Datasheet ADL5355 Datasheet (ANALOG DEVICES)

Page 1
1200 MHz to 2500 MHz Balanced Mixer,
LO Buffer, IF Amplifier, and RF Balun

FEATURES

RF frequency range of 1200 MHz to 2500 MHz IF frequency range of 30 MHz to 450 MHz Power conversion gain: 8.4 dB SSB noise figure of 9.2 dB SSB noise figure with 5 dBm blocker of 20 dB Input IP3 of 27 dBm Input P1dB of 10.4 dBm Typical LO drive of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle 5 mm × 5 mm, 20-lead LFCSP 1500 V HBM/500 V FICDM ESD performance

APPLICATIONS

Cellular base station receivers Transmit observation receivers Radio link downconverters

GENERAL DESCRIPTION

The ADL5355 uses a highly linear, doubly balanced passive mixer core along with integrated RF and LO balancing circuitry to allow for single-ended operation. The ADL5355 incorporates an RF balun, allowing for optimal performance over a 1200 MHz to 2500 MHz RF input frequency range using low-side LO injection for RF frequencies from 1700 MHz to 2500 MHz and high-side LO injection for RF frequencies from 1200 MHz to 1700 MHz. The balanced passive mixer arrangement provides good LO-to-RF leakage, typically better than −39 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where in­band blocking signals may otherwise result in the degradation of dynamic performance. A high linearity IF buffer amplifier follows the passive mixer core to yield a typical power conversion gain of 8.4 dB and can be used with a wide range of output impedances.
ADL5355

FUNCTIONAL BLOCK DIAGRAM

IFGM
20 19 18 17 16
1
VPIF
2
RFIN
3
RFCT
4
COMM
5
COMM
6 7 8 9 10
VLO3 LGM3 VLO2 LOSW NC
NC = NO CONNECT
The ADL5355 provides two switched LO paths that can be used in TDD applications where it is desirable to rapidly switch between two local oscillators. LO current can be externally set using a resistor to minimize dc current commensurate with the desired level of performance. For low voltage applications, the ADL5355 is capable of operation at voltages down to 3.3 V with substantially reduced current. Under low voltage operation, an additional logic pin is provided to power down (<200 μA) the circuit when desired.
The ADL5355 is fabricated using a BiCMOS high performance IC process. The device is available in a 5 mm × 5 mm, 20-lead LFCSP and operates over a −40°C to +85°C temperature range. An evaluation board is also available.
IFOP IFON PWDN LEXT
ADL5355
BIAS
GENERATOR
Figure 1.
15
LOI2
14
VPSW
13
VGS1
12
VGS0
11
LOI1
8080-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved.
Page 2
ADL5355

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
5 V Performance ........................................................................... 4
3.3 V Performance ........................................................................ 4
Spur Tables .................................................................................... 5
Absolute Maximum Ratings ............................................................ 6
ESD Caution .................................................................................. 6
Pin Configuration and Function Descriptions ............................. 7
Typical Performance Characteristics ............................................. 8
5 V Performance ........................................................................... 8
3.3 V Performance ...................................................................... 15
Circuit Description......................................................................... 16
RF Subsystem .............................................................................. 16
LO Subsystem ............................................................................. 17
Applications Information .............................................................. 18
Basic Connections ...................................................................... 18
IF Port .......................................................................................... 18
Bias Resistor Selection ............................................................... 18
Mixer VGS Control DAC .......................................................... 18
Evaluation Board ............................................................................ 20
Outline Dimensions ....................................................................... 23
Ordering Guide .......................................................................... 23

REVISION HISTORY

7/09—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
Page 3
ADL5355

SPECIFICATIONS

VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, ZO = 50 Ω, unless otherwise noted.
Table 1.
Parameter Conditions Min Typ Max Unit
RF INPUT INTERFACE
Return Loss Tunable to >20 dB over a limited bandwidth 20 dB Input Impedance 50 Ω RF Frequency Range 1200 2500 MHz
OUTPUT INTERFACE
Output Impedance Differential impedance, f = 200 MHz 230||0.75 Ω||pF IF Frequency Range 30 450 MHz DC Bias Voltage
LO INTERFACE
LO Power −6 0 +10 dBm Return Loss 15 dB Input Impedance 50 Ω LO Frequency Range 1230 2470 MHz
POWER-DOWN (PWDN) INTERFACE
PWDN Threshold 1.0 V Logic 0 Level 0.4 V Logic 1 Level 1.4 V PWDN Response Time Device enabled, IF output to 90% of its final level 160 ns Device disabled, supply current < 5 mA 220 ns PWDN Input Bias Current Device enabled 0.0 μA
Device disabled 70 μA
1
Apply the supply voltage from the external circuit through the choke inductors.
2
PWDN function is intended for use with VS ≤ 3.6 V only.
1
2
Externally generated 3.3 5.0 5.5 V
Rev. 0 | Page 3 of 24
Page 4
ADL5355

