Datasheet ADL5565 Datasheet (ANALOG DEVICES)

Page 1
6 GHz Ultrahigh Dynamic Range
V
V
V
Data Sheet

FEATURES

3 dB bandwidth of 6 GHz (AV = 6 dB) Pin strappable gain adjust: 6 dB, 12 dB, and 15.5 dB Gain range from 0 dB to 15.5 dB using two external resistors Differential or single-ended input to differential output Low noise input stage: NF = 8.7 dB at 15.5 dB gain Low broadband distortion (A
10 MHz: −107 dBc (HD2), −110 dBc (HD3) 100 MHz: −108 dBc (HD2), −103 dBc (HD3) 200 MHz: −82 dBc (HD2), −87 dBc (HD3)
500 MHz: −68 dBc (HD2), −63 dBc (HD3) IMD3 of −113 dBc at 100 MHz center Slew rate: 11 V/ns Fast settling and overdrive recovery of 2 ns Single-supply operation: 2.8 V to 5.2 V Power down Fabricated using the high speed XFCB3 SiGe process

APPLICATIONS

Differential ADC drivers Single-ended-to-differential conversion RF/IF gain blocks SAW filter interfacing

GENERAL DESCRIPTION

The ADL5565 is a high performance differential amplifier optimized for RF and IF applications. The amplifier offers low noise of 1.5 nV/√Hz and excellent distortion performance over a wide frequency range making it an ideal driver for high speed 8-bit to 16-bit analog-to-digital converters (ADCs).
The ADL5565 provides three gain levels of 6 dB, 12 dB, and 15.5 dB through a pin strappable configuration. For the single-ended input configuration, the gains are reduced to 5.3 dB, 10.3 dB, and 13 dB. Using two external series resistors expands the gain flexibility of the amplifier and allows for any gain selection from 0 dB to 15.5 dB for a differential input and 0 dB to 13 dB for a single-ended input.
= 6 dB)
V
Differential Amplifier
ADL5565

FUNCTIONAL BLOCK DIAGRAM

CC
R
F
R
G2
VIP2
R
G1
VIP1
R
G1
IN1
R
G2
IN2
R
F
ADL5565
GND
Figure 1.
The quiescent current of the ADL5565 is typically 70 mA, and when disabled, consumes less than 5 mA with −25 dB of input­to-output isolation at 100 MHz.
The device is optimized for wideband, low distortion, and noise performance, giving it unprecedented performance for overall spurious-free dynamic range. These attributes, together with its adjustable gain capability, make this device the amplifier of choice for driving a wide variety of ADCs, mixers, pin diode attenuators, SAW filters, and multielement discrete devices.
Fabricated on an Analog Devices, Inc., high speed SiGe process, the ADL5565 is supplied in a compact 3 mm × 3 mm, 16-lead LFCSP package and operates over the −40°C to +85°C temperature range.
ENBL VON
VCOM
VOP
09959-001
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.
Page 2
ADL5565 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
3.3 V Specifications ...................................................................... 3
5 V Specifications ......................................................................... 6
Absolute Maximum Ratings ............................................................ 9
ESD Caution .................................................................................. 9
Pin Configuration and Function Descriptions ........................... 10
Typical Performance Characteristics ........................................... 11
Circuit Description ......................................................................... 16

REVISION HISTORY

6/12—Rev. A to Rev. B
Changes to Ordering Guide .......................................................... 26
4/12—Rev. 0 to Rev. A
Changes to Table 3; Added Thermal Resistance Section and
Table 4, Renumbered Sequentially ................................................. 9
Deleted Soldering Information Section ....................................... 23
Added Soldering Information and Recommended PCB Land Pattern Section and Figure 44, Renumbered
Sequentially ..................................................................................... 23
Updated Outline Dimensions ....................................................... 26
10/11— Revision 0: Initial Version
Basic Structure ............................................................................ 16
Applications Information .............................................................. 17
Basic Connections ...................................................................... 17
Input and Output Interfacing ................................................... 18
Gain Adjustment and Interfacing ............................................ 19
ADC Interfacing ......................................................................... 20
Layout Considerations ............................................................... 22
Soldering Information and Recommended PCB Land
Pattern .......................................................................................... 23
Evaluation Board ........................................................................ 23
Outline Dimensions ....................................................................... 26
Ordering Guide .......................................................................... 26
Rev. B | Page 2 of 28
Page 3
Data Sheet ADL5565
AV = 12 dB, V
≤ 1.0 V p-p
6500
MHz
Input Common-Mode Range
AV = 6 dB, 12 dB, and 15.5 dB
1.2 to 2
V
CMRR
60 dB
ENBL Input Bias Current
ENBL high
500 nA
B

