Datasheet ADL5354 Datasheet (ANALOG DEVICES)

Page 1
2200 MHz to 2700 MHz, Dual-Balanced
Mixer, LO Buffer, IF Amplifier, and RF
Balun

FEATURES

RF frequency range of 2200 MHz to 2700 MHz IF frequency range of 30 MHz to 450 MHz Power conversion gain: 8.6 dB SSB noise figure of 10.6 dB Input IP3 of 26.1 dBm Input P1dB of 10.6 dBm Typical LO power of 0 dBm Single-ended, 50 Ω RF and LO input ports High isolation SPDT LO input switch Single-supply operation: 3.3 V to 5 V Exposed paddle, 6 mm × 6 mm, 36-lead LFCSP 1500 V HBM/500 V FICDM ESD performance

APPLICATIONS

Cellular base station receivers Transmit observation receivers Radio link downconverters

GENERAL DESCRIPTION

The ADL5354 uses a highly linear, doubly balanced, passive mixer core along with integrated RF and local oscillator (LO) balancing circuitry to allow single-ended operation. The ADL5354 incor­porates the RF baluns, allowing for optimal performance over a 2200 MHz to 2700 MHz RF input frequency range. The balanced passive mixer arrangement provides good LO-to-RF leakage, typically better than −37 dBm, and excellent intermodulation performance. The balanced mixer core also provides extremely high input linearity, allowing the device to be used in demanding cellular applications where in-band blocking signals may other­wise result in the degradation of dynamic performance. A high linearity IF buffer amplifier follows the passive mixer core to yield a typical power conversion gain of 8 dB and can be used with a wide range of output impedances.
The ADL5354 provides two switched LO paths that can be used in time division duplex (TDD) applications where it is desirable to ping-pong between two local oscillators. LO current can be externally set using a resistor to minimize dc current
ADL5354

FUNCTIONAL BLOCK DIAGRAM

N
M
M
S
G
M
N
O C
M
35
34
11
12
M
M
G
M
V
O
D
C
MNIN
MNCT
COMM
VPOS
COMM
VPOS
COMM
DVCT
DVIN
O P V
36
1
2
3
4
5
6
7
8
9
10
S O P V
commensurate with the desired level of performance. For low voltage applications, the ADL5354 is capable of operation at voltages as low as 3.3 V with substantially reduced current. For low voltage operation, an additional logic pin is provided to power down (~300 µA) the circuit when desired.
The ADL5354 is fabricated using a BiCMOS high performance IC process. The device is available in a 6 mm × 6 mm, 36-lead LFCSP and operates over a −40°C to +85°C temperature range. An evaluation board is also available.
Table 1. Passive Mixers
RF Frequency (MHz)
Single Mixer
500 to 1700 ADL5367 ADL5357 ADL5358 1200 to 2500 ADL5365 ADL5355 ADL5356 2200 to 2700 ADL5353 ADL5354
P
O
O
N
N
M
M
33
32
13
14
P
N
O
O
V
V
D
D
Figure 1.
Single Mixer and IF Amp
E L N
M
31
ADL5354
15
E L V D
S O P V
30
16
S O P V
G L N
C
M
N
29
28
17
18
C
G L
N V D
Dual Mixer and IF Amp
27
26
25
24
23
22
21
20
19
LOI2
VGS2
VGS1
VGS0
LOSW
PWDN
VPOS
COMM
LOI1
09118-001
Rev. 0
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
Page 2
ADL5354

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
5 V Performance........................................................................... 4
3.3 V Performance........................................................................ 4
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Performance Characteristics ............................................. 7
5 V Performance........................................................................... 7
3.3 V Performance...................................................................... 14
Spur Tables ...................................................................................... 15
5 V Performance......................................................................... 15
3.3 V Performance...................................................................... 15
Circuit Description......................................................................... 16
RF Subsystem.............................................................................. 16
LO Subsystem ............................................................................. 16
Applications Information.............................................................. 18
Basic Connections...................................................................... 18
IF Port.......................................................................................... 18
Bias Resistor Selection ............................................................... 18
Mixer VGS Control DAC.......................................................... 18
Evaluation Board............................................................................ 20
Outline Dimensions....................................................................... 22
Ordering Guide .......................................................................... 22

REVISION HISTORY

2/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
Page 3
ADL5354

SPECIFICATIONS

VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 k, R2 = R5 = 1 k, Z
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
RF INPUT INTERFACE
Return Loss Tunable to >20 dB over a limited bandwidth 20 dB Input Impedance 50 Ω RF Frequency Range 2200 2700 MHz
OUTPUT INTERFACE
Output Impedance Differential impedance, f = 200 MHz 230||0.75 Ω||pF IF Frequency Range 30 450 MHz DC Bias Voltage1 Externally generated 3.3 5.0 5.5 V
LO INTERFACE
LO Power −6 0 +10 dBm Return Loss 13 dB Input Impedance 50 Ω LO Frequency Range 1750 2670 MHz
POWER-DOWN (PWDN) INTERFACE2
PWDN Threshold 1.0 V Logic 0 Level 0.4 V Logic 1 Level 1.4 V PWDN Response Time Device enabled, IF output to 90% of its final level 160 ns Device disabled, supply current < 5 mA 230 ns PWDN Input Bias Current Device enabled 0 µA
Device disabled 70 µA
1
Apply supply voltage from external circuit through choke inductors.
2
PWDN function is intended for use with VS ≤ 3.6 V only.
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
Rev. 0 | Page 3 of 24
Page 4
ADL5354