5 V PERFORMANCE

VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
Table 2.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
Power Conversion Gain Including 4:1 IF port transformer and PCB loss 7 8.4 9.5 dB Voltage Conversion Gain Z SSB Noise Figure 9.2 dB SSB Noise Figure Under Blocking
Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB) 10.4 dBm LO-to-IF Leakage Unfiltered IF output −12.6 dBm LO-to-RF Leakage −39 dBm RF-to-IF Isolation −33 dBc IF/2 Spurious −10 dBm input power −69 dBc IF/3 Spurious −10 dBm input power −73 dBc
POWER SUPPLY
Positive Supply Voltage 4.5 5 5.5 V Quiescent Current LO supply, resistor programmable 100 mA IF supply, resistor programmable 90 mA Total Quiescent Current VS = 5 V 190 mA
= 50 Ω, differential Z
SOURCE
= 200 Ω differential 14.7 dB
LOAD
5 dBm blocker present ±10 MHz from wanted RF input, LO source filtered
= 1949.5 MHz, f
f
RF1
= 1950.5 MHz, fLO = 1750 MHz,
RF2
each RF tone at −10 dBm
= 1950 MHz, f
f
RF1
= 1900 MHz, fLO = 1750 MHz,
RF2
each RF tone at −10 dBm
20 dB
22 27 dBm
50 dBm

3.3 V PERFORMANCE

VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V, and Z
= 50 Ω, unless otherwise noted.
O
Table 3.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE
Power Conversion Gain Including 4:1 IF port transformer and PCB loss 9 dB Voltage Conversion Gain Z SSB Noise Figure 8.75 dB Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB) 7 dBm
POWER INTERFACE
Supply Voltage 3.0 3.3 3.6 V Quiescent Current Resistor programmable 125 mA Power-Down Current Device disabled 150 μA
= 50 Ω, differential Z
SOURCE
= 1949.5 MHz, f
f
RF1
= 1950.5 MHz, fLO = 1750 MHz,
RF2
each RF tone at −10 dBm
= 1950 MHz, f
f
RF1
= 1900 MHz, fLO = 1750 MHz,
RF2
each RF tone at −10 dBm
= 200 Ω differential 15.3 dB
LOAD
22 dBm
52 dBm
Rev. 0 | Page 4 of 24
Page 5
ADL5355

SPUR TABLES

All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was only measured for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm.

5 V Performance

VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, VGS0 = VGS1 = 0 V, and ZO = 50 Ω, unless otherwise noted.
Table 4.
M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 −10.0 −21.1 −53.8 1 −42.3 0.0 −57.1 −51.4 −75.9 2 −66.7 −65.3 −57.0 −67.0 −88.4 <−100 3 <−100 <−100 −97.6 −61.6 <−100 <−100 <−100 4 <−100 <−100 <−100 −97.9 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 14 <100 <100 15 <100

3.3 V Performance

VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 1900 MHz, fLO = 1697 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V, and Z
= 50 Ω, unless otherwise noted.
O
Table 5.
M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 −15.3 −27.3 −65.5 1 −42.9 0.0 −58.3 −52.2 −78.0 2 −64.4 −67.3 −56.6 −73.6 −75.7 <−100 3 <−100 <−100 −95.5 −60.4 <−100 <−100 <−100 4 <−100 <−100 <−100 −97.0 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 14 <100 <100 15 <100
Rev. 0 | Page 5 of 24
Page 6
ADL5355

ABSOLUTE MAXIMUM RATINGS

Table 6.
Parameter Rating
Supply Voltage, VS 5.5 V RF Input Level 20 dBm LO Input Level 13 dBm IFOP, IFON Bias Voltage 6.0 V VGS0, VGS1, LOSW, PWDN 5.5 V Internal Power Dissipation 1.2 W θJA 25°C/W Maximum Junction Temperature 150°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature Range (Soldering, 60 sec) 260°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. 0 | Page 6 of 24
Page 7
ADL5355

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

DN
IFON
IFOP
IFGM
20
1VPIF 2RFIN
ADL5355
3RFCT
TOP VIEW
4COMM
(Not to Scale)
5COMM
6
VLO3
NOTES
1.2 NC = NO CONNECT. . EXPOSED PAD. MUST BE SOLDERED
TO GROUND.
Figure 2. Pin Configuration
Table 7. Pin Function Descriptions
Pin No. Mnemonic Description
1 VPIF Positive Supply Voltage for IF Amplifier. 2 RFIN RF Input. Must be ac-coupled. 3 RFCT RF Balun Center Tap (AC Ground). 4, 5 COMM Device Common (DC Ground). 6, 8 VLO3, VLO2 Positive Supply Voltages for LO Amplifier. 7 LGM3 LO Amplifier Bias Control. 9 LOSW LO Switch. LOI1 selected for 0 V, and LOI2 selected for 3 V. 10 NC No Connect. 11, 15 LOI1, LOI2 LO Inputs. Must be ac-coupled. 12, 13 VGS0, VGS1 Mixer Gate Bias Controls. 3 V logic. Ground these pins for nominal setting. 14 VPSW Positive Supply Voltage for LO Switch. 16 LEXT IF Return. This pin must be grounded. 17 PWDN Power Down. Connect this pin to ground for normal operation and connect this pin to 3.0 V for disable mode. 18, 19 IFON, IFOP Differential IF Outputs (Open Collectors). Each requires an external dc bias. 20 IFGM IF Amplifier Bias Control. EPAD (EP) Exposed pad. Must be soldered to ground.
PW
17
18
19
PIN 1 INDICATOR
9
8
7
VLO2
LGM3
LOSW
LEXT
16
10
NC
15 LO I2 14 VPSW 13 VGS1 12 VGS0 11 LO I1
08080-002
Rev. 0 | Page 7 of 24
Page 8
ADL5355
m
A
3