SPECIFICATIONS

3.3 V SPECIFICATIONS

VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified ac-coupled differential input and differential output, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
−3 dB Bandwidth AV = 6 dB, V
AV = 15.5 dB, V
Bandwidth for 0.1 dB Flatness V
≤ 1.0 V p-p 1000 MHz
OUT
Gain Accuracy ±1 dB Gain Supply Sensitivity VS ± 5% 1.9 mdB/V Gain Temperature Sensitivity −40°C to +85°C 0.35 mdB/°C Slew Rate
Rise, A
V
= 2 V step
V
OUT
= 15.5 dB, RL = 200 Ω,
Fall, A
V
= 2 V step
V
OUT
Settling Time 2 V step to 1% 2 ns Overdrive Recovery Time VIN = 4 V to 0 V step, V Reverse Isolation (S12) 70 dB
INPUT/OUTPUT CHARACTERISTICS
≤ 1.0 V p-p 6750 MHz
OUT
OUT
≤ 1.0 V p-p 6250 MHz
OUT
= 15.5 dB, RL = 200 Ω,
11 V/ns
11 V/ns
≤ ±10 mV <3 ns
OUT
Output Common-Mode Range 1.4 to 1.8 V Maximum Output Voltage Swing 1 dB compressed 4 V p-p Output Common-Mode Offset Referenced to VCC/2 −100 +20 mV Output Common-Mode Drift −40°C to +85°C 0.34 mV/°C Output Differential Offset Voltage −20 +20 mV
Output Differential Offset Drift −40°C to +85°C 1.5 mV/°C Input Bias Current ±5 µA Input Resistance (Differential) AV = 6 dB 200 AV = 12 dB 100 AV = 15.5 dB 67 Ω Input Resistance (Single-Ended) AV = 5.6 dB 158 AV = 11.1 dB 96 AV = 14.1 dB 74 Ω Input Capacitance (Single-Ended) 0.3 pF Output Resistance (Differential) 10
POWER INTERFACE
Supply Voltage 2.8 3.3 5.2 V ENBL Threshold 1.5 V
ENBL low −165 µA Quiescent Current ENBL high 70 mA ENBL low 5 mA
Rev. | Page 3 of 28
Page 4
ADL5565 Data Sheet
AV = 15.5 dB, RL = 200 Ω, V
= 2 V p-p
−106/−112
dBc
Second/Third Harmonic Distortion (HD2/HD3)
AV = 6 dB, RL = 200 Ω, V
= 2 V p-p
−108/−103
dBc
AV = 12 dB, RL = 200 Ω, V
=
+53/−112
dBm/dBc
−85 dBc AV = 12 dB
12.8 dBm
B
Parameter Test Conditions/Comments Min Typ Max Unit
NOISE/HARMONIC PERFORMANCE
10 MHz
Second/Third Harmonic Distortion (HD2/HD3) AV = 6 dB, RL = 200 Ω, V AV = 12 dB, RL = 200 Ω, V
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
AV = 6 dB, RL = 200 Ω, V 2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
Second-Order Intermodulation Distortion (IMD2)
= 6 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing) Noise Spectral Density, RTI (NSD) AV = 6 dB 2.24 nV/√Hz AV = 12 dB 1.52 nV/√Hz AV = 15.5 dB 1.53 nV/√Hz Noise Figure (NF) AV = 6 dB 10.24 dB AV = 12 dB 8.66 dB AV = 15.5 dB 8.78 dB 1 dB Compression Point, RTO (OP1dB) AV = 6 dB 13.1 dBm
AV = 12 dB 12.8 dBm AV = 15.5 dB 13.1 dBm 100 MHz
AV = 12 dB, RL = 200 Ω, V AV = 15.5 dB, RL = 200 Ω, V Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
AV = 6 dB, RL = 200 Ω, V
2 V p-p composite (2 MHz spacing)
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing) Second-Order Intermodulation Distortion (IMD2)
= 6 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing) Noise Spectral Density, RTI (NSD) AV = 6 dB 2.25 nV/√Hz AV = 12 dB 1.53 nV/√Hz AV = 15.5 dB 1.52 nV/√Hz Noise Figure (NF) AV = 6 dB 10.27 dB AV = 12 dB 8.69 dB AV = 15.5 dB 8.7 dB 1 dB Compression Point, RTO (OP1dB) AV = 6 dB 13 dBm
= 2 V p-p −107/−110 dBc
OUT
= 2 V p-p −101/−107 dBc
OUT
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
OUT
= 2 V p-p −91/−99 dBc
OUT
= 2 V p-p −89/−100 dBc
OUT
=
OUT
OUT
=
OUT
=
OUT
=
OUT
=
OUT
+48/−100 dBm/dBc
+52/−108 dBm/dBc
+50/−105 dBm/dBc
−86 dBc
−86 dBc
−86 dBc
+54/−113 dBm/dBc
+52/−111 dBm/dBc
−85 dBc
−86 dBc
AV = 15.5 dB 12.8 dBm
Rev. | Page 4 of 28
Page 5
Data Sheet ADL5565
Output IP3/Third-Order Intermodulation
AV = 6 dB, RL = 200 Ω, V
=
+46/−97
dBm/dBc
Second-Order Intermodulation Distortion (IMD2)
−85 dBc Noise Spectral Density, RTI (NSD)
AV = 6 dB
2.62 nV/√Hz
B
Parameter Test Conditions/Comments Min Typ Max Unit
200 MHz
Second/Third Harmonic Distortion (HD2/HD3) AV = 6 dB, RL = 200 Ω, V AV = 12 dB, RL = 200 Ω, V AV = 15.5 dB, RL = 200 Ω, V
Distortion (OIP3/IMD3)
2 V p-p composite
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite AV = 6 dB, RL = 200 Ω, V
2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing) Noise Spectral Density, RTI (NSD) AV = 6 dB 2.36 nV/√Hz AV = 12 dB 1.64 nV/√Hz AV = 15.5 dB 1.51 nV/√Hz Noise Figure (NF) AV = 6 dB 10.65 dB
AV = 12 dB 9.25 dB AV = 15.5 dB 8.49 dB
500 MHz
Second/Third Harmonic Distortion (HD2/HD3) AV = 6 dB, RL = 200 Ω, V AV = 12 dB, RL = 200 Ω, V AV = 15.5 dB, RL = 200 Ω, V Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
AV = 6 dB, RL = 200 Ω, V
2 V p-p composite
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite Second-Order Intermodulation Distortion (IMD2)
= 6 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 2 V p-p −82/−87 dBc
OUT
= 2 V p-p −72/−86 dBc
OUT
= 2 V p-p −71/−86 dBc
OUT
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
= 2 V p-p −68/−63 dBc
OUT
= 2 V p-p −56/−62 dBc
OUT
= 2 V p-p −57/−63 dBc
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
+46/−99 dBm/dBc
+46/−98 dBm/dBc
−73 dBc
−70 dBc
+34/−77 dBm/dBc
+36/−82 dBm/dBc
+39/−88 dBm/dBc
−75 dBc
−70 dBc
−70 dBc
AV = 12 dB 1.57 nV/√Hz AV = 15.5 dB 1.47 nV/√Hz Noise Figure (NF) AV = 6 dB 11.47 dB
AV = 12 dB 8.93 dB AV = 15.5 dB 8.07 dB
Rev. | Page 5 of 28
Page 6
ADL5565 Data Sheet
Bandwidth for 0.1 dB Flatness
V
≤ 1.0 V p-p
1000
MHz
11 V/ns
Input Bias Current
±5 µA
Quiescent Current
ENBL high
80 mA
B