5 V PERFORMANCE

VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 k, R2 = R5 = 1 k, VGS0 = VGS1 = VGS2 = 0 V, and Z
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
Power Conversion Gain Including 4:1 IF port transformer and PCB loss 8.6 dB Voltage Conversion Gain Z SSB Noise Figure 10.6 dB Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB) 10.6 dBm LO-to-IF Leakage Unfiltered IF output −20.7 dBm LO-to-RF Leakage −37 dBm RF-to-IF Isolation −34 dBc IF/2 Spurious −10 dBm input power −73 dBc IF/3 Spurious −10 dBm input power −71 dBc IF Channel-to-Channel Isolation 52 dB
POWER SUPPLY
Positive Supply Voltage 4.75 5 5.25 V Quiescent Current LO supply 170 mA IF supply 180 mA Total Quiescent Current VS = 5 V 350 mA
= 50 Ω, unless otherwise noted.
O
= 50 Ω, differential Z
SOURCE
= 2534.5 MHz, f
f
RF1
each RF tone at −10 dBm
= 2535 MHz, f
f
RF1
RF2
each RF tone at −10 dBm
= 200 Ω differential 14.6 dB
LOAD
= 2535.5 MHz, fLO = 2332 MHz,
RF2
= 2585 MHz, fLO = 2332 MHz,
26.1 dBm
50 dBm

3.3 V PERFORMANCE

VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, R9 = 226 , R14 = 604 , VGS0 = VGS1 = 0 V, and Z
= 50 , unless otherwise noted.
O
Table 4.
Parameter Test Conditions/Comments Min Typ Max Unit
DYNAMIC PERFORMANCE
Power Conversion Gain Including 4:1 IF port transformer and PCB loss 8 dB Voltage Conversion Gain Z SSB Noise Figure 9.9 dB Input Third-Order Intercept (IIP3)
Input Second-Order Intercept (IIP2)
Input 1 dB Compression Point (IP1dB) 7 dBm
POWER INTERFACE
Supply Voltage 3.0 3.3 3.6 V Quiescent Current Resistor programmable 200 mA Power-Down Current Device disabled 300 A
= 50 Ω, differential Z
SOURCE
= 2534.5 MHz, f
f
RF1
RF tone at −10 dBm
= 2535 MHz, f
f
RF1
RF2
tone at −10 dBm
= 200 Ω differential 14 dB
LOAD
= 2535.5 MHz, fLO = 2332 MHz, each
RF2
= 2585 MHz, fLO = 2332 MHz, each RF
17.5 dBm
49 dBm
Rev. 0 | Page 4 of 24
Page 5
ADL5354

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
Supply Voltage, VS 5.5 V RF Input Level 20 dBm LO Input Level 13 dBm MNOP, MNON, DVOP, DVON Bias 6.0 V VGS2,VGS1,VGS0, LOSW, PWDN 5.5 V Internal Power Dissipation 2.2 W Thermal Characteristic θJA 22°C/W Maximum Junction Temperature 150°C Temperature Range
Operating −40°C to +85°C Storage −65°C to +150°C
Lead Temperature (Soldering, 60 sec) 260°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. 0 | Page 5 of 24
Page 6
ADL5354

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

N
M
M
P
E
S
O
G
M
O
N
N
O
P
M
C
M
V
6
5
4
3
3
3
3
3
1
MNIN
2
MNCT
3
COMM
4
VPOS
5
COMM
6
VPOS
7
COMM
DVCT
8 9
DVIN
NOTES
12. NC = NO CONNECT. . EXPOSED P AD MUST BE CONNECTED TO GRO UND.
ADL5354
TOP VIEW
(Not to Scale)
0
1
2
1
1
1
S
M
M
O
G
M
P
V
O
V
D
C
3 1
P O V D
Figure 2. Pin Configuration
G
S
O
L
L
O
N
N
N
C
P
M
M
V
M
2 3
4 1
N O V D
N
1
0
9
8
3
3
2
2
5
6
7
8
1
1
1
1
S
E
C
G
L
L
N
O
V
V
P
D
V
D
27
LOI2 VGS2
26
VGS1
25
VGS0
24
LOSW
23 22
PWDN
21
VPOS
20
COMM LOI1
19
09118-002
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1 MNIN RF Input for Main Channel. Internally matched to 50 Ω. Must be ac-coupled. 2 MNCT Center Tap for Main Channel Input Balun. Bypass to ground using low inductance capacitor. 3, 5, 7, 12, 20, 34 COMM Device Common (DC Ground). 4, 6, 10, 16, 21, 30, 36 VPOS Positive Supply Voltage. 8 DVCT Center Tap for Diversity Channel Input Balun. Bypass to ground using low inductance capacitor. 9 DVIN RF Input for Diversity Channel. Internally matched to 50 Ω. Must be ac-coupled. 11 DVGM Diversity Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation. 13, 14 DVOP, DVON
Diversity Channel Differential Open-Collector Outputs. DVOP and DVON should be pulled up to
VCC using external inductors, see Figure 53 for details. 15 DVLE Diversity Channel IF Return. This pin must be grounded. 17 DVLG Diversity Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation. 18, 28 NC No Connect. Do not connect to this pin. 19 LOI1 Local Oscillator Input 1. Internally matched to 50 Ω. Must be ac-coupled. 22 PWDN
Power Down. Connect this pin to ground for normal operation. Connect pin to 3 V for disable
mode when using VPOS ≤ 3.6 V. PWDN pin must be grounded when VPOS > 3.6 V. 23 LOSW Local Oscillator Input Selection Switch. Set LOSW high to select LOI1 or set LOSW low to select LOI2. 24, 25, 26
VGS0, VGS1, VGS2
Gate to Source Control Voltages. For typical operation, set VGS0, VGS1, and VGS2 to a low logic
level. 27 LOI2 Local Oscillator Input 2. Internally matched to 50 Ω. Must be ac-coupled. 29 MNLG Main Channel LO Buffer Bias Setting. Connect a 1 kΩ resistor to ground for typical operation. 31 MNLE Main Channel IF Return. This pin must be grounded. 32, 33 MNOP, MNON
Main Channel Differential Open-Collector Outputs. Pull up MNOP and MNON to VCC by using
external inductors, see Figure 53 for details. 35 MNGM Main Amplifier Bias Setting. Connect a 1.3 kΩ resistor to ground for typical operation. EPAD Exposed Paddle. Exposed pad must be connected to ground.
Rev. 0 | Page 6 of 24
Page 7
ADL5354