TYPICAL PERFORMANCE CHARACTERISTICS

5 V PERFORMANCE

VS = 5 V, IS = 190 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, R9 = 1.1 kΩ, R14 = 910 Ω, VGS0 = VGS1 = 0 V, and Z
= 50 Ω, unless otherwise noted.
O
240
220
)
200
180
160
SUPPLY CURRENT (
140
TA = –40°C
T
= +85°C
A
= +25°C
T
A
70
TA = –40°C
T
= +85°C
A
= +25°C
A
60
50
T
40
30
INPUT IP2 (dBm)
20
120
100
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20 RF FREQUENCY (GHz)
Figure 3. Supply Current vs. RF Frequency
20
18
16
14
12
10
8
6
CONVERSION G AIN (dB)
4
2
0
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
TA = –40°C
= +85°C
T
A
RF FREQUENCY ( GHz)
T
= +25°C
A
Figure 4. Power Conversion Gain vs. RF Frequency
35
TA = –40°C
30
25
20
(dBm)
15
INPUT IP
10
5
0
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20
T
= +25°C
A
T
= +85°C
A
RF FREQUENCY (GHz)
Figure 5. Input IP3 vs. RF Frequency
10
0
08080-007
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20 RF FREQUENCY (GHz)
08080-015
Figure 6. Input IP2 vs. RF Frequency
15
14
13
12
11
10
9
INPUT P1dB (dBm)
8
7
6
5
08080-011
T
= +85°C
A
TA = –40°C
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20
TA = +25°C
RF FREQUENCY (GHz)
08080-023
Figure 7. Input P1dB vs. RF Frequency
20
18
16
14
= +85°C
T
12
10
8
6
SSB NOISE F IGURE (dB)
4
2
0
1.70 1.75 1.80 1.85 1. 90 1.95 2. 00 2.05 2.10 2.15 2.20
08080-019
A
TA = –40°C
RF FREQUENCY (GHz)
T
= +25°C
A
08080-033
Figure 8. SSB Noise Figure vs. RF Frequency
Rev. 0 | Page 8 of 24
Page 9
ADL5355
250
= 5.25V
V
200
150
100
SUPPLY CURRENT (mA)
50
0
–40 –20 0 20 40 60 80
POS
V
= 4.75V
POS
TEMPERATURE (° C)
V
= 5.0V
POS
Figure 9. Supply Current vs. Temperature
12
V
= 4.75V
POS
= 5.0V
V
POS
11
10
9
8
7
CONVERSION G AIN (dB)
6
= 5.25V
V
POS
08080-008
60
V
= 5.25V
55
50
V
= 4.75V
POS
45
40
35
30
INPUT IP2 (dBm)
25
20
15
10
–40 –20 0 20 40 60 80
V
POS
TEMPERATURE (° C)
POS
= 5.0V
Figure 12. Input IP2 vs. Temperature
12
10
8
6
INPUT P1dB (dBm)
4
2
V
= 5.25V
POS
V
= 4.75V
POS
V
= 5.0V
POS
08080-016
5
–40 –20 0 20 40 60 80
TEMPERATURE ( °C)
Figure 10. Power Conversion Gain vs. Temperature
35
V
= 5.25V
30
V
= 4.75V
25
20
15
INPUT IP3 (dBm)
10
5
0 –40 –20 0 20 40 60 80
POS
TEMPERATURE (°C)
POS
V
= 5.0V
POS
Figure 11. Input IP3 vs. Temperature
0
–40 –20 0 20 40 60 80
08080-012
TEMPERATURE (° C)
08080-024
Figure 13. Input P1dB vs. Temperature
12
11
10
= 5.25V
V
POS
9
8
SSB NOISE F IGURE (dB)
7
6 –40 806040200–20
08080-020
= 5.0V
V
POS
TEMPERATURE (° C)
V
POS
= 4.75V
08080-034
Figure 14. SSB Noise Figure vs. Temperature
Rev. 0 | Page 9 of 24
Page 10
ADL5355
m
m
230
220
210
200
190
180
SUPPLY CURRENT (mA)
170
160
150
30 80 130 180 230 280 330 380 430
TA = –40°C
T
= +85°C
A
IF FREQUENCY (MHz)
= +25°C
T
A
Figure 15. Supply Current vs. IF Frequency
12
10
8
6
T
= –40°C
A
= +85°C
T
A
TA = +25°C
08080-006
70
TA = –40°C
T
60
50
)
40
30
INPUT IP2 (dB
20
10
0
30 80 130180230280330380430
IF FREQUENCY (MHz)
= +25°C
A
= +85°C
T
A
Figure 18. Input IP2 vs. IF Frequency
12
10
)
8
6
T
= +85°C
A
TA = –40°C
= +25°C
T
A
08080-013
4
CONVERSION G AIN (dB)
2
0
30 80 130 180 230 280 330 380 430
IF FREQUENCY (MHz)
Figure 16. Power Conversion Gain vs. IF Frequency
40
35
30
25
20
15
INPUT IP3 (dBm)
10
5
0
30 80 130 180 230 280 330 380 430
TA = –40°C
T
= +85°C
A
= +25°C
T
A
IF FREQUENCY (MHz)
Figure 17. Input IP3 vs. IF Frequency
4
INPUT P1dB (dB
2
0
30 80 130180230280330380430
08080-009
IF FREQUENCY (MHz)
08080-021
Figure 19. Input P1dB vs. IF Frequency
15
14
13
12
11
10
9
8
SSB NOISE F IGURE (dB)
7
6
5
30 43038033028023018013080
08080-017
IF FREQUENCY (MHz)
08080-035
Figure 20. SSB Noise Figure vs. IF Frequency
Rev. 0 | Page 10 of 24
Page 11
ADL5355
10
9
8
7
6
5
4
3
CONVERSION G AIN (dB)
2
1
0
–6 –4 –2 0 2 4 6
TA = –40°C
TA = +85°C
LO POWER (dBm)
Figure 21. Power Conversion Gain vs. LO Power
35
30
25
20
TA = –40°C
TA = +25°C
TA = +85°C
TA = +25°C
810
08080-010
14
12
10
8
6
INPUT P1dB (dBm)
4
2
0
–6 –4 –2 0 2 4 6 8 10
TA = +85°C
TA = –40°C
TA = +25°C
LO POW ER (dBm)
Figure 24. Input P1dB vs. LO Power
50
–55
–60
8080-022
15
INPUT IP3 (dBm)
10
5
0
6–4–20246810
LO POW ER (dBm)
Figure 22. Input IP3 vs. LO Power
65
60
TA = +85°C
TA = –40°C
TA = +25°C
810
LO POWER (dBm)
55
50
45
INPUT IP2 (dBm)
40
35
30
–6 –4 –2 0 2 4 6
Figure 23. Input IP2 vs. LO Power
–65
IF/2 SPURIOUS (dBc)
–70
–75
8080-018