5 V SPECIFICATIONS

VS = 5.0 V, VCM = 2.5 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified ac-coupled differential input and differential output, unless otherwise noted.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
−3 dB Bandwidth AV = 6 dB, V AV = 12 dB, V
AV = 15.5 dB, V
OUT
Gain Accuracy ±1 dB Gain Supply Sensitivity VS ± 5% 1.6 mdB/V Gain Temperature Sensitivity −40°C to +85°C 0.37 mdB/°C Slew Rate
Rise, A
= 2 V step
V
OUT
Fall, AV = 15.5 dB, RL = 200 Ω,
= 2 V step
V
OUT
Settling Time 2 V step to 1% 2 ns Overdrive Recovery Time VIN = 4 V to 0 V step, V Reverse Isolation (S12) 70 dB
INPUT/OUTPUT CHARACTERISTICS
Input Common-Mode Range AV = 6 dB, 12 dB, and 15.5 dB 1.2 to 3.8 V Output Common-Mode Range 1.4 to 3 V Maximum Output Voltage Swing 1 dB compressed 8 V p-p Output Common-Mode Offset Referenced to VCC/2 −100 +20 mV Output Common-Mode Drift −40°C to +85°C 0.4 mV/°C Output Differential Offset Voltage −20 +20 mV CMRR 60 dB Output Differential Offset Drift −40°C to +85°C 1.5 mV/°C
≤ 1.0 V p-p 7000 MHz
OUT
≤ 1.0 V p-p 6750 MHz
OUT
≤ 1.0 V p-p 6500 MHz
OUT
= 15.5 dB, RL = 200 Ω,
V
≤ ±10 mV <3 ns
OUT
11 V/ns
Input Resistance (Differential) AV = 6 dB 200 AV = 12 dB 100 AV = 15.5 dB 67 Ω Input Resistance (Single-Ended) AV = 5.6 dB 158 AV = 11.1 dB 96 AV = 14.1 dB 74 Ω Input Capacitance (Single-Ended) 0.3 pF Output Resistance (Differential) 10
POWER INTERFACE
Supply Voltage 2.8 5 5.2 V ENBL Threshold 1.5 V ENBL Input Bias Current ENBL high 1 µA ENBL low −250 µA
ENBL low 6 mA
Rev. | Page 6 of 28
Page 7
Data Sheet ADL5565
AV = 15.5 dB, RL = 200 Ω, V
= 2 V p-p
−105/−106
dBc
Second/Third Harmonic Distortion (HD2/HD3)
AV = 6 dB, RL = 200 Ω, V
= 2 V p-p
−108/−109
dBc
AV = 12 dB, RL = 200 Ω, V
=
+53/−112
dBm/dBc
−91 dBc AV = 12 dB
16.5 dBm
B
Parameter Test Conditions/Comments Min Typ Max Unit
NOISE/HARMONIC PERFORMANCE
10 MHz
Second/Third Harmonic Distortion (HD2/HD3) AV = 6 dB, RL = 200 Ω, V AV = 12 dB, RL = 200 Ω, V
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
AV = 6 dB, RL = 200 Ω, V 2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
Second-Order Intermodulation Distortion (IMD2)
= 6 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing) Noise Spectral Density, RTI (NSD) AV = 6 dB 2.25 nV/√Hz AV = 12 dB 1.54 nV/√Hz AV = 15.5 dB 1.55 nV/√Hz Noise Figure (NF) AV = 6 dB 10.29 dB AV = 12 dB 8.77 dB AV = 15.5 dB 9.04 dB 1 dB Compression Point, RTO (OP1dB) AV = 6 dB 16.8 dBm
AV = 12 dB 16.7 dBm AV = 15.5 dB 16.6 dBm
100 MHz
AV = 12 dB, RL = 200 Ω, V AV = 15.5 dB, RL = 200 Ω, V Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
AV = 6 dB, RL = 200 Ω, V
2 V p-p composite (2 MHz spacing)
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
Second-Order Intermodulation Distortion (IMD2)
= 6 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
Noise Spectral Density, RTI (NSD) AV = 6 dB 2.28 nV/√Hz AV = 12 dB 1.53 nV/√Hz AV = 15.5 dB 1.52 nV/√Hz Noise Figure (NF) AV = 6 dB 10.39 dB AV = 12 dB 8.73 dB AV = 15.5 dB 8.7 dB 1 dB Compression Point, RTO (OP1dB) AV = 6 dB 16.8 dBm
= 2 V p-p −111/−116 dBc
OUT
= 2 V p-p −100/−104 dBc
OUT
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
OUT
= 2 V p-p −92/−103 dBc
OUT
= 2 V p-p −89.5/−105 dBc
OUT
=
OUT
OUT
=
OUT
=
OUT
=
OUT
=
OUT
+47/−99 dBm/dBc
+50/−105 dBm/dBc
+50/−105 dBm/dBc
−78 dBc
−86 dBc
−91 dBc
+53/−112 dBm/dBc
+52/−110 dBm/dBc
−87 dBc
−87 dBc
AV = 15.5 dB 16.4 dBm
Rev. | Page 7 of 28
Page 8
ADL5565 Data Sheet
Output IP3/Third-Order Intermodulation
AV = 6 dB, RL = 200 Ω, V
=
+46/−97
dBm/dBc
Second-Order Intermodulation Distortion (IMD2)
−85 dBc Noise Spectral Density, RTI (NSD)
AV = 6 dB
2.64 nV/√Hz
B
Parameter Test Conditions/Comments Min Typ Max Unit
200 MHz
Second/Third Harmonic Distortion (HD2/HD3) AV = 6 dB, RL = 200 Ω, V AV = 12 dB, RL = 200 Ω, V AV = 15.5 dB, RL = 200 Ω, V
Distortion (OIP3/IMD3)
2 V p-p composite
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite AV = 6 dB, RL = 200 Ω, V
2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing) Noise Spectral Density, RTI (NSD) AV = 6 dB 2.43 nV/√Hz AV = 12 dB 1.63 nV/√Hz AV = 15.5 dB 1.51 nV/√Hz Noise Figure (NF) AV = 6 dB 10.88 dB
AV = 12 dB 9.2 dB AV = 15.5 dB 8.54 dB 500 MHz
Second/Third Harmonic Distortion (HD2/HD3) AV = 6 dB, RL = 200 Ω, V AV = 12 dB, RL = 200 Ω, V AV = 15.5 dB, RL = 200 Ω, V Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
AV = 6 dB, RL = 200 Ω, V
2 V p-p composite
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite Second-Order Intermodulation Distortion (IMD2)
= 6 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 12 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 15.5 dB, RL = 200 Ω, V
A
V
2 V p-p composite (2 MHz spacing)
= 2 V p-p −82/−87 dBc
OUT
= 2 V p-p −72/−86 dBc
OUT
= 2 V p-p −71/−86 dBc
OUT
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
= 2 V p-p −69/−66 dBc
OUT
= 2 V p-p −56/−65 dBc
OUT
= 2 V p-p −58/−66 dBc
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
=
OUT
+46/−99 dBm/dBc
+46/−98 dBm/dBc
−74 dBc
−70 dBc
+35/−78 dBm/dBc
+35/−81 dBm/dBc
+37/−85 dBm/dBc
−73 dBc
−75 dBc
−72 dBc
AV = 12 dB 1.6 nV/√Hz AV = 15.5 dB 1.48 nV/√Hz Noise Figure (NF) AV = 6 dB 11.56 dB AV = 12 dB 9.06 dB
AV = 15.5 dB 8.17 dB
Rev. | Page 8 of 28
Page 9
Data Sheet ADL5565
Storage Temperature Range
−65°C to +150°C
B

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Output Voltage Swing × Bandwidth Product 2000 V p-p MHz Supply Voltage, VCC 5.25 V VIPx, VINx VCC + 0.5 V ±I
Maximum 30 mA
OUT
Internal Power Dissipation 525 mW Maximum Junction Temperature 125°C Operating Temperature Range −40°C to +100°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL RESISTANCE
Table 4 lists the junction-to-air thermal resistance (θJA) and the junction-to-paddle thermal resistance (θ
) for the ADL5565.
JC
Table 4. Thermal Resistance
Package Type θ
1
θ
JA
2
Unit
JC
16 LFCSP 60 12 °C/W
1
Measured on Analog Devices evaluation board. For more information about
board layout, see the Soldering Information and Recommended PCB Land Pattern section.
2
Based on simulation with JEDEC standard JESD51.

ESD CAUTION

Rev. | Page 9 of 28
Page 10
ADL5565 Data Sheet
VIP2
VIP1 VIN1 VIN2
VOP
E
NBL
VON VCOM
VCC
VCC
VCC
VCC
GND
GND
GND
GND
NOTES
1. EXPOSED PADDLE IS INTERNALLY CONNECT TO GND AND MUS T BE SOLDERED TO A LOW IMPEDANCE GROUND PLANE .
12 11 10
1
3 4
9
2
6
5
7
8
16
15
14
13
TOP
VIEW
ADL5565
09959-002
Pin No.
Mnemonic
Description
10
VON
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
B

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 5. Pin Function Descriptions
1 VIP2
2 VIP1
3 VIN1
4 VIN2
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for A VIP1 for A
= 15.5 dB.
V
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for A VIP2 for A
= 15.5 dB.
V
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for A VIN2 for A
= 15.5 dB.
V
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for A VIN1 for A
= 15.5 dB.
V
5, 6, 7, 8 VCC Positive Supply. 9 VCOM
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and output. Typically decoupled to ground with a 0.1 µF capacitor. With no reference applied, input and output common mode floats to midsupply (VCC/2).
11 VOP Balanced Differential Output. Biased to VCOM, typically ac-coupled. 12 ENBL Enable. Apply positive voltage (1.3 V < ENBL < VCC) to activate device. 13, 14, 15, 16,
Exposed Paddle
GND
Ground. Exposed paddle is internally connected to GND and must be soldered to a low impedance ground plane.
= 12 dB gain, strapped to
V
= 6 dB gain, strapped to
V
= 6 dB gain, strapped to
V
= 12 dB gain, strapped to
V
Rev. | Page 10 of 28
Page 11
Data Sheet ADL5565
–25
–20
–15
–10
–5
0
5
10
15
20
25
10 100 1000 10000
VOLTAGE GAIN (dB)
FREQUENCY (MHz)
A
V
= 15dB
A
V
= 12dB
A
V
= 6dB
09959-003
–20
–15
–10
–5
0
5
10
15
20
10 100 100001000
VOLTAGE GAIN (dB)
FREQUENCY (MHz)
–40°C +85°C +25°C +100°C
09959-004
10 100 100001000
VOLTAGE GAIN (dB)
FREQUENCY (MHz)
–25
–20
–15
–10
–5
0
5
10
15
20
–40°C +25°C +85°C +100°C
09959-105
0
5
10
15
20
25
0 50 100 150 200 250
OP1dB (d Bm)
FREQUENCY (MHz)
09959-005
AV = 15.5dB AV = 12dB A
V
= 6dB
0
5
10
15
20
25
0 50 100 150 200 250
OP1dB (d Bm)
FREQUENCY (MHz)
–40°C +25°C +85°C +100°C
09959-006
0
2
4
6
8
10
12
14
16
18
10 100 1000
NOISE FIGURE (dB)
FREQUENCY (MHz)
09959-007
AV = 6dB AV = 12dB AV = 15.5dB
B