TYPICAL PERFORMANCE CHARACTERISTICS

5 V PERFORMANCE

VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
400
390
380
370
360
350
340
330
SUPPLY CURRENT (mA)
320
310
300
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
TA = –40°C
T
= +25°C
A
T
= +85°C
A
RF FREQUENCY ( GHz)
Figure 3. Supply Current vs. RF Frequency
12
09118-003
60
58
56
54
52
50
48
INPUT IP2 (dBm)
46
44
42
40
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
T
= +25°C
A
RF FREQUENCY ( GHz)
TA = –40°C
= +85°C
T
A
Figure 6. Input IP2 vs. RF Frequency
18
09118-006
11
10
9
8
7
CONVERSION GAIN (dB)
6
5
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
TA = –40°C
T
= +25°C
A
T
= +85°C
A
RF FREQUENCY ( GHz)
Figure 4. Power Conversion Gain vs. RF Frequency
35
30
25
T
= +25°C
20
INPUT IP3 (dBm)
15
10
A
TA = –40°C
T
= +85°C
A
16
14
12
10
INPUT P1dB (dBm)
8
6
4
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
09118-004
T
TA = –40°C
= +85°C
A
T
= +25°C
A
RF FREQUENCY ( GHz)
09118-007
Figure 7. Input P1dB vs. RF Frequency
14
13
12
11
10
9
SSB NOISE FIGURE (dB)
8
7
= +85°C
T
A
= +25°C
T
A
TA = –40°C
5
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
RF FREQUENCY ( GHz)
Figure 5. Input IP3 vs. RF Frequency
09118-005
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
RF FREQUENCY ( GHz)
Figure 8. SSB Noise Figure vs. RF Frequency
09118-008
Rev. 0 | Page 7 of 24
Page 8
ADL5354
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
400
390
380
370
360
350
340
330
SUPPLY CURRENT (mA)
320
310
300
–40 806040200–20 70503010–10–30
TEMPERATURE (°C)
VS = 5.25V
= 5.00V
V
S
= 4.75V
V
S
09118-009
Figure 9. Supply Current vs. Temperature
9.4
9.2
9.0
8.8
8.6
8.4
CONVERSION GAIN (dB)
8.2
8.0
7.8 –40 806040200–20 70503010–10–30
TEMPERATURE (°C)
V
S
= 4.75V
VS = 5.25V
V
= 5.00V
S
09118-010
Figure 10. Power Conversion Gain vs. Temperature
29
28
= 5.00V
VS = 5.25V
09118-011
27
26
25
24
INPUT IP3 (dBm)
23
22
21
–40 806040200–20 70503010–10–30
V
S
= 4.75V
V
S
TEMPERATURE (°C)
Figure 11. Input IP3 vs. Temperature
53
52
51
50
49
INPUT IP2 (dBm)
48
47
46
–40 806040200–20 70503010–10–30
VS = 5.25V
= 5.00V
V
S
= 4.75V
V
S
TEMPERATURE (°C)
Figure 12. Input IP2 vs. Temperature
15
14
13
12
11
10
9
INPUT P1dB (dBm)
8
7
6
5
–40 806040200–20 70503010–10–30
VS = 5.25V
V
= 4.75V
S
TEMPERATURE (°C)
V
S
= 5.00V
Figure 13. Input P1dB vs. Temperature
12.0
11.5
11.0
10.5
10.0
9.5
9.0
8.5
SSB NOISE FIGURE (dB)
8.0
7.5
7.0 –40 806040200–20 70503010–10–30
VS = 5.25V
V
= 4.75V
S
TEMPERATURE (°C)
V
S
= 5.00V
Figure 14. SSB Noise Figure vs. Temperature
09118-012
09118-013
09118-014
Rev. 0 | Page 8 of 24
Page 9
ADL5354
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
400
390
380
370
360
350
340
330
SUPPLY CURRENT (mA)
320
310
300
30 43038033028023018013080
12
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
TA = –40°C
TA = +25°C
TA = +85°C
IF FREQUENCY (MHz)
09118-015
Figure 15. Supply Current vs. IF Frequency
INPUT IP2 (dBm)
60
58
56
54
52
50
48
46
44
42
40
30 43038033028023018013080
12
TA = +25°C
IF FREQUENCY (MHz)
TA = –40°C
TA = +85°C
Figure 18. Input IP2 vs. IF Frequency
09118-018
11
CONVERSION GAIN (dB)
10
9
8
7
6
5
4
30 43038033028023018013080
TA = +25°C
TA = –40°C
TA = +85°C
IF FREQUENCY (MHz)
Figure 16. Power Conversion Gain vs. IF Frequency
40
35
30
TA = –40°C
25
TA = +85°C
INPUT IP3 (dBm)
20
15
TA = +25°C
11
10
9
8
INPUT P1dB (dBm)
7
6
30 43038033028023018013080
09118-016
TA = +85°C
TA = +25°C
IF FREQUENCY (MHz)
TA = –40°C
09118-019
Figure 19. Input P1dB vs. IF Frequency
14
13
12
11
10
9
SSB NOISE FIGURE (dB)
8
10
30 43038033028023018013080
IF FREQUENCY (MHz)
Figure 17. Input IP3 vs. IF Frequency
09118-017
7
30 43038033028023018013080
IF FREQUENCY (MHz)
Figure 20. SSB Noise Figure vs. IF Frequency
09118-020
Rev. 0 | Page 9 of 24
Page 10
ADL5354
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
CONVERSION GAIN (dB)
12
11
10
TA = –40°C
9
8
7
6
5
–6 1086420–2–4
TA = +25°C
TA = +85°C
LO POW ER (dBm)
Figure 21. Power Conversion Gain vs. LO Power
32
09118-021
INPUT P1dB (dB)
12.0
11.6
11.2
10.8
10.4
10.0
9.6
9.2
8.8
8.4
8.0
66
TA = +85°C
TA = +25°C
TA = –40°C
–6 1086420–2–4
LO POW ER (dBm)
Figure 24. Input P1dB vs. LO Power
09118-024
INPUT IP3 (dBm)
INPUT IP2 (dBm)
30
28
26
24
22
20
18
16
–6 1086420–2–4
58
56
54
52
50
48
46
44
42
40
–6 1086420–2–4
TA = –40°C
TA = +25°C
TA = +85°C
LO POW ER (dBm)
Figure 22. Input IP3 vs. LO Power
TA = –40°C
TA = +85°C
LO POW ER (dBm)
Figure 23. Input IP2 vs. LO Power
TA = +25°C
IF/2 SPURIOUS (dBc)
09118-022
IF/3 SPURIOUS (dBc)
09118-023
TA = –40°C
–68
–70
–72
–74
–76
–78
–80
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
T
= +25°C
A
T
= +85°C
A
RF FREQUENCY ( GHz)
Figure 25. IF/2 Spurious vs. RF Frequency, RF Power = −10 dBm
60
–62
–64
–66
–68
–70
= +25°C
–72
–74