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
TA = –40°C
= +85°C
T
A
RF FREQUENCY ( GHz)
T
= +25°C
A
8080-025
Figure 25. IF/2 Spurious vs. RF Frequency
50
–55
–60
–65
–70
IF/3 SPURIOUS (dBc)
–75
–80
08080-014
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
TA = –40°C
TA = +25°C
= +85°C
T
A
RF FREQUENCY ( GHz)
8080-027
Figure 26. IF/3 Spurious vs. RF Frequency
Rev. 0 | Page 11 of 24
Page 12
ADL5355
100
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAGE (%)
10
0
7.0 7.5 8. 0 8. 5 9. 0 9. 5 10.0
100
90
80
70
60
50
40
30
20
DISTRIBUTI ON PERCENTAGE (%)
10
0
22 24 26 28 30 32 34
100
90
80
70
60
50
40
30
20
DISTRI BUTION PERCE NTAGE (%)
10
0
8 9 10 11 12 13 14
CONVERSION GAIN (dB)
Figure 27. Conversion Gain Distribution
INPUT IP3 (dBm)
Figure 28. Input IP3 Distribution
INPUT P1dB (dBm)
Figure 29. Input P1dB Distribution
500
400
300
200
RESISTANCE (Ω)
100
0
80 130 180 230 280 330 38030 430
08080-046
IF FREQUENCY ( MHz)
10
8
6
4
CAPACITANCE (pF)
2
0
08080-043
Figure 30. IF Port Return Loss
0
5
10
15
20
RF RETURN LOSS (dB)
25
30
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20
08080-047
RF FREQUENCY (GHz)
08080-036
Figure 31. RF Port Return Loss, Fixed IF
0
5
10
15
20
LO RETURN LOSS (dB)
25
30
1.50 1.55 1. 60 1.65 1. 70 1.75 1.80 1.85 1.90 1.95 2.00
08080-048
SELECTED
UNSELECTED
LO FREQUENCY (GHz)
Figure 32. LO Return Loss, Selected and Unselected
08080-037
Rev. 0 | Page 12 of 24
Page 13
ADL5355
A
L
70
65
60
TION (dB)
55
50
LO SWITCH ISOL
45
40
1.50 2.001.55 1.60 1.65 1. 70 1.75 1.80 1. 85 1.90 1.95
= –40°C
T
A
TA = +85°C
LO FREQ UENCY (GHz)
Figure 33. LO Switch Isolation vs. LO Frequency
0
= +25°C
T
A
08080-041
0
–5
–10
–15
–20
–25
–30
T
= +25°C
LO-TO -RF LEAKAGE ( dBm)
–35
–40
–45
A
1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
T
= +85°C
A
TA = –40°C
LO FREQUENCY (GHz)
Figure 36. LO-to-RF Leakage vs. LO Frequency
0
08080-030
–10
–20
TA = +25°C
–30
–40
RF-TO-IF ISOLATION (dBc)
–50
–60
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
T
= +85°C
A
TA = –40°C
RF FREQUENCY ( GHz)
Figure 34. RF-to-IF Isolation vs. RF Frequency
0
–5
TA = –40°C
–10
T
= +25°C
A
–15
LO-TO-IF LEAKAGE (dBm)
–20
= +85°C
T
A
–5
–10
–15
–20
–25
O LEAKAGE (dBm) 2
–30
–35
–40
1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
8080-032
LO FREQUENCY (GHz)
2LO TO IF
2LO TO RF
08080-026
Figure 37. 2LO Leakage vs. LO Frequency
0
–10
–20
–30
–40
3LO LEAKAGE (dBm)
–50
–60
3LO TO RF
3LO TO IF
–25
1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1. 95 2.00 LO FREQUENCY (GHz)
Figure 35. LO-to-IF Leakage vs. LO Frequency
08080-029
–70
1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
LO FREQUENCY (GHz)
Figure 38. 3LO Leakage vs. LO Frequency
08080-028
Rev. 0 | Page 13 of 24
Page 14
ADL5355
10
9
8
CONVERSION
7
6
5
4
3
CONVERS ION GAIN (dB)
2
1
0
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency
20
18
16
INPUT IP3
14
12
INPUT P1dB (dBm)
10
VGS = 00
8
VGS = 01 VGS = 10 VGS = 11
6
1.70 1.75 1. 80 1.85 1. 90 1.95 2.00 2.05 2.10 2.15 2.20
Figure 40. Input IP3 and Input P1dB vs. RF Frequency
12
11
GAIN
SSB NOISE FIGURE
RF FREQUEN CY (GHz)
INPUT
P1dB
RF FREQUENCY (GHz)
INPUT IP3
VGS = 00 VGS = 01 VGS = 10 VGS = 11
30
28
26
24
22
20
18
16
30
25
15
14
13
12
11
10
9
8
SSB NOISE F IGURE (dB)
7
6
5
08080-039
30
25
20
15
10
SSB NOISE FIGURE (dB)
5
0
–30 –25 –20 –15 –10 –5 0 5 10
BLOCKER POWER (dBm)
08080-031
Figure 42. SSB Noise Figure vs.10 MHz Offset Blocker Level
160
150
140
130
120
110
INPUT IP3 (dBm)
08080-038
100
90
SUPPLY CURRENT (mA)
R14 IF SET RESISTOR
80
70
60
600 80 0 1000 1200 1400 1600 1800
R9 LO SET RESISTOR
BIAS RESISTOR VALUE (Ω)
08080-040
Figure 43. LO and IF Supply Current vs. IF and LO Bias Resistor Value
12
INPUT IP3
11
30
25
10
9
8
7
CONVERSION G AIN AND SSB NOISE FI GURE (dB)
6
0.6 0. 8 1. 0 1. 2 1.4 1.6 1. 8
LO BIAS RESI STOR VALUE (kΩ)
Figure 41. Power Conversion Gain, SSB Noise Figure, and
Input IP3 vs. LO Bias Resistor Value
SSB NOISE FIGURE
CONVERSION GAIN
20
15
INPUT IP3 (dBm)
10
5
0
08080-044
Rev. 0 | Page 14 of 24
10
9
8
7
CONVERSION G AIN AND SSB NOIS E FIGURE ( dB)
6
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
IF BIAS RESI STOR VALUE (kΩ)
SSB NOISE F IGURE
CONVERSION G AIN
Figure 44. Power Conversion Gain, SSB Noise Figure, and
Input IP3 vs. IF Bias Resistor Value
20
15
INPUT IP3 (dBm)
10
5
0
08080-045
Page 15
ADL5355