TYPICAL PERFORMANCE CHARACTERISTICS

VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified ac-coupled differential input and differential output, unless otherwise noted.
Figure 3. Gain vs. Frequency Response for 200 Ω Differential Load,
= 6 dB, AV = 12 dB, and AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V, 25°C
A
V
Figure 4. Gain vs. Frequency Response for 200 Ω Differential Load,
= 6 dB, Four Temperatures, VPOS = 3.3 V, 25°C
A
V
Figure 6. OP1dB vs. Frequency at Three Gains,
25°C, 200 Ω Differential Load, VPOS = 3.3 V
Figure 7. OP1dB vs. Frequency for 200 Ω Differential Load, AV = 6 dB,
Four Temperatures, VPOS = 3.3 V
Figure 5. Gain vs. Frequency Response for 200 Ω Differential Load,
= 6 dB, Four Temperatures, VPOS = 5 V, 25°C
A
V
Figure 8. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB,
VPOS = 3.3 V
Rev. | Page 11 of 28
Page 12
ADL5565 Data Sheet
0
2
4
6
8
10
12
14
16
18
10M 100M 1G
NOISE FIGURE (dB)
FREQUENCY (Hz)
AV = 6dB A
V
= 12dB
A
V
= 15.5dB
09959-008
10 100 1000
FREQUENCY (MHz)
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
NOISE SPECTRAL DENSITY (nV/√Hz)
AV = 6dB AV = 12dB A
V
= 15.5dB AV = 6dB AV = 12dB AV = 15.5dB
09959-009
0
10
20
30
40
50
60
0 50 100 150 200 250 300 350 400 450 500
OIP3 (d Bm)
FREQUENCY (MHz)
5V, AV = 6dB 5V, AV = 12dB 5V, A
V
= 15.5dB
3.3V, A
V
= 6dB
3.3V, AV = 12dB
3.3V, A
V
= 15.5dB
09959-010
0
10
20
30
40
50
60
0 50 100 150 200 250 300 350 400 450 500
OIP3 (d Bm)
FREQUENCY (MHz)
5V, –40°C 5V, +25°C 5V, +85°C 5V, +100°C
3.3V, –40°C
3.3V, +25° C
3.3V, +85° C
3.3V, +100° C
09959-011
0
10
20
30
40
50
60
70
0 1 2 3 4 5 6 7 8 9 10
OIP3 (d Bm)
P
OUT
/TONE (dBm)
3.3V, A
V
= 6dB
3.3V, A
V
= 12dB
3.3V, A
V
= 15.5dB
5V, A
V
= 6dB
5V, A
V
= 12dB
5V, A
V
= 15.5dB
09959-012
–140
–120
–100
–80
–60
–40
–20
0
0 50 100 150 200 250 300 350 400 450 500
IMD3 (dBc)
FREQUENCY (MHz)
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, A
V
= 15.5dB
5V, A
V
= 6dB
5V, A
V
= 12dB
5V, AV = 15.5dB
09959-013
B
Figure 9. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and
= 15.5 dB, VPOS = 5 V
A
V
Figure 10. Noise Spectral Density vs. Frequency at AV = 6 dB, AV = 12 dB, and
= 15.5 dB, VPOS = 3.3 V and VPOS = 5 V
A
V
Figure 12. Output Third-Order Intercept (OIP3) vs. Frequency,
Over Temperature, Output Level at 2 V p-p Composite, R
VPOS = 3.3 V and VPOS = 5 V, Four Temperatures
Figure 13. Output Third-Order Intercept (OIP3) vs. Power (P
Frequency 100 MHz, A
= 15.5 dB, VPOS = 3.3 V and VPOS = 5 V
V
= 200 Ω, Av = 6 dB,
L
),
OUT
Figure 11. Output Third-Order Intercept (OIP3) at Three Gains,
Output Level at 2 V p-p Composite, R
= 200 Ω, VPOS = 3.3 V and VPOS = 5 V
L
Figure 14. Output IMD3 vs. Frequency, Output Level at 2 V p-p Composite,
= 200 Ω, VPOS = 3.3 V and VPOS = 5 V
R
L
Rev. | Page 12 of 28
Page 13
Data Sheet ADL5565
–140
–120
–100
–80
–60
–40
–20
0
0 50 100 150 200 250 300 350 400 450 500
IMD3 (dBm)
FREQUENCY (MHz)
3.3V, –40°C
3.3V, +25° C
3.3V, +85° C
3.3V, +100° C 5V, –40°C 5V, +25°C 5V, +85°C 5V, +100°C
09959-014
25
30
35
40
45
50
55
0 50 100 150 200 250
OIP3 (d Bm)
FREQUENCY (MHz)
09959-015
AV = 5.3dB AV = 10.3dB A
V
= 13dB
–140
–120
–100
–80
–60
–40
–20
0
–180
–160
–140
–120
–100
–80
–60
–40
0 50 100 150 200 250 300 350 400 450 500
HD3 (dBc)
HD2 (dBc)
FREQUENCY (MHz)
HD2, 3.3V, AV = 6dB HD2, 3.3V, A
V
= 12dB
HD2, 3.3V, A
V
= 15.5dB HD2, 5V, AV = 6dB HD2, 5V, AV = 12dB HD2, 5V, AV = 15.5dB
HD3, 3.3V, A
V
= 6dB HD3, 3.3V, AV = 12dB HD3, 3.3V, AV = 15.5dB HD3, 5V, AV = 6dB HD3, 5V, AV = 12dB HD3, 5V, AV = 15.5dB
09959-016
–140
–120
–100
–80
–60
–40
–20
0
–180
–160
–140
–120
–100
–80
–60
–40
0 50 100 150 200 250 300 350 400 450 500
HD3 (dBc)
HD2 (dBc)
FREQUENCY (MHz)
HD2, 5V, –40°C HD2, 5V, +25°C HD2, 5V, +85°C HD2, 5V, +100°C HD2, 3.3V, –40°C HD2, 3.3V, +25°C HD2, 3.3V, +85°C HD2, 3.3V, +100°C
HD3, 5V, –40°C HD3, 5V, +25°C HD3, 5V, +85C HD3, 5V, +100°C HD3, 3.3V, –40°C HD3, 3.3V, +25°C HD3, 3.3V, +85°C HD3, 3.3V, +100°C
09959-017
P
OUT
/TONE (dBm)
–140
–120
–100
–80
–60
–40
–20
0
–200
–180
–160
–140
–120
–100
–80
–60
–6 –4 –2 0 2 4 6 8 10
HD3 (dBc)
HD2 (dBc)
3.3V, HD2 5V, HD2
3.3V, HD3 5V, HD3
09959-018
–120
–100
–80
–60
–40
–20
0
1.0 1.5 2.0 2.5 3.0
HD2 AND HD3 (dBc)
VCOM
HD2, 5V HD3, 5V HD2, 3.3V HD3, 3.3V
09959-019
B
Figure 15. IMD3 vs. Frequency, Over Temperature, Output Level at
2 V p-p Composite, R
= 200 Ω, AV = 6 dB, VPOS = 3.3 V and VPOS = 5 V,
L
Four Temperatures
Figure 16. Single-Ended OIP3 vs. Frequency
Figure 18. Harmonic Distortion (HD2/HD3) vs. Frequency, Over Temperature,
Output Level at 2 V p-p Composite, R
= 200 Ω, AV = 6 dB, VPOS = 3.3 V and
L
VPOS = 5 V, Four Temperatures
Figure 19. Harmonic Distortion vs. Output Power per Tone,
Frequency = 100 MHz, R
= 200 Ω, VPOS = 3.3 V and VPOS = 5 V
L
Figure 17. Harmonic Distortion (HD2/HD3) vs. Frequency,
Output Level at 2 V p-p Composite, R
Rev. | Page 13 of 28
= 200 Ω, VPOS = 3.3 V and VPOS = 5 V
L
Figure 20. Harmonic Distortion (HD2/HD3) vs. VCOM,
= 6 dB, VPOS = 3.3 V and VPOS = 5 V
A
V
Page 14
ADL5565 Data Sheet
–105
–100
–95
–90
–85
–80
–75
–70
–65
–60
0 50 100 150 200 250 300
HARMONIC DISTORTIO N HD2, HD3 (dBc)
HD2 A
V
= 5.3dB
HD2 A
V
= 10.3dB
HD2 A
V
= 13dB
HD3 A
V
= 5.3dB
HD3 A
V
= 10.3dB
HD3 A
V
= 13dB
FREQUENCY (MHz)
09959-020
CH3 400mV/DI V 25GS/s
8:0G
A CH3 832mV
1
3
50Ω
CH1 70.4mV 2ns/DIV
B
W
09959-022
25GS/s
CH1 340mV A CH2 10mV
1
CH2 1.025V
2ns/DIV
09959-023
0
10
20
30
40
50
60
70
80
90
10 100 1000
CMRR (dB)
FREQUENCY (MHz)
09959-021
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 500 100 1500 2000 2500 3000
GROUP DELAY (n s)
FREQUENCY (MHz)
09959-024
–80
–70
–60
–50
–40
–30
–20
–10
0
10 100 1000
REVERSE ISOLATION (dB)
FREQUENCY (GHz)
09959-025
B
Figure 21. Single-Ended Harmonic Distortion (HD2/HD3) vs. Frequency,
Figure 22. ENBL Time Domain Response
Figure 24. Common-Mode Rejection Ratio (CMRR) vs. Frequency
Figure 25. Group Delay vs. Frequency
Figure 23. Large Signal Pulse Response, A
= 15.5 dB
V
Rev. | Page 14 of 28
Figure 26. Reverse Isolation (S12) vs. Frequency AV = 6 dB
Page 15
Data Sheet ADL5565
10
15
20
25
30
35
40
45
50
0
100
200
300
400
500
600
700
800
10 100 1000
EQUIVALENT PARALLEL INPUT CAPACITANCE (pF)
EQUIVALENT PARALLEL INPUT RESISTANCE (Ω)
FREQUENCY (MHz)
09959-026
0
1
2
3
4
5
6
7
8
9
10
0
15
30
45
60
75
90
105
120
135
150
10 100 1000
EQUIVALENT SERIE S OUTPUT I NDUCTANCE (nH)
EQUIVALENT SERIES OUTPUT RESISTANCE (Ω)
FREQUENCY (MHz)
RS
LS
09959-128
60
65
70
75
80
85
–40 –20 0 20 40 60 80 100
I
SUPPLY
(mA)
TEMPERATURE (°C)
5V
3.3V
09959-027
B
Figure 27. S11 Equivalent RLC Parallel Network, AV = 6 dB
Figure 29. I
vs. Temperature, RL = 200 Ω, AV = 6 dB,
SUPPLY
VPOS = 3.3 V and VPOS = 5 V
Figure 28. S22 Equivalent RLC Parallel Network, AV = 6 dB
Rev. | Page 15 of 28
Page 16
ADL5565 Data Sheet
R
L
1
/2 R
S
1
/2 R
S
AC
100
200
0.1µF
0.1µF
200
100
50
50VIP2
VIP1
VIN1 VIN2
5
5
++
09959-032
B