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
T
A
RF FREQUENCY ( GHz)
T
= +85°C
A
TA = –40°C
Figure 26. IF/3 Spurious vs. RF Frequency, RF Power = −10 dBm
09118-025
09118-026
Rev. 0 | Page 10 of 24
Page 11
ADL5354
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
100
MEAN = 8.6 SD = 0.28%
500
10
80
60
40
20
DISTRIBUTI ON PERCENTAG E (%)
0
8.3 8.78.5 8.68.4
CONVERSION G AIN (dB)
Figure 27. Conversion Gain Distribution
100
MEAN = 26.1 SD = 0.5%
80
60
40
20
DISTRIBUTI ON PERCENTAG E (%)
0
23 24 25 26 2827
INPUT IP3 (dBm)
Figure 28. Input IP3 Distribution
100
MEAN = 10.6 SD = 0.36%
80
60
40
20
DISTRIBUTI ON PERCENTAG E (%)
400
300
RESISTANCE
200
RESISTANCE (Ω)
100
CAPACITANCE
0
30 43038033028023018013080
09118-027
IF FREQUENCY (MHz)
8
6
4
CAPACITANCE (pF )
2
0
09118-030
Figure 30. IF Output Impedance (R Parallel, C Equivalent)
0
–3
–6
–9
–12
–15
–18
RF RETURN LOSS (dB)
–21
–24
–27
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
09118-028
RF FREQUENCY ( GHz)
09118-031
Figure 31. RF Return Loss, Fixed IF
0
–5
–10
–15
–20
–25
LO RETURN LOSS (dB)
–30
SELECTED
UNSELECTED
0
10.0 10.3 10.6 10. 9 11.2
INPUT P1dB (dBm)
Figure 29. Input P1dB Distribution
09118-029
Rev. 0 | Page 11 of 24
–35
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50
LO FREQUENCY (GHz)
Figure 32. LO Return Loss, Selected and Unselected
09118-132
Page 12
ADL5354
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
60
55
50
45
40
LO SWITCH ISOLATION (dB)
35
30
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
30
–31
–32
–33
–34
–35
–36
–37
RF-TO-IF ISOLATION (dB)
–38
–39
–40
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
0
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
TA = –40°C
= +85°C
T
A
= +25°C
T
A
RF FREQUENCY ( GHz)
09118-133
Figure 33. LO Switch Isolation vs. RF Frequency
= +85°C
T
A
= +25°C
T
A
TA = –40°C
RF FREQUENCY ( GHz)
09118-034
Figure 34 RF-to-IF Isolation vs. RF Frequency
30
–32
–34
–36
–38
–40
–42
LO-TO- RF LEAKAGE (dBm)
–44
–46
–48
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50
TA = –40°C
T
= +25°C
A
T
= +85°C
A
LO FREQUENCY (GHz)
Figure 36. LO-to-RF Leakages vs. LO Frequency
0
–5
–10
–15
–20
–25
–30
–35
2 × LO LEAKAGE (dBm)
–40
–45
–50
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50
LO FREQUENCY (GHz)
2 × LO-TO -RF
2 × LO-TO-IF
Figure 37. 2 × LO Leakage vs. LO Frequency
30
09118-036
09118-037
–5
–10
–15
–20
–25
–30
LO-TO -IF LEAKAG E (dBm)
–35
–40
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50
TA = –40°C
T
= +85°C
A
LO FREQUENCY (GHz)
T
A
Figure 35. LO-to-IF Leakage vs. LO Frequency
= +25°C
09118-035
–35
–40
–45
–50
–55
3 × LO LEAKAGE (dBm)
–60
–65
–70
2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50
LO FREQUENCY (GHz)
3 × LO-T O-RF
3 × LO-TO-IF
Figure 38. 3 × LO Leakage vs. LO Frequency
09118-038
Rev. 0 | Page 12 of 24
Page 13
ADL5354
VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.3 kΩ, R2 = R5 = 1 kΩ, Z
= 50 Ω, VGS0 = VGS1 = VGS2 = 0 V, unless otherwise noted.
O
10
18
0.30
9
8
7
6
CONVERSION GAIN (dB)
5
4
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.702.65
RF FREQUENCY (G Hz)
VGS = 000 VGS = 011 VGS = 100 VGS = 110
16
14
12
10
SSB NOISE FIGURE (dB)
8
6
Figure 39. Power Conversion Gain and SSB Noise Figure vs. RF Frequency for
Various VGS Settings
20
18
16
14
12
INPUT P1dB (dBm)
10
8
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.702.65
RF FREQUENCY (G Hz)
VGS = 000 VGS = 011 VGS = 100 VGS = 110
32
29
26
23
20
INPUT IP3 (dBm)
17
14
11
Figure 40. Input P1dB and Input IP3 vs. RF Frequency for Various VGS Settings
14
32
0.25
0.20
0.15
0.10
SUPPLY CURRENT (mA)
0.05
09118-039
IF BIAS SUPPLY CURRENT
LO BIAS SUPP LY CURRENT
0
0.6 0.7 0.8 0.9 1.0 1.1 1. 2 1.3 1.5 1. 71.4 1.6 1.8
BIAS RESIST OR VALUE (kΩ)
09118-142
Figure 42. LO and IF Supply Current vs. IF and LO Bias Resistor Value
16
15
14
13
12
11
10
9
8
7
CONVERSION G AIN AND SSB NOIS E FIGURE (dB)
6
0.6 0.7 0.9 1.1 1.3 1.60.8 1. 0 1.2 1.4 1.81.5 1. 7
09118-040
INPUT IP3
SSB NOISE FIGURE
CONVERSION G AIN
IF BIAS RESISTOR VALUE (kΩ)
30
27
24
21
18
15
12
INPUT IP3 (dBm)
9
6
3
0
09118-042
Figure 43. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. IF Bias
Resistor Value
62
13
12
11
10
9
8
7
CONVERSION G AIN AND SSB NOIS E FIGURE (dB)
6
0.6 0.7 0.9 1.1 1.3 1.60.8 1. 0 1.2 1.4 1.81.5 1. 7
LO BIAS RESISTOR VALUE (kΩ)
INPUT IP3
SSB NOISE FIGURE
CONVERSION G AIN
29
26
23
20
17
INPUT IP3 (dBm)
14
11
8
09118-041
Figure 41. Power Conversion Gain, SSB Noise Figure, and Input IP3 vs. LO Bias
Resistor Value
Rev. 0 | Page 13 of 24
TA = –40°C
60
58
56
54
52
IF CHANNEL-T O-CHANNEL ISOLATIO N (dB)
50
TA = +25°C
TA = +85°C
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
RF FREQUENCY ( GHz)
09118-043
Figure 44. IF Channel-to-Channel Isolation vs. RF Frequency
Page 14
ADL5354