3.3 V PERFORMANCE

VS = 3.3 V, IS = 125 mA, TA = 25°C, fRF = 1950 MHz, fLO = 1750 MHz, LO power = 0 dBm, R9 = 226 Ω, R14 = 604 Ω, VGS0 = VGS1 = 0 V, and Z
= 50 Ω, unless otherwise noted.
O
150
145
140
135
130
125
120
115
SUPPLY CURRENT (mA)
110
105
100
1.70 1.75 1. 80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
RF FREQUENCY (GHz)
TA = –40°C
T
= +85°C
T
A
= +25°C
A
Figure 45. Supply Current vs. RF Frequency at 3.3 V
12
T
= +25°C
10
A
TA = –40°C
08080-053
70
= +25°C
T
A
60
50
T
40
30
INPUT IP2 (dBm)
20
10
0
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
TA = –40°C
= +85°C
A
RF FREQUENCY (GHz)
Figure 48. Input IP2 vs. RF Frequency at 3.3 V
14
12
08080-050
8
T
= +85°C
6
4
CONVERSION G AIN (dB)
2
0
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
RF FREQUENCY (GHz)
A
Figure 46. Power Conversion Gain vs. RF Frequency at 3.3 V
30
TA = –40°C
25
= +25°C
T
A
20
15
INPUT IP3 (dBm)
10
5
= +85°C
T
A
10
= +85°C
T
= +25°C
T
8
6
INPUT P1dB (dBm)
4
2
0
1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2. 20
08080-049
A
RF FREQUENCY (GHz)
A
TA = –40°C
08080-052
Figure 49. Input P1dB vs. RF Frequency at 3.3 V
14
12
TA = +85°C
10
8
6
SSB NOISE F IGURE (dB)
4
TA = +25°C
TA = –40°C
0
1.70 1.75 1. 80 1.85 1.90 1.95 2.00 2.05 2.10 2. 15 2.20
RF FREQUENCY (G Hz)
08080-051
Figure 47. Input IP3 vs. RF Frequency at 3.3 V
2
1.70 1.75 1. 80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2. 20
RF FREQUENCY (GHz)
Figure 50. SSB Noise Figure vs. RF Frequency at 3.3 V
08080-054
Rev. 0 | Page 15 of 24
Page 16
ADL5355