CIRCUIT DESCRIPTION

BASIC STRUCTURE

The ADL5565 is a low noise, fully differential amplifier/ADC driver that can operate from 2.8 V to 5.2 V. It provides three gain options, 6 dB, 12 dB, and 15.5 dB, without the need for external resistors and has wide bandwidths of greater than 6 GHz for all gains. Differential input impedance is 200 Ω for 6 dB, 100 Ω for 12 dB, and 67 Ω for 15.5 dB. It has a differential output impedance of 10 Ω.
Figure 30. Basic Structure
The ADL5565 is composed of a fully differential amplifier with on-chip feedback and feed forward resistors. The two feedforward resistors on each input set this pin-strappable amplifier in three different gain configurations of 6 dB, 12 dB, and 15.5 dB, and by using two external resistors, any gain from 0 dB to 15.5 dB can be realized. The amplifier is designed to provide high differential open-loop gain and an output common-mode circuit that enables
the user to change the common-mode voltage from the VCOM pin. The amplifier is designed to provide superior low distortion at frequencies up to and beyond 300 MHz with low noise and low power consumption from a 3.3 V power supply at 70 mA.
The ADL5565 is very flexible in terms of I/O coupling. It can be ac-coupled or dc-coupled at the inputs and/or the outputs within the specified input and output common-mode levels. The input of the device can be configured as single-ended or differential with similar third-order distortion performance. Due to the internal connections between the inputs and outputs, an output common-mode voltage between 1.4 V and 1.8 V at 3.3 V and
1.4 V to 3 V at 5 V must be maintained for the best distortion. For a dc-coupled input, the input common mode should be between 1.2 V and 2 V at the 3.3 V supply, and 1.2 V to 3.8 V at the 5 V supply. The device has been characterized using 2 V p-p into a 200 Ω ac-coupled output. If the inputs are ac-coupled, the input and output common-mode voltages are set by VCC/2 when no external circuitry is used. The ADL5565 provides an output common-mode voltage set by VCOM, which allows driving an ADC directly without external components. Although distortion is similar over the specified frequency range at both 3.3 V and 5 V, lower distortion results on the 5 V supply for signal swings larger than 2 V p-p.
Rev. | Page 16 of 28
Page 17
Data Sheet ADL5565
1
2
3
4
11
12
10
9
5
6
7
8
15
16
14
13
VIP2
VIP1
VIN1
VIN2
VOP
ENBL
VON
VCOM
VCC
VCC
VCC
VCC
AC
VCC
GND
GND
GND
GND
ADL5565
VCC
BALANCED LOAD
R
L
0.1µF
0.1µF
0.1µF
A
B
0.1µF
0.1µF0.1µF10µF
0.1µF
RS/2
R
S
/2
BALANCED
SOURCE
09959-033
B

APPLICATIONS INFORMATION

BASIC CONNECTIONS

Figure 31 shows the basic connections for operating the
ADL5565. Apply a voltage between 3 V and 5 V to the VCC pins,
and decouple each supply pin with at least one low inductance,
0.1 µF surface-mount ceramic capacitor, placed as close as possible to the device. Also, decouple the VCOM pin (Pin 9) using a 0.1 µF capacitor.
The gain of the part is determined by the pin-strappable input configuration. When Input A is applied to VIP1 and Input B is applied to VIN1, the gain is 6 dB (minimum gain, see Equation 1 and Equation 2). When Input A is applied to VIP2 and Input B
is applied to VIN2, the gain is 12 dB (middle gain). When Input A is applied to both VIP1 and VIP2 and Input B is applied to both VIN1 and VIN2, the gain is 15.5 dB (maximum gain).
Pin 1 to Pin 4, Pin 10, and Pin 11 are biased at 1/2 VCC above ground and can be dc-coupled (if within the specified input or output common-mode voltage levels) or ac-coupled as shown in Figure 31.
To enable the ADL5565, the ENBL pin must be pulled high. Pulling the ENBL pin low puts the ADL5565 in sleep mode, reducing the current consumption to 5 mA at ambient.
Figure 31. Basic Connections
Rev. | Page 17 of 28
Page 18
ADL5565 Data Sheet
3V TO 5V
VIP2 VIP1
VIN1 VIN2
A
B
50
AC
R2
++
0.1µF
ETC1-1-13
0.1µF
+
R1
+
0.1µF
0.1µF
NOTES
1. FOR 6dB GAIN (A
V
= 2), CONNECT INPUT A TO V IP1 AND INPUT B TO VIN1.
2. FOR 12dB GAIN (A
V
= 4), CONNECT INPUT A TO V IP2 AND INPUT B TO VIN2.
3. FOR 15.5dB GAIN (A
V
= 6), CONNECT INPUT A TO BOTH VIP1 AND V IP2
AND INPUT B TO BOTH VIN1 AND VIN2.
R
L
2
R
L
2
09959-034
100
200
200
100
50
50VIP2
VIP1
VIN1 VIN2
5
5
R
L
AC
1
/2 R
S
1
/2 R
S
0.1µF
+
0.1µF
+
09959-035
L
L
G
V
R
R
R
A
=10
200
6
100
VIP2 VIP1
VIN1 VIN2
A
B
50
AC
R2
+
+
0.1µF
0.1µF
0.1µF
3V TO 5V
+
R1
NOTES
1. FOR 5. 3dB GAIN (A
V
= 1.84), CONNE CT INPUT A T O VIP1
AND INPUT B TO VIN1.
2. FOR 10. 3dB GAIN (A
V
= 3.3), CONNE CT INPUT A T O VIP2
AND INPUT B TO VIN2.
3. FOR 13d B GAIN (A
V
= 4.5), CONNE CT INPUT A T O BOTH
VIP1 AND VIP 2 AND INPUT B TO BOTH VIN1 AND VIN2.
+
0.1µF
R
L
2
R
L
2
09959-036
5.3
30
73
R
L
200
200
VIP2 VIP1
VIN1 VIN2
5
5
R
S
AC
R2
++
0.1µF
0.1µF
0.1µF
0.1µF
+
R1
+
2
R
L
2
100
100
50
50
09959-037
B