3.3 V PERFORMANCE

VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2535 MHz, fLO = 2332 MHz, LO power = 0 dBm, R9 = 226 , R14 = 604 , VGS0 = VGS1 = 0 V, and Z
= 50 , unless otherwise noted.
O
208
206
204
202
200
198
196
194
SUPPLY CURRENT (mA)
192
190
188
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
TA = –40°C
TA = +25°C
TA = +85°C
RF FREQUENCY ( GHz)
Figure 45. Supply Current vs. RF Frequency at 3.3 V
15
13
11
9
7
5
3
1
CONVERSION GAIN (dB)
–1
–3
–5
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
TA = +25°C
RF FREQUENCY ( GHz)
TA = –40°C
TA = +85°C
Figure 46. Power Conversion Gain vs. RF Frequency at 3.3 V
25
09118-044
09118-045
60
TA = +25°C
50
40
TA = +85°C
30
TA = –40°C
INPUT IP2 (dBm)
20
10
0
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
RF FREQUENCY ( GHz)
Figure 48. Input IP2 vs. RF Frequency at 3.3 V
8
6
4
2
0
–2
–4
INPUT P1dB (dBm)
–6
TA = –40°C
–8
–10
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
TA = +85°C
RF FREQUENCY ( GHz)
TA = +25°C
Figure 49. Input P1dB vs. RF Frequency at 3.3 V
22
09118-047
09118-048
20
20
15
10
INPUT IP3 (dBm)
5
0
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
TA = +25°C
RF FREQUENCY ( GHz)
Figure 47. Input IP3 vs. RF Frequency at 3.3 V
TA = –40°C
TA = +85°C
18
16
14
12
SSB NOISE FIGURE (dB)
10
8
6
2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70
09118-046
TA = –40°C
RF FREQUENCY ( GHz)
TA = +85°C
TA = +25°C
09118-049
Figure 50. SSB Noise Figure vs. RF Frequency at 3.3 V
Rev. 0 | Page 14 of 24
Page 15
ADL5354

SPUR TABLES

All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board. Mixer spurious products are measured in dBc from the IF output power level. Data was measured only for frequencies less than 6 GHz. Typical noise floor of the measurement system = −100 dBm.