CIRCUIT DESCRIPTION

The ADL5355 consists of two primary components: the radio frequency (RF) subsystem and the local oscillator (LO) subsystem. The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance, low cost design with excellent electrical, mechanical, and thermal properties. In addition, the need for external components is minimized, optimizing cost and size.
The RF subsystem consists of an integrated, low loss RF balun, passive MOSFET mixer, sum termination network, and IF amplifier.
The LO subsystem consists of an SPDT-terminated FET switch and a three-stage limiting LO amplifier. The purpose of the LO subsystem is to provide a large, fixed amplitude, balanced signal to drive the mixer independent of the level of the LO input.
A block diagram of the device is shown in Figure 51.
IFGM
20 19 18 17 16
1
VPIF
2
RFIN
3
RFCT
4
COMM
5
COMM
VLO3 LGM3 VLO2 LOSW NC
NC = NO CONNECT
6 7 8 9 10
IFOP IFON PWDN LEXT
ADL5355
BIAS
GENERATOR
Figure 51. Simplified Schematic
15
14
13
12
11
LOI2
VPSW
VGS1
VGS0
LOI1

RF SUBSYSTEM

The single-ended, 50 Ω RF input is internally transformed to a balanced signal using a low loss (<1 dB) unbalanced-to-balanced (balun) transformer. This transformer is made possible by an extremely low loss metal stack, which provides both excellent balance and dc isolation for the RF port. Although the port can be dc connected, it is recommended that a blocking capacitor be used to avoid running excessive dc current through the part. The RF balun can easily support an RF input frequency range of 1200 MHz to 2500 MHz.
The resulting balanced RF signal is applied to a passive mixer that commutates the RF input with the output of the LO subsystem. The passive mixer is essentially a balanced, low loss switch that adds minimum noise to the frequency translation. The only noise contribution from the mixer is due to the resistive loss of the switches, which is in the order of a few ohms.
As the mixer is inherently broadband and bidirectional, it is necessary to properly terminate all the idler (M × N product) frequencies generated by the mixing process. Terminating the mixer avoids the generation of unwanted intermodulation products and reduces the level of unwanted signals at the input of the IF amplifier, where high peak signal levels can compromise the compression and intermodulation performance of the system. This termination is accomplished by the addition of a sum network between the IF amplifier and the mixer and also in the feedback elements in the IF amplifier.
The IF amplifier is a balanced feedback design that simultaneously provides the desired gain, noise figure, and input impedance that is required to achieve the overall performance. The balanced open­collector output of the IF amplifier, with impedance modified by the feedback within the amplifier, permits the output to be connected directly to a high impedance filter, differential amplifier, or an analog-to-digital input while providing optimum second­order intermodulation suppression. The differential output impedance of the IF amplifier is approximately 200 Ω. If operation
8080-001
in a 50 Ω system is desired, the output can be transformed to 50 Ω by using a 4:1 transformer.
The intermodulation performance of the design is generally limited by the IF amplifier. The IP3 performance can be optimized by adjusting the IF current with an external resistor. Figure 43, and Figure 44 illustrate how various IF and LO bias resistors affect the performance with a 5 V supply. Additionally, dc current can be saved by increasing either or both resistors. It is permissible to reduce the dc supply voltage to as low as 3.3 V, further reducing the dissipated power of the part. (Note that no performance enhancement is obtained by reducing the value of these resistors and excessive dc power dissipation may result.)
Figure 41,
Rev. 0 | Page 16 of 24
Page 17
ADL5355