INPUT AND OUTPUT INTERFACING

The ADL5565 can be configured as a differential input to differential output driver, as shown in Figure 32. The resistors, R1 and R2, combined with the ETC1-1-13 balun transformer, provide a 50 Ω input match for the three input impedances that change with the variable gain strapping. The input and output
0.1 µF capacitors isolate the VCC/2 bias from the source and balanced load. The load should equal 200 Ω to provide the expected ac performance (see the Specifications section and the Typical Performance Characteristics section).

Single-Ended Input to Differential Output

The ADL5565 can also be configured in a single-ended input to differential output driver, as shown in Figure 34. In this configuration, the gain of the part is reduced due to the application of the signal to only one side of the amplifier. The strappable gain values are listed in Table 8 with the required terminations to match to a 50 Ω source using R1 and R2. The input and output
0.1 µF capacitors isolate the VCC/2 bias from the source and the balanced load. The performance for this configuration is shown in Figure 16 and Figure 21.
Figure 32. Differential Input to Differential Output Configuration
Table 6. Differential Termination Values for Figure 32
Gain (dB) R1 (Ω) R2 (Ω)
6 29 29 12 33 33
15.5 40.2 40.2
The differential gain of the ADL5565 is dependent on the source impedance and load, as shown in Figure 33.
Figure 33. Differential Input Loading Circuit
The differential gain can be determined using the following formula. The values of R
for each gain configuration are shown
G
in Tabl e 7.
In Equation 1, R
Table 7. Values of R
Gain (dB) RG (Ω)
12 50
15.5 33.5
G
(1)
is the gain setting resistor (see Figure 1).
for Differential Gain
G
Figure 34. Single-Ended Input to Differential Output Configuration
Table 8. Single-Ended Termination Values for Figure 34
Gain (dB) R1 (Ω) R2 (Ω)
10.3 30 104 13 30 154
The single-ended gain configuration of the ADL5565 is dependent on the source impedance and load, as shown in Figure 35.
Figure 35. Single-Ended Input Loading Circuit
Rev. | Page 18 of 28
Page 19
Data Sheet ADL5565
L
L
X
S
X
S
S
S
G
V
R
R
R
RR
RR
R
RR
RR
R
A
+
×
+
×
+
×
 
 
+
×
+
=
102
2
2
2
200
1
0.1µF
1
/2 R
SHUNT
1
/2 R
S
1
/2 R
S
AC
0.1
µF
1
/
2RSERIES
VIP1
VIN2
VIN1
VIP2
1
/
2
R
SERIES
1
/2 R
SHUNT
ADL5565
09959-038
 
 
+
=
GSERIES
G
RR
R
dBIl log20)(
GSERIESS
SHUNT
RRR
R
+
=
11
1
31
200
50
84.5
60.4
82
100
50
59
73.2
143
66.7
50
13.7
133
B
The single-ended gain can be determined using the following formula. The values of R
and RX for each gain configuration
G
are shown in Ta ble 9.
(2)
The necessary shunt component, R impedance, R
, can be expressed as
S
, to match to the source
SHUNT
(5)
In Equation 2, R
Table 9. Values of R
is the gain setting resistor (see Figure 1).
G
and RX for Single-Ended Gain
G
Gain (dB) RG (Ω)1 RX (Ω)
5.3 100 R2 || 1582
10.3 50 R2 || 962 13 33.5 R2 || 742
1
RG is the gain setting resistor (see Figure 1).
2
These values are based on a 50 Ω input match.

GAIN ADJUSTMENT AND INTERFACING

The effective gain of the ADL5565 can be reduced using a number of techniques. A matched attenuator network can reduce the effective gain; however, this requires the addition of a separate component that can be prohibitive in size and cost. Instead, a simple voltage divider can be implemented using the combination of additional series resistors at the amplifier input and the input impedance of the ADL5565, as shown in Figure 36. A pair of resistors is used to match to the impedance of the previous stage.
Figure 36. Gain Adjustment Using a Series Resistor
Figure 36 shows a typical implementation of the divider concept that effectively reduces the gain by adding attenuation at the input. For frequencies less than 100 MHz, the input impedance of the ADL5565 can be modeled as a real 66 Ω, 100 Ω, or 200 Ω resistance (differential) for maximum, middle, and minimum gains, respectively. Assuming that the frequency is low enough to ignore the shunt reactance of the input and high enough so that the reactance of moderately sized ac coupling capacitors can be considered negligible, the insertion loss, Il, due to the shunt divider can be expressed as
In Equation 5, R
is the gain setting resistor (see Figure 1).
G
The insertion loss and the resultant power gain for multiple shunt resistor values are summarized in Tab le 10. The source resistance and input impedance need careful attention when using Equation 3, Equation 4, and Equation 5. The reactance of the input impedance of the ADL5565 and the ac coupling capacitors must be considered before assuming that they make a negligible contribution.
Table 10. Differential Gain Adjustment Using Series Resistor
Gain (dB)
Differential
(Ω)4 RS (Ω)
R
G
Differential R
(Ω)
SERIES
Differential R
(Ω)5
SHUNT
01 200 50 200 57.6 11 200 50 154 57.6 21 200 50 118 59
41 200 50 52.3 61.9 51 200 50 24.9 64.9 61 200 50 0 66.5 72 100 50 78.7 69.8
92 100 50 42.2 76.8 102 100 50 26.7 82.5 112 100 50 12.7 88.7 122 100 50 0 100 133 66.7 50 23.7 113
15.53 66.7 50 0 200
1
Amplifier is configured for 6 dB gain setting.
2
Amplifier is configured for 12 dB gain setting.
3
Amplifier is configured for 15.5 dB gain setting.
4
RG is the gain setting resistor (see Figure 1).
5
The resistor values are rounded to the nearest real resistor value.
(3)
In Equation 3, R
is the gain setting resistor (see Figure 1).
G
Adjusted Gain (dB) = 6 dB, 12 dB, or 15.5 dB Gain – Il (dB) (4)
Rev. | Page 19 of 28
Page 20
ADL5565 Data Sheet
0
150 30 45 60 75 90 105 120
GAIN = 6dB SNR = 69.44dBc SFDR = 89.2dBc SECOND = –85.1d Bc THIRD = –89.3d Bc NOISE FLOOR = –115.7dB
AMPLITUDE (dBFS)
FREQUENCY (MHz)
–15
–30
–45
–60
–75
–90
–105
–120
–135
–150
2
4
+
6
3
5
09959-049
0
150 30 45 60 75 90 105 120
FUNDAMENTAL 1 = –7.078dBFS FUNDAMENTAL 2 = –7.169dBFS IMD (2f1 – f2) = –88.237dBc IMD (2f2 + f1) = –91.37dBc NOISE F LOOR = –115.96dB
AMPLITUDE (dBFS)
FREQUENCY (MHz)
–15
–30
–45
–60
–75
–90
–105
–120
–135
–150
09959-041
2F2 – 2F1
F1 – F2
F2 – F1
2F1 – F2
2F2 – F1
2F1 – 2F2
5
4
3
2
1
0
0 100 200 300 400 500
NORMALIZED (dBFS)
FREQUENCY (MHz)
09959-042
0.1µF
40Ω
50Ω
AC
0.1
µF
ETC1-1-13
VIN1
VIP1
VIP2
A
B
VIN2
40Ω
ADL5565
+
+
0.1µF
0.1
µF
33Ω
VOP
VON
33Ω
+
+
AD9467
16-BIT ADC
16
VIN+
VIN–
09959-039
B