5 V PERFORMANCE

VS = 5 V, IS = 350 mA, TA = 25°C, fRF = 2500 MHz, fLO = 2297 MHz, LO power = 0 dBm, RF power = −10 dBm, VGS0 = VGS1 = VGS2 = 0 V, and Z
= 50 Ω, unless otherwise noted.
O
M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 −19.7 −28.9 1 −41.5 0.00 −65.2 −51.9 2 −92.6 −95.3 −73.6 −90.2 −84.3 3 <−100 <−100 −77.6 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100
11
<−100 <−100 <−100 <−100 <−100
12 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 14 <100 <100 15 <100

3.3 V PERFORMANCE

VS = 3.3 V, IS = 200 mA, TA = 25°C, fRF = 2500 MHz, fLO = 2297 MHz, LO power = 0 dBm, RF power = −10 dBm, R1 = R4 = 1.2 kΩ, R2 = R5 = 400 Ω, VGS0 = VGS1 = VG2 = 0 V, and Z
M
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 −26.5 −36.3 1 −40.6 0.00 −58.8 −55.5 2 −87.8 −77.7 −64.2 −79.1 −84.3 3 <−100 <−100 −70.2 <−100 <−100 4 <−100 <−100 <−100 <−100 <−100 <−100 5 <−100 <−100 <−100 <−100 <−100 <−100 <−100 6 <−100 <−100 <−100 <−100 <−100 <−100 <−100 7 <−100 <−100 <−100 <−100 <−100 <−100
N
8 <−100 <−100 <−100 <−100 <−100 9 <−100 <−100 <−100 <−100 <−100 10 <−100 <−100 <−100 <−100 <−100 11 <−100 <−100 <−100 <−100 <−100 12 <−100 <−100 <−100 <−100 13 <−100 <−100 <−100 14 <−100 <−100 15 <100
= 50 Ω, unless otherwise noted.
O
Rev. 0 | Page 15 of 24
Page 16
ADL5354
C
C
C

CIRCUIT DESCRIPTION

The ADL5354 consists of two primary components: the radio frequency (RF) subsystem and the local oscillator (LO) subsystem. The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die using mature packaging and interconnection tech­nologies to provide a high performance, low cost design with excellent electrical, mechanical, and thermal properties. In addition, the need for external components is minimized, optimizing cost and size.
The RF subsystem consists of integrated, low loss RF baluns, passive MOSFET mixers, sum termination networks, and IF amplifiers. The LO subsystem consists of an SPDT-terminated FET switch and two multistage limiting LO amplifiers. The purpose of the LO subsystem is to provide a large, fixed amplitude, balanced signal to drive the mixer independent of the level of the LO input. A block diagram of the device is shown in Figure 51.
N
M
M
S
G
M
N
O C
M
35
34
11
12
M
M
G
M
V
O
D
C
MNIN
MNCT
OMM
VPOS
OMM
VPOS
OMM
DVCT
DVIN
O P V
36
1
2
3
4
5
6
7
8
9
10
S O P V
Figure 51. Simplified Schematic

RF SUBSYSTEM

The single-ended, 50  RF input is internally transformed to a balanced signal using a low loss (<1 dB) unbalanced-to-balanced (balun) transformer. This transformer is made possible by an extremely low loss metal stack, which provides both excellent balance and dc isolation for the RF port. Although the port can be dc connected, it is recommended that a blocking capacitor be used to avoid running excessive dc current through the part. The RF balun can easily support an RF input frequency range of 2200 MHz to 2700 MHz.
The resulting balanced RF signal is applied to a passive mixer that commutates the RF input with the output of the LO subsystem. The passive mixer is essentially a balanced, low loss switch that adds minimal noise to the frequency translation. The only noise
P O N M
33
13
P O V D
E
O
L
N
N
M
M
32
31
14
15
E
N
L
O
V
V
D
D
S O P V
30
ADL5354
16
S O P V
G L N
C
M
N
29
28
27
LOI2
26
VGS2
25
VGS1
24
VGS0
23
LOSW
22
PWDN
21
VPOS
20
COMM
19
LOI1
17
18
C
G L
N V D
contribution from the mixer is due to the resistive loss of the switches, which is in the order of a few ohms.
Because the mixer is inherently broadband and bidirectional, it is necessary to properly terminate all the idler (M × N product) frequencies generated by the mixing process. Terminating the mixer avoids the generation of unwanted intermodulation products and reduces the level of unwanted signals at the input of the IF amplifier, where high peak signal levels can compromise the compression and intermodulation performance of the system. This termination is accomplished by the addition of a sum network between the IF amplifier and the mixer and in the feedback elements in the IF amplifier.
The IF amplifier is a balanced feedback design that simultaneously provides the desired gain, noise figure, and input impedance that is required to achieve the overall performance. The balanced open­collector output of the IF amplifier, with impedance modified by the feedback within the amplifier, permits the output to be con­nected directly to a high impedance filter, differential amplifier, or an analog-to-digital input while providing optimum second-order intermodulation suppression. The differential output impedance of the IF amplifier is approximately 200 . If operation in a 50  system is desired, the output can be transformed to 50  by using a 4:1 transformer.
The intermodulation performance of the design is generally limited by the IF amplifier. The IP3 performance can be optimized by adjusting the IF current with an external resistor. Additionally, dc current can be saved by increasing either or both resistors. It is permissible to reduce the dc supply voltage to as low as 3.3 V, further reducing the dissipated power of the part. (No performance enhancement is obtained by reducing the value of these resistors, and excessive dc power dissipation may result.)