LO SUBSYSTEM

The LO amplifier is designed to provide a large signal level to the mixer to obtain optimum intermodulation performance. The resulting amplifier provides extremely high performance centered on an operating frequency of 1700 MHz. The best operation is achieved with either low-side LO injection for RF signals in the 1700 MHz to 2500 MHz range or high-side injection for RF signals in the 1200 MHz to 1700 MHz range. Operation outside these ranges is permissible, and conversion gain is extremely wideband, easily spanning 1200 MHz to 2500 MHz, but intermodulation is optimal over the aforementioned ranges.
The ADL5355 has two LO inputs permitting multiple synthesizers to be rapidly switched with extremely short switching times (<40 ns) for frequency agile applications. The two inputs are applied to a high isolation SPDT switch that provides a constant input impedance, regardless of whether the port is selected, to avoid pulling the LO sources. This multiple section switch also ensures high isolation to the off input, minimizing any leakage from the unwanted LO input that may result in undesired IF responses.
The single-ended LO input is converted to a fixed amplitude differential signal using a multistage, limiting LO amplifier. This results in consistent performance over a range of LO input power. Optimum performance is achieved from −6 dBm to +10 dBm, but the circuit continues to function at considerably lower levels of LO input power.
The performance of this amplifier is critical in achieving a high intercept passive mixer without degrading the noise floor of the system. This is a critical requirement in an interferer rich environment, such as cellular infrastructure, where blocking interferers can limit mixer performance. The bandwidth of the intermodulation performance is somewhat influenced by the current in the LO amplifier chain. For dc current sensitive applications, it is permissible to reduce the current in the LO amplifier by raising the value of the external bias control resistor. For dc current critical applications, the LO chain can operate with a supply voltage as low as 3.3 V, resulting in substantial dc power savings.
In addition, when operating with supply voltages below 3.6 V, the ADL5355 has a power-down mode that permits the dc current to drop to <200 μA.
All of the logic inputs are designed to work with any logic family that provides a Logic 0 input level of less than 0.4 V and a Logic 1 input level that exceeds 1.4 V. All logic inputs are high impedance up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection circuitry permits operation up to 5.5 V, although a small bias current is drawn.
All pins, including the RF pins, are ESD protected and have been tested up to a level of 1500 V HBM and 500 V CDM.
Rev. 0 | Page 17 of 24
Page 18
ADL5355

APPLICATIONS INFORMATION

BASIC CONNECTIONS

The ADL5355 mixer is designed to downconvert radio frequencies (RF) primarily between 1200 MHz and 2500 MHz to lower intermediate frequencies (IF) between 30 MHz and 450 MHz. Figure 52 depicts the basic connections of the mixer. It is recommended to ac-couple RF and LO input ports to prevent non-zero dc voltages from damaging the RF balun or LO input circuit. The RFIN capacitor value of 3 pF is recommended to provide the optimized RF input return loss for the desired frequency band.

IF PORT

The mixer differential IF interface requires pull-up choke inductors to bias the open-collector outputs and to set the output match. The shunting impedance of the choke inductors used to couple dc current into the IF amplifier should be selected to provide the desired output return loss.
The real part of the output impedance is approximately 200 Ω, as seen in Figure 30, which matches many commonly used SAW filters without the need for a transformer. This results in a voltage conversion gain that is approximately 6 dB higher than the power conversion gain, as shown in Tabl e 2. When a 50 Ω output impedance is needed, use a 4:1 impedance transformer, as shown in Figure 52.

BIAS RESISTOR SELECTION

Two external resistors, R bias current of the integrated amplifiers at the IF and LO terminals. It is necessary to have a sufficient amount of current to bias both the internal IF and LO amplifiers to optimize dc current vs. optimum IIP3 performance. Figure 41, Figure 43, and Figure 44 provide the reference for the bias resistor selection when lower power consumption is considered at the expense of conversion gain and IP3 performance.
BIAS IF
and R
, are used to adjust the
BIAS LO

MIXER VGS CONTROL DAC

The ADL5355 features two logic control pins, VGS0 (Pin 12) and VGS1 (Pin 13), that allow programmability for internal gate-to­source voltages for optimizing mixer performance over desired frequency bands. The evaluation board defaults both VGS0 and VGS1 to ground. Power conversion gain, IIP3, NF, and IP1dB can be optimized, as is shown in Figure 39 and Figure 40.
Rev. 0 | Page 18 of 24
Page 19
ADL5355
V
+5
100pF
150pF
470nH 470n H
+5V
4.7µF
+5V
10pF
4:1
R
BIAS IF
20
19 18 17 16
10k
ADL5355
1
15
IF OUT
22pF
LO2 IN
3pF
RF IN
2
14
+5V
10pF
10pF
0.1µF
3
BIAS
GENERATOR
4
13
12
22pF
LO1 IN
+5V
5
6 7 8 9 10
R
BIAS LO
11
10k
10pF10pF
08080-005
Figure 52. Typical Application Circuit
Rev. 0 | Page 19 of 24
Page 20
ADL5355