ADC INTERFACING

The ADL5565 is a high output linearity amplifier that is optimized for ADC interfacing. There are several options available to the designer when using the ADL5565. Figure 40 uses a wideband 1:1 transmission line balun followed by two 40 Ω resistors in parallel with the three input impedances (which change with the gain selection of the ADL5565) to provide a 50 Ω differential impedance and provides a wideband match to a 50 Ω source. The ADL5565 is ac-coupled from the AD9467 to avoid common­mode dc loading. The 33 Ω resistors improve the isolation between the ADL5565 and any switching currents present at the analog­to-digital, sample-and-hold circuitry. The AD9467 input presents a 530 Ω differential load impedance and requires a 2 V to 2.5 V differential input swing to reach full scale (VREF = 1 V to 1.25 V). This circuit provides variable gain, isolation, and source matching for the AD9467.
Applying a full-scale, single-tone signal from the ADL5565, an SFDR of 89.2 dBc is realized (see Figure 37). Applying two half­scale signals from the ADL5565 in a gain of 6 dB, an SFDR of
87.5 dBc is achieved at 100 MHz (see Figure 38). The bandwidth of the circuit in Figure 40 is shown in Figure 39.
Figure 38. Measured Two-Tone Performance of the Circuit in Figure 40 for a
100 MHz Input Signal
Figure 37. Measured Single-Tone Performance of the
Circuit in Figure 40 for a 100 MHz Input Signal
Figure 39. Measured Frequency Response of the Wideband
The wideband frequency response is an advantage in broad­band applications, such as predistortion receiver designs and instrumentation applications. However, by designing for a wide analog input frequency range, the cascaded SNR performance is somewhat degraded due to high frequency noise aliasing into the wanted Nyquist zone.
Figure 40. Wideband ADC Interfacing Example Featuring the AD9467
Rev. | Page 20 of 28
ADC Interface Depicted in Figure 40
Page 21
Data Sheet ADL5565
105Ω
L5
105Ω
AD9467
1nF
L1C2L3
1nF
L1 L3
C4
CML
ADL5565
4Ω
4Ω
09959-043
140
40
3.3
47
27
27
150
B
By designing a narrow band-pass antialiasing filter between the
ADL5565 and the target ADC, the output noise of the ADL5565
outside of the intended Nyquist zone can be attenuated, helping to preserve the available SNR of the ADC. In general, the SNR improves several decibels when including a reasonable order anti­aliasing filter. In this example, a low loss 1:1 input transformer is used to match the ADL5565 balanced input to a 50 Ω unbalanced source, resulting in minimum insertion loss at the input.
Figure 41 is optimized for driving some of Analog Devices popular ADCs, such as the AD9467. Tab le 11 includes antialiasing filter component recommendations for popular IF sampling frequencies. Inductor L5 works in parallel with the on-chip ADC input
capacitance and a portion of the capacitance presented by C4 to form a resonant tank circuit. The resonant tank helps to ensure that the ADC input looks like a real resistance at the target center frequency. The inductor, L5, shorts the ADC inputs at dc, which introduces a zero into the transfer function. In addition, the ac coupling capacitors introduce additional zeros into the transfer function. The final overall frequency response takes on a band­pass characteristic, helping to reject noise outside of the intended Nyquist zone. Table 11 provides initial suggestions for proto­typing purposes. Some empirical optimization may be needed to help compensate for actual PCB parasitics.
Figure 41. Narrow-Band IF Sampling Solution for an ADC Application
Table 11. Interface Filter Recommendations for Various IF Sampling Frequencies
Center Frequency (MHz) 1 dB Bandwidth (MHz) L1 (nH) C2 (pF) L3 (nH) C4 (pF) L5 (nH)
96 30 3.3 47 27 75 82
170 32 3.3 56 27 18 120 211 33 3.3 47 27 15 51
Rev. | Page 21 of 28
Page 22
ADL5565 Data Sheet
0.1µF
0.1µF
0.1µF
0.1µF
ADL5565
VIP2
VIP1
VIN1
VOP
VON
VIN2
R6
R5
R4
R3
R2
R1
R8
R7
R10
R9
ETC1-1-13
ETC1-1-13
SPECTRUM ANALYZER
09959-044
6
29
29
Open
0 0 Open
ADL5565
VIP2
VIP1
VIN1
VOP
VON
VIN2
R6
R5
R4
R3
R2
R1
PORT 1
PORT 3
PORT 2
PORT 4
R8
R7
R10
R9
09959-045
B

LAYOUT CONSIDERATIONS

High-Q inductive drives and loads, as well as stray transmission line capacitance in combination with package parasitics, can potentially form a resonant circuit at high frequencies, resulting in excessive gain peaking or possible oscillation. If RF transmission lines connecting the input or output are used, design them such that stray capacitance at the input/output pins is minimized. In
many board designs, the signal trace widths should be minimal where the driver/receiver is no more than one-eighth of the wave-length from the amplifier. This nontransmission line configuration requires that underlying and adjacent ground and low impedance planes be dropped from the signal lines.
Figure 42. General-Purpose Characterization Circuit
Table 12. Gain Setting and Input Termination Components for Figure 42
AV (dB) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω) R6 (Ω)
12 33 33 0 Open Open 0
15.5 40.2 40.2 0 0 0 0
Table 13. Output Matching Network for Figure 42
RL (Ω) R7 (Ω) R8 (Ω) R9 (Ω) R10 (Ω)
200 84.5 84.5 34.8 34.8
Figure 43. Differential Characterization Circuit Using Agilent E8357A Four-Port PNA
Table 14. Gain Setting and Input Termination Components for Figure 43
AV (dB) R1 (Ω) R2 (Ω) R3 (Ω) R4 (Ω) R5 (Ω) R6 (Ω)
6 100 100 Open 0 0 Open 12 Open Open 0 Open Open 0
15.5 Open Open 0 0 0 0
Table 15. Output Matching Network for Figure 43
RL (Ω) R7 (Ω) R8 (Ω) R9 (Ω) R10 (Ω)
200 50 50 Open Open
Rev. | Page 22 of 28
Page 23
Data Sheet ADL5565
36mils
12mils
59mils
59mils
122mils
19.7mils
10mils
09959-050
59mils
B

SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN

Figure 44 show s the recommended land pattern for the ADL5565. The ADL5565 is contained in a 3 × 3 mm LFCSP package, which has an exposed ground paddle (EPAD). This paddle is internally connected to the ground of the chip. To minimize thermal impedance and ensure electrical performance, solder the paddle to the low impedance ground plane on the PCB. To further reduce thermal impedance, it is recommended that the ground planes on all layers under the paddle be stitched together with vias.
For more information on land pattern design and layout, refer to the AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).
This land pattern, on the ADL5565 evaluation board, provides a measured thermal resistance (θ the temperature at the top of the LFCSP package is found with an IR temperature gun. Thermal simulation suggests a junction temperature 1.5°C higher than the top of package temperature. With additional ambient temperature and I/O power measure­ments, θ
could be determined.
JA
) of 60°C/W. To measure θJA,
JA