LO SUBSYSTEM

The ADL5354 has two LO inputs permitting multiple synthesizers
9118-052
to be rapidly switched with extremely short switching times (<40 ns) for frequency agile applications. The two inputs are applied to a high isolation SPDT switch that provides a constant input impedance, regardless of whether the port is selected, to avoid pulling the LO sources. This multiple section switch also ensures high isolation to the off input, minimizing any leakage from the unwanted LO input that may result in undesired IF responses.
The single-ended LO input is converted to a fixed amplitude differential signal using a multistage, limiting LO amplifier. This results in consistent performance over a range of LO input power. Optimum performance is achieved from −6 dBm to +10 dBm, but the circuit continues to function at considerably lower levels of LO input power.
The performance of this amplifier is critical in achieving a high intercept passive mixer without degrading the noise floor of the
Rev. 0 | Page 16 of 24
Page 17
ADL5354
system. This is a critical requirement in an interferer rich environment, such as cellular infrastructure, where blocking interferers can limit mixer performance. The bandwidth of the intermodulation performance is somewhat influenced by the current in the LO amplifier chain. For dc current sensitive applications, it is permissible to reduce the current in the LO amplifier by raising the value of the external bias control resistor. For dc current critical applications, the LO chain can operate with a supply voltage as low as 3.3 V, resulting in substantial dc power savings.
In addition, when operating with supply voltages below 3.6 V, the ADL5354 has a power-down mode that permits the dc current to drop to ~300 µA.
The logic inputs are designed to work with any logic family that provides a Logic 0 input level of less than 0.4 V and a Logic 1 input level that exceeds 1.4 V. All logic inputs are high impedance up to Logic 1 levels of 3.3 V. At levels exceeding 3.3 V, protection circuitry permits operation up to 5.5 V, although a small bias current is drawn.
All pins, including the RF pins, are ESD protected and have been tested to a level of 1500 V HBM and 500 V FICDM.
Rev. 0 | Page 17 of 24
Page 18
ADL5354

APPLICATIONS INFORMATION

BASIC CONNECTIONS

The ADL5354 mixer is designed to downconvert radio frequencies (RF) primarily between 2200 MHz and 2700 MHz to lower inter­mediate frequencies (IF) between 30 MHz and 450 MHz. Figure 52 depicts the basic connections of the mixer. It is recommended to ac couple the RF and LO input ports to prevent nonzero dc voltages from damaging the RF balun or LO input circuit. The RFIN matching network consists of a series 1.5 pF capacitor and a shunt 4.3 nH inductor to provide the optimized RF input return loss for the desired frequency band.

IF PORT

The mixer differential IF interface requires pull-up choke inductors to bias the open-collector outputs and to set the output match. The shunting impedance of the choke inductors used to couple dc current into the IF amplifier should be selected to provide the desired output return loss.
The real part of the output impedance is approximately 200 Ω, which matches many commonly used SAW filters without the
need for a transformer. This results in a voltage conversion gain that is approximately 6 dB higher than the power conversion gain, as shown in Tab l e 3 . When a 50 Ω output impedance is needed, use a 4:1 impedance transformer, as shown in Figure 52.

BIAS RESISTOR SELECTION

The IF bias resistors (R1 and R4) and LO bias resistors (R2 and R5) are used to adjust the bias current of the integrated amplifiers at the IF and LO terminals. It is necessary to have a sufficient amount of current to bias both the internal IF and LO amplifiers to optimize dc current vs. optimum IIP3 performance.

MIXER VGS CONTROL DAC

The ADL5354 features three logic control pins, VGS0 (Pin 24), VGS1 (Pin 25), and VGS2 (Pin26), that allow programmability for internal gate-to-source voltages for optimizing mixer performance over desired frequency bands. The evaluation board defaults VGS0, VGS1, and VGS2 to ground.
Rev. 0 | Page 18 of 24
Page 19
ADL5354
MAIN_IN
C9
Z1 Z2
C3
C2
MAIN_OUTN
C19 C17
C22
VCC
1
2
3
4
5
R1
36 35 34 33 32 31 30 29 28
C33
C8 C21
L1
C27
R10
VCC
C32
T1
L2
R3
L6
MAIN_OUTP
C25 C18
VCC
R2
R12
R7
R14
R11
C16
R16
C34
R17
LO2
VCC
27
26
R13
25
R8
24
R15
23
DIV_IN
VCC
C6 C7
C11
Z3 Z4
GND
VCC
+
C10
6
7
8
9
10 11 12 13 14 15 16 17 18
VCC
C23
R4
C20
DIV_OUTP DIV_OUTN
C30 C31
VCC
R6
L5
C1 C12
C28
R9
L3
C24 C13
L4
C29
T2
ADL5354
VCC
22
21
C26
20
19
C14
R5
C15
LO1
VCC
R19
09118-153
Figure 52. Typical Application Circuit
Rev. 0 | Page 19 of 24
Page 20
ADL5354