EVALUATION BOARD

An evaluation board is available for the family of double balanced mixers. The standard evaluation board schematic is shown in Figure 53. The evaluation board is fabricated using Rogers® RO3003 material. Tab le 8 describes the various configuration options of the evaluation board. Evaluation board layout is shown in Figure 54 to Figure 57.
L5
VPOS
C18
100pF
470nH
T1
IF1-OUT
RF-IN
VPOS
C1
3pF
100pF
C2 10µF
C5
0.01µFC410pF
C19
C21 10pF
VPOS
10pF
L4
470nH
R14 910
VPIF
RFIN
RFCT
COMM
COMM
C6
R25
0
GM IF
VLO3
R9
1.1k
R24 0
IFOP
IFON
ADL5355
LO2
LGM3
V
C8 10pF
DN W
P
LOSW
C17 150pF
VPOS
LEXT
NC
L3 0
LOI2
VPSW
VGS1
VGS0
LOI1
R4 10k
R1 0
R21 10k
VGS0
C12
22pF
LOSEL
PWR_UP
VGS1
C10
22nF
LO2_IN
C20 10pF
C22 1nF
VPOS
LO1_IN
R22 10k
R23 15k
8080-042
Figure 53. Evaluation Board Schematic
Rev. 0 | Page 20 of 24
Page 21
ADL5355
Table 8. Evaluation Board Configuration
Components Description Default Conditions
C2, C6, C8, C18, C19, C20, C21
C1, C4, C5
T1, C17, L4, L5, R1, R24, R25
C10, C12, R4
R21
C22, L3, R9, R14, R22, R23, VGS0, VGS1
Power Supply Decoupling. Nominal supply decoupling consists of a 10 μF capacitor to ground in parallel with a 10 pF capacitor to ground positioned as close to the device as possible.
RF Input Interface. The input channels are ac-coupled through C1. C4 and C5 provide bypassing for the center taps of the RF input baluns.
IF Output Interface. The open-collector IF output interfaces are biased through pull-up choke inductors L4 and L5. T1is a 4:1 impedance transformer used to provide a single-ended IF output interface, with C17 providing center-tap bypassing. Remove R1 for balanced output operation.
LO Interface. C10 and C12 provide ac coupling for the LO1_IN and LO2_IN local oscillator inputs. LOSEL selects the appropriate LO input for both mixer cores. R4 provides a pull-down to ensure that LO1_IN is enabled when the LOSEL test point is logic low. LO2_IN is enabled when LOSEL is pulled to logic high.
PWDN Interface. R21 pulls the PWDN logic low and enables the device. The PWR_UP test point allows the PWDN interface to be exercised using the external logic generator. Grounding the PWDN pin for nominal operation is allowed. Using the PWDN pin when supply voltages exceed 3.3 V is not allowed.
Bias Control. R22 and R23 form a voltage divider to provide 3 V for logic control, bypassed to ground through C22. VGS0 and VGS1 jumpers provide programmability at the VGS0 and VGS1 pins. It is recommended to pull these two pins to ground for nominal operation. R9 sets the bias point for the internal LO buffers. R14 sets the bias point for the internal IF amplifier.
C2 = 10 μF (size 0603), C6, C8, C20, C21 = 10 pF (size 0402), C18, C19 = 100 pF (size 0402)
C1 = 3 pF (size 0402), C4 = 10 pF (size 0402), C5 = 0.01 μF (size 0402)
T1 = TC4-1W+ (Mini-Circuits), C17 = 150 pF (size 0402), L4, L5 = 470 nH (size 1008), R1, R24, R25 = 0 Ω (size 0402)
C10, C12 = 22 pF (size 0402), R4 = 10 kΩ (size 0402)
R21 = 10 kΩ (size 0402)
C22 = 1 nF (size 0402), L3 = 0 Ω (size 0603), R9 = 1.1 kΩ (size 0402), R14 = 910 Ω (size 0402), R22 = 10 kΩ (size 0402), R23 = 15 kΩ (size 0402), VGS0 = VGS1 = 3-pin shunt
Rev. 0 | Page 21 of 24
Page 22
ADL5355
Figure 54. Evaluation Board Top Layer
Figure 55. Evaluation Board Ground Plane, Internal Layer 1
08080-055
08080-057
Figure 56. Evaluation Board Power Plane, Internal Layer 2
08080-056
08080-058
Figure 57. Evaluation Board Bottom Layer
Rev. 0 | Page 22 of 24
Page 23
ADL5355
C

OUTLINE DIMENSIONS

0.05
0.65
BSC
0.75
0.60
0.50
0.60 MAX
15
16
10
11
20
EXPOSED
PAD
(BOTTOM VIEW)
6
2.60 BSC
FOR PROPER CONNECTION O F THE EXPOSED PAD, REFER TO THE PIN CONF IGURATIO N AND FUNCTION DESCRIPTIO NS SECTION OF THIS DATA SHEET.
N
I
1
P
R
O
T
N
D
C
I
A
I
1
3.20
3.10 SQ
3.00
5
042209-B
5.00
INDI
ATO R
0.90
0.85
0.80
SEATING
PLANE
PIN 1
12° MAX
BSC SQ
TOP VIEW
0.70
0.65
0.60
0.35
0.28
0.23
COMPLIANTTOJEDEC STANDARDS MO-220-VHHC
4.75
BSC SQ
0.20 REF
0.60 MAX
0.05 MAX
0.01 NOM COPLANARITY
Figure 58. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad (CP-20-5)
Dimensions shown in millimeters

ORDERING GUIDE

Model
ADL5355ACPZ-R7 ADL5355ACPZ-WP ADL5355-EVALZ
1
Z = RoHS Compliant Part.
1
−40°C to +85°C 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-20-5 1,500, 7” Tape and Reel
1
−40°C to +85°C 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-20-5 36, Waffle Pack
1
Evaluation Board 1
Te mp e ra tu r e Range Package Description
Package Option
Ordering Quantity
Rev. 0 | Page 23 of 24
Page 24
ADL5355
NOTES
©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08080-0-7/09(0)
Rev. 0 | Page 24 of 24
Loading...