluation board software is available on www.analog.com.
C3
NC
IFOP
120pF
C4
120pF
IFONNCIFGD
T1
TC4-1W+
3
2 1
C5 120pF
25
COMM
NC NC
NC LOIP LOIN
LE
DATA
CLK
4
6
24 23 22 21 20 19 18 17
R20 OPEN
R21 0
LE DATA CLK
IFOP
IFON
C17
22pF
LOIP
VLO4
COMM
VLO3
COMM
VLO2
COMM
VOL1
9
VCC
C23
10pF
VPOSAGND
REDBLK
VCC
10111213141516
VCC
C20 10pF
COMM
VCC
C19 10pF
VCC
C18 10pF
09912-060
Figure 61. Evaluation Board Schematic
Table 12. Evaluation Board Configuration
Components Description Default Conditions
C1, C2, C8, C18, C19, C20, C23
Power supply decoupling. Nominal supply decoupling consists of a
0.1 μF capacitor to ground in parallel with a 10 pF capacitor to
C1, C2 = 0.1 μF (size 0402), C8, C18, C19, C20, C23 = 10 pF (size 0402)
ground positioned as close to the device as possible.
C6, C7, RFIN
RF input interface. The input channel is ac-coupled through C6.
C6 = 22 pF (size 0402), C7 = 100 pF (size 0402)
C7 provides bypassing for the center tap of the RF input balun.
C3, C4, C5, L1, L2, R20, R21, T1, IFOP, IFON
IF output interface. The open-collector IF output interfaces are biased through pull-up choke inductors, L1 and L2. T1 is a 4:1 impedance transformer used to provide a single-ended IF output interface, with C5 providing center-tap bypassing. Remove R21 for balanced output operation.
C3, C4, C5 = 120 pF (size 0402), L1, L2 = 470 nH (size 0603), R20 = open, R21 = 0 Ω (size 0402),
T1 = TC4-1W+ (Mini-Circuits®) C17, LOIP LO interface. C17 provides ac coupling for the LOIP local oscillator input. C17 = 22 pF (size 0402) R1 Bias control. R1 sets the bias point for the internal IF amplifier. R1 = 910 Ω (size 0402)
Rev. 0 | Page 25 of 28
Page 26
ADL5811
09912-062
Figure 62. Evaluation Board Top Layer
Figure 63. Evaluation Board Bottom Layer
09912-063
Rev. 0 | Page 26 of 28
Page 27
ADL5811
Y
U7
8
VCC
1
A0
2
A1
3
A2
SCL SDA
7
WC_N
GND
4
DGND
R9
100K
C38
0.1UF 0.1UF
DGND
0.1UF
56
C34
10PF C35
100K
3V3_USB
DGND
R10
C39
C36
10PF C37
DGND
0.1UF
7
3
AVCC
15
SCL
16
SDA
5
XTALIN
42
RESET_N
44
WAKE U P
14
RESERVED
1
RDY0_SLRD
2
RDY1_SLWR
DGND
AGND
6
10
DGND
3V3_USB
R7 R8 2K 2K
3V3_USB
24LC64-I-SN
24.000000MHZ
1
C40 22PF
DGND
3V3_USB
17
11
27
VCC
CTL0_FLAGA CTL1_FLAGB CTL2_FLAGC
PA0_INT0_N PA1_INT1_N
PA4_FIFOADR0 PA5_FIFOADR1
PA6_PKTEND
PA7_FLAGD_SLCS_N
GND
12
CASE
24
XTALOUT
DMINUS
IFCLK
CLKOUT
PA2_SLOE
PA3_WU2
PB0_FD0 PB1_FD1 PB2_FD2 PB3_FD3 PB4_FD4 PB5_FD5 PB6_FD6 PB7_FD7 PD0_FD8
PD1_FD9 PD2_FD10 PD3_FD11 PD4_FD12 PD5_FD13 PD6_FD14 PD7_FD15
5653412826
2
DGND
554332
DPLUS
PAD
PAD
3
C41
22PF
DGND
U6
4 8 9
13 54 29 30 31
33 34 35 36 37 38 39 40
18 19 20 21 22 23 24 25 45 46
DGND
47 48 49 50 51 52
CY7C68013A-56LTXC
5V_USB
J6
1
2 3 4 5
G1 G2
GND PINS
G3 G4
897-43-005-00-100001
DGND
R11
0
R12
0
R13
0
C49
R14
TBD0402
1K
DNI
DNI
DGND DGND DGND DGND DGND DGND
C50
R15
TBD0402
1K
330PF330PF
DNI
DNI
P1
1
2 3
SAMTECTSW10608GS3PIN
R17
R18
R19
C51
R16
1K
TBD0402
330PF
DNI
DNI
LE
0
DATA
0
CLK
0
5V_USB
7 8 6
PAD
DGND
ADP3334ACPZ
U5
IN1
IN2 OUT2
SD_N PADFBGND
OUT1
5
R3
0
AGND
DGND
R4 2K
A
D1
C
DGND
C31
1.0UF
DGND
SML-210MTT86
3V3_USB
3P3V
1
ORG
DNI
C33
C32
1000PF
1
2 3
R5
78.7K
DGND
R6
140K
1.0UF
DGND
DGND BLK
1
DNI
DGND
3V3_USB
DECOUPLING FOR U6
DGND
C48C46 C47C44 C45C42 C43
0.1UF0.1UF0.1UF0.1UF0.1UF0.1UF0.1UF
09912-161
Figure 64. USB Interface Circuitry on the Evaluation Board
Rev. 0 | Page 27 of 28
Page 28
ADL5811
C

OUTLINE DIMENSIONS

INDI
PIN 1
ATO R
5.10
5.00 SQ
4.90
0.50
BSC
24
0.30
0.25
0.18
25
EXPOSED
PAD
1
P
N
32
I
A
R
O
T
N
D
C
I
I
1
3.45
3.30 SQ
3.15
0.80
0.75
0.70
SEATING
PLANE
0.50
0.40
0.30
0.05 MAX
0.02 NOM COPLANARIT Y
0.20 REF
COMPLI ANT TO JE DEC STANDARDS M O-220-W HHD.
17
BOTTOM VIEWTOP VIEW
0.08
8
916
0.25 MIN
FOR PROP ER CONNECTI ON OF THE EXPOSED PAD, REFER TO THE PIN CO NFIGURAT ION AND FUNCTION DESCRIPTIONS SECTION OF THI S DATA SHEET .
033009-A
Figure 65. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
5 mm × 5 mm Body, Very Very Thin Quad (CP-32-13)
Dimensions shown in millimeters

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option Quantity
ADL5811ACPZ-R7 −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-32-13 1500 ADL5811-EVALZ Evaluation Board
1
Z = RoHS Compliant Part.
©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09912-0-7/11(0)
Rev. 0 | Page 28 of 28
Loading...