EVALUATION BOARD

An evaluation board is available for the family of double balanced mixers. The standard evaluation board schematic is shown in Figure 53. The evaluation board is fabricated using Rogers®
RO3003 material. Tab le 7 describes the various configuration options of the evaluation board. Evaluation board layout is shown in Figure 54 and Figure 55.
MAIN_IN
DIV_IN
C9
Z1 Z2
VCC
C11
Z3 Z4
C3 C2
C6 C7
VCC
+
GND
C10
MAIN_OUTN
C22
VCC
MNIN
MNCT
COMM
VPOS
COMM
VPOS
COMM
DVCT
DVIN
VCC
C23
R10
C33
C19 C17
S O P V
C8 C21
L1
R1
M
M G
M
N
O C
M
C27
VCC
N O N M
T1
L2
R3
L6
P O N M
ADL5354
TOP VIEW
(Not to Scal e)
M
M
S
G
O
V
P V
D
R4
P M O C
L5
N
O
O
V
V
D
D
VCC
R6
L4
S O P V
S O P V
MAIN_OUTP
C18
G L N
M
G L V D
C32
C25
E L N
M
E L V D
L3
C24 C13
VCC
VCC
R2
C N
LOI2
VGS2
VGS1
VGS0
LOSW
PWDN
VPOS
COMM
LOI1
C N
R5
R13
C26
C14
C16
R12
R16
R7
C34
R8
R14
R17
R11
R15
R19
VCC
C15
LO1
LO2
VCC
C1 C12
C28
C20
DIV_OUTP DIV_OUTN
C30 C31
R9
C29
T2
Figure 53. Evaluation Board Schematic
Rev. 0 | Page 20 of 24
09118-154
Page 21
ADL5354
Table 7. Evaluation Board Configuration
Components Description Default Conditions
C1, C8, C10, C12, C13, C15, C18, C21, C22, C23, C24, C25, C26
Z1 to Z4, C2, C3, C6, C7, C9, C11
T1, T2, C17, C19, C20, C27 to C33, L1, L2, L4, L5, R3, R6, R9, R10
C14, C16, R15, LOSEL
R19, PWDN
R1, R2, R4, R5, L3, L6, R7, R8, R11 to R14, R16, R17, C34
Power supply decoupling. Nominal supply decoupling consists of a 0.01 µF capacitor to ground in parallel with 10 pF capacitors to ground positioned as close to the device as possible.
RF main and diversity input interface. Main and diversity input channels are ac-coupled through C9 and C11. Z1 to Z4 provide additional component placement for external matching/filter networks. C2, C3, C6, and C7 provide bypassing for the center taps of the main and diversity on-chip input baluns.
IF main and diversity output interface. The open-collector IF output interfaces are biased through the pull-up choke inductors (L1, L2, L4, and L5), leaving R3 and R6 available for additional supply bypassing. T1 and T2 are 4:1 impedance transformers that are used to provide a single-ended IF output interface, and C27 and C28 provide the center tap bypassing. C17, C19, C20, C29, C30, C31, C32, and C33 ensure an ac-coupled output interface. Remove R9 and R10 for balanced output operation.
LO interface. C14 and C16 provide ac coupling for the LOI1 and LOI2 local oscillator inputs. LOSEL selects the appropriate LO input for both mixer cores. R15 provides a pull-down to ensure LOI2 is enabled when the LOSEL jumper is removed. The jumper can be removed to allow the LOSEL interface to be exercised by using an external logic generator.
PWDN interface. When the PWDN 2-pin shunt is inserted, the ADL5354 is powered down. When R19 is open, it pulls the PWDN logic low and enables the device. The jumper can be removed to allow PWDN interface to be exercised using an external logic generator. Grounding the PWDN pin is allowed during nominal operation but is not permitted when supply voltages exceed 3.3 V.
Bias control. R16 and R17 form a voltage divider to provide a 3 V for logic control, bypassed to ground through C34. Resistors R7, R8, R11, R12, R13, and R14 provide resistor programmability of VGS0, VGS1, and VGS2. Typically, these nodes can be hardwired for nominal operation. Grounding these pins is allowed for nominal operation. R2 and R5 set the bias point for the internal LO buffers. R1 and R4 set the bias point for the internal IF amplifiers. L3 and L6 are external inductors used to improve isolation and common-mode rejection.
C10 = 4.7 µF (Size 3216), C1, C8, C12, C21 = 150 pF (Size 0402), C22, C23, C24, C25, C26 = 10 pF (Size 0402), C13, C15, C18 = 0.1 µF (Size 0402)
C2, C7 = 10 pF (Size 0402), C3, C6 = 0.01 µF (Size 0402), C9, C11 = 1.5 pF (Size 0402), Z2, Z4 = 4.3 nH (Size 0402), Z1, Z3 = open (Size 0402)
C17, C19, C20, C29 to C33 = 0.001 µF (Size 0402), C27, C28 = 150 pF (Size 0402), T1, T2 = TC4-1T+ (Mini-Circuits), L1, L2, L4, L5 = 330 nH (Size 0805), R3, R6, R9, R10 = 0 Ω (Size 0402)
C14, C16 = 10 pF (Size 0402), R15 = 10 kΩ (Size 0402), LOSEL = 2-pin shunt
R19 = 10 kΩ (Size 0402), PWDN = 2-pin shunt
R1, R4 = 1.3 kΩ (Size 0402), R2, R5 = 1 kΩ (Size 0402), L3, L6 = 0 Ω (Size 0603), R12, R13, R14 = open (Size 0402), R7, R8, R11 = 0 Ω (Size 0402), R16 = 10 kΩ (Size 0402), R17 = 15 kΩ (Size 0402), C34 = 1 nF (Size 0402)
Figure 54. Evaluation Board Top Layer
09118-056
Rev. 0 | Page 21 of 24
Figure 55. Evaluation Board Bottom Layer
09118-057
Page 22
ADL5354

OUTLINE DIMENSIONS

PIN 1
INDICATOR
12° MAX
1.00
0.85
0.80
SEATING
PLANE
6.00
BSC SQ
TOP
VIEW
0.80 MAX
0.65 TYP
0.35
0.28
0.23
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-1
5.75
BSC SQ
0.20 REF
0.60 MAX
0.05 MAX
0.02 NOM COPLANARITY
0.08
0.50
BSC
0.75
0.60
0.50
0.60 MAX
28
27
EXPOSED
(BOTTOM V IEW)
19
18
36
PAD
10
4.00 REF
FORPROPERCONNECTIONOF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.
Figure 56. 36-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad (CP-36-1)
Dimensions shown in millimeters
PIN 1 INDICATOR
1
3.85
3.70 SQ
3.55
9
0.20 MIN
050808-D

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option
ADL5354ACPZ-R2 −40°C to +85°C 36-Lead LFCSP_VQ CP-36-1 ADL5354ACPZ-R7 −40°C to +85°C 36-Lead LFCSP_VQ CP-36-1 ADL5354-EVALZ Evaluation Board
1
Z = RoHS Compliant Part.
Rev. 0 | Page 22 of 24
Page 23
ADL5354
NOTES
Rev. 0 | Page 23 of 24
Page 24
ADL5354
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09118-0-2/11(0)
Rev. 0 | Page 24 of 24
Loading...