EVALUATION BOARD

Figure 45 shows the schematic of the ADL5565 evaluation board. The board is powered by a single supply in the 3 V to 5 V range. The power supply is decoupled by 10 µF and 0.1 µF capacitors.
Table 16 details the various configuration options of the evaluation board. Figure 46 and Figure 47 show the component and circuit side layouts of the evaluation board.
To realize the minimum gain (6 dB into a 200 Ω load), Input 1 (VIN1 and VIP1) must be used by installing 0 Ω resistors at R3 and R4, leaving R5 and R6 open. R1 and R2 must be 33.2 Ω for a 50 Ω input impedance.
Likewise, driving Input 2 (VIN2 and VIP2) realizes the middle gain (12 dB into a 200 Ω load) by installing 0 Ω at R5 and R6 and leaving R3 and R4 open. R1 and R2 must be 50 Ω for a 50 Ω input impedance.
For the maximum gain (15.5 dB into a 200 Ω load), both inputs are driven by installing 0 Ω resistors at R3, R4, R5, and R6. R1 and R2 are open for a 50 Ω input impedance.
The balanced input and output interfaces are converted to single ended with a pair of baluns (M/A-COM ETC1-1-13). The balun at the input, T1, provides a 50 Ω single-ended-to­differential transformation. The output balun, T2, and the matching components are configured to provide a 200 Ω to 50 Ω impedance transformation with an insertion loss of about 11 dB.
As an alternative, the input transformer, T1, can be replaced with one of the following transformers to provide a low loss balanced input to the ADL5565.
6 dB gain configuration, Mini-Circuits TC4-1W+
12 dB gain configuration, Mini-Circuits, TC2-1T+
15.5 dB gain configuration, Mini-Circuits TC1.5-52T
Figure 44. Recommended Land Pattern
When using these alternative transformers, R1 and R2 are left open. Replace C1 and C2 with 0 Ω jumpers and add a 0.1 µF capacitor to C12.
Rev. | Page 23 of 28
Page 24
ADL5565 Data Sheet
C3 10µFC40.1µFC50.1µFC60.1µFC70.1µF
C8
0.1µF
C13
OPEN
C11
0.1µF
VPOS
R9
34.8
R11
OPEN
R15
OPEN
R14 0
J3
R10
34.8
R8
84.5
C10
0.01µF
C9
0.01µF
P1
T2
VCOM
AGND
VPOS
GND
R7
84.5
ENBL
J4 OPEN
R12
OPEN
R13 0
J2 OPEN
ADL5565
9
10
11
12
4
3
2
1
16 15 14 13
5 6 7 8
GND GND GND GND
VCC
V
IN1
VIN2
VIP2
VIP1
VON
VCOM
ENBL
VOP
VCC VCC VCC
C12
OPEN
J1
T1
R1
OPEN
R2
OPEN
R4 0
R3 0
R5 0
R6 0
C1
0.01µF
C2
0.01µF
09959-046
ENBL, P1, C8
Device enabled. C8 is a bypass capacitor. When the P1 jumper is set toward the VPOS label,
ENBL, P1 = installed,
15.5
Open
Open
B
Figure 45. Evaluation Board Schematic
Table 16. Evaluation Board Configuration Options
Component Description Default Condition
VPOS, GND Ground and supply vector pins. VPOS, GND = installed C3, C4, C5,
C6, C7, C11 J1, J2, R1, R2,
R3, R4, R5, R6, R12, R13, C1, C2, C12, T1
Power supply decoupling. The supply decoupling consists of a 10 µF capacitor (C3) to ground. C4 to C7 are bypass capacitors. C11 ac couples VREF to ground.
Input interface. The SMA labeled J1 is the input. T1 is a 1-to-1 impedance ratio balun to transform a single-ended input into a balanced differential signal. Removing R13, installing R12 (0 Ω), and installing an SMA connector (J2) allows driving from a differential source. C1 and C2 provide ac coupling. C12 is a bypass capacitor. R1 and R2 provide a differential 50 Ω input termination. R3 to R6 are used to select the input for the pin-strappable gain. The maximum gain is R3, R4, R5, R6 = 0 Ω and R1 and R2 = open. The middle gain is R5 and R6 = 0 Ω, R3 and R4 = open, and R1 and R2 = 50 Ω. The
C3 = 10 µF (Size D), C4, C5, C6, C7, C11 = 0.1 µF (Size 0402)
J1 = installed, J2 = not installed, R1, R2 = open, R3, R4, R5, R6, R13 = 0 Ω (Size 0402), R12, = open, C1, C2 = 0.01 µF (Size 0402), C12 = open, T1 = ETC1-1-13 (M/A-COM)
minimum gain is R3 and R4 = 0 Ω, R5 and R6 = open, and R1 and R2 = 33.2 Ω.
J3, J4, R7, R8, R9, R10, R11, R14, R15 C9, C10, C13, T2
Output interface. The SMA labeled J3 is the output. T2 is a 1-to-1 impedance ratio balun to transform a balanced differential signal to a single-ended signal. Removing R14, installing R15 (0 Ω), and installing an SMA connector (J4) allows differential loading. C13 is a bypass capacitor. R7, R8, R9, and R10 are provided for generic placement of matching components. The evaluation board is configured to provide a 200 Ω to 50 Ω impedance transformation with an insertion loss of 17 dB. C9 and C10 provide ac coupling.
J3 = installed, J4 = not installed, R7, R8 = 84.5 Ω (Size 0402), R9, R10 = 34.8 Ω (Size 0402), R11, R15 = open (Size 0402), R14 = 0 Ω (Size 0402) C9, C10 = 0.01 µF (Size 0402), C13 = open T2 = ETC1-1-13 (M/A-COM)
the ENBL pin is connected to the supply, enabling the device. In the opposite direction,
C8 = 0.1 µF (Size 0402)
toward the GND label, the ENBL pin is grounded, putting the device in power-down mode.
Table 17. Differential Values for Figure 45
Gain (dB) R1 (Ω) R2 (Ω)
6 29 29 12 33 33
Table 18. Alternative Differential Input Configuration for Figure 45
Gain (dB) R1 and R2 (Ω) C12 (µF) C1 and C2 (Ω) T1
6 Open 0.1 0 Mini Circuits TC4-1W+ 12 Open 0.1 0 Mini Circuits TC2-1T+
15.5 Open 0.1 0 Mini Circuits TC1.5-52T+
Rev. | Page 24 of 28
Page 25
Data Sheet ADL5565
09959-047
09959-048
B
Figure 46. Layout of Evaluation Board, Component Side
Figure 47. Layout of Evaluation Board, Circuit Side
Rev. | Page 25 of 28
Page 26
ADL5565 Data Sheet

OUTLINE DIMENSIONS

PIN 1
INDICATOR
0.80
0.75
0.70
SEATING
PLANE
3.10
3.00 SQ
2.90
0.50
BSC
0.50
0.40
0.30
0.05 MAX
0.02 NOM
0.20 REF
0.30
0.25
0.20
13
12
9
8
BOTTOM VIEWTOP VIEW
COPLANARITY
0.08
N
1
I
P
C
I
N
I
16
EXPOSED
PAD
5
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURAT I O N AND FUNCTIO N DES CRI P TIONS SECTION OF THIS DATA SHEET.
D
1
1.65
1.50 SQ
1.45
4
0.20 MIN
R
O
A
T
COMPLIANTTOJEDEC STANDARDS M O-220-WEE D- 6 .
01-26-2012-A
Figure 48. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-27)
Dimensions shown in millimeters

ORDERING GUIDE

Temperature
Model1
Range Package Description
ADL5565ACPZ-R7 −40°C to + 85°C 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7” Tape and Reel CP-16-27 Q1Z ADL5565-EVALZ Evaluation Board
1
Z = RoHS Compliant Part
Package Option Branding
Rev. B | Page 26 of 28
Page 27
Data Sheet ADL5565
B
NOTES
Rev. | Page 27 of 28
Page 28
ADL5565 Data Sheet
NOTES
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09959-0-6/12(B)
Rev. B | Page 28 of 28
Loading...