Datasheet ADL5350 Datasheet (ANALOG DEVICES)

LF to 4 GHz
R

FEATURES

Broadband radio frequency (RF), intermediate frequency (IF),
and local oscillator (LO) ports Conversion loss: 6.8 dB Noise figure: 6.5 dB High input IP3: 25 dBm High input P1dB: 19 dBm Low LO drive level Single-ended design: no need for baluns Single-supply operation: 3 V @ 19 mA Miniature, 2 mm × 3 mm, 8-lead LFCSP RoHS compliant

APPLICATIONS

Cellular base stations Point-to-point radio links RF instrumentation
High Linearity Y-Mixer
ADL5350

FUNCTIONAL BLOCK DIAGRAM

GND
ADL5350
RF IF
LO
LO
INPUT
Figure 1.
3V
RF
INPUT OR
OUTPUT
VPOS
OUTPUT O
INPUT
GND
IF
05615-001

GENERAL DESCRIPTION

The ADL5350 is a high linearity, up-and-down converting mixer capable of operating over a broad input frequency range. It is well suited for demanding cellular base station mixer designs that require high sensitivity and effective blocker immunity. Based on a GaAs pHEMT, single-ended mixer architecture, the ADL5350 provides excellent input linearity and low noise figure without the need for a high power level LO drive.
In 850 MHz/900 MHz receive applications, the ADL5350 provides a typical conversion loss of only 6.7 dB. The input IP3 is typically greater than 25 dBm, with an input compression point of 19 dBm. The integrated LO amplifier allows a low LO drive level, typically only 4 dBm for most applications.
The high input linearity of the ADL5350 makes the device an excellent mixer for communications systems that require high blocker immunity, such as GSM 850 MHz/900 MHz and 800 MHz CDMA2000. At 2 GHz, a slightly greater supply current is required to obtain similar performance.
The single-ended broadband RF/IF port allows the device to be customized for a desired band of operation using simple external filter networks. The LO-to-RF isolation is based on the LO rejection of the RF port filter network. Greater isolation can be achieved by using higher order filter networks, as described in the
Applications Information section.
The ADL5350 is fabricated on a GaAs pHEMT, high performance IC process. The ADL5350 is available in a 2 mm × 3 mm, 8-lead LFCSP. It operates over a −40°C to +85°C temperature range. An evaluation board is also available.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.
ADL5350

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
850 MHz Receive Performance .................................................. 3
1950 MHz Receive Performance ................................................ 3
Spur Tables......................................................................................... 4
850 MHz Spur Table..................................................................... 4
1950 MHz Spur Table................................................................... 4
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configuration and Function Descriptions............................. 6
Typical Perf or m an c e Charac t e r istics ..............................................7
850 MHz Characteristics..............................................................7
1950 MHz Characteristics......................................................... 12
Functional Description .................................................................. 17
Circuit Description .................................................................... 17
Implementation Procedure....................................................... 17
Applications Information.............................................................. 19
Low Frequency Applications .................................................... 19
High Frequency Applications................................................... 19
Evaluation Board ............................................................................ 21
Outline Dimensions ....................................................................... 22
Ordering Guide .......................................................................... 22

REVISION HISTORY

2/08—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADL5350

SPECIFICATIONS

850 MHz RECEIVE PERFORMANCE

VS = 3 V, TA = 25°C, LO power = 4 dBm, re: 50 Ω, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Conditions
RF Frequency Range 750 850 975 MHz LO Frequency Range 500 780 945 MHz Low-side LO IF Frequency Range 30 70 250 MHz Conversion Loss 6.7 dB fRF = 850 MHz, fLO = 780 MHz, fIF = 70 MHz SSB Noise Figure 6.4 dB fRF = 850 MHz, fLO = 780 MHz, fIF = 70 MHz Input Third-Order Intercept (IP3) 25 dBm
Input 1dB Compression Point (P1dB) 19.8 dBm fRF = 820 MHz, fLO = 750 MHz, fIF = 70 MHz LO-to-IF Leakage 29 dBc LO power = 4 dBm, fLO = 780 MHz LO-to-RF Leakage 13 dBc LO power = 4 dBm, fLO = 780 MHz RF-to-IF Leakage 19.5 dBc RF power = 0 dBm, fRF = 850 MHz, fLO = 780 MHz IF/2 Spurious −50 dBc RF power = 0 dBm, fRF = 850 MHz, fLO = 780 MHz Supply Voltage 2.7 3 3.5 V Supply Current 16.5 mA LO power = 4 dBm
= 849 MHz, f
f
RF1
each RF tone 0 dBm
= 850 MHz, fLO = 780 MHz, fIF = 70 MHz;
RF2

1950 MHz RECEIVE PERFORMANCE

VS = 3 V, TA = 25°C, LO power = 6 dBm, re: 50 Ω, unless otherwise noted.
Table 2.
Parameter Min Typ Max Unit Conditions
RF Frequency Range 1800 1950 2050 MHz LO Frequency Range 1420 1760 2000 MHz Low-side LO IF Frequency Range 50 190 380 MHz Conversion Loss 6.8 dB fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz SSB Noise Figure 6.5 dB fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz Input Third-Order Intercept (IP3) 25 dBm
Input 1dB Compression Point (P1dB) 19 dBm fRF = 1950 MHz, fLO = 1760 MHz, fIF = 190 MHz LO-to-IF Leakage 13.5 dBc LO power = 6 dBm, fLO = 1760 MHz LO-to-RF Leakage 10.5 dBc LO power = 6 dBm, fLO = 1760 MHz RF-to-IF Leakage 11.5 dBc RF power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz IF/2 Spurious −54 dBc RF power = 0 dBm, fRF = 1950 MHz, fLO = 1760 MHz Supply Voltage 2.7 3 3.5 V Supply Current 19 mA LO power = 6 dBm
= 1949 MHz, f
f
RF1
each RF tone 0 dBm
RF2
= 1951 MHz, fLO = 1760 MHz, fIF = 190 MHz;
Rev. 0 | Page 3 of 24
ADL5350

SPUR TABLES

All spur tables are (N × fRF) − (M × fLO) mixer spurious products for 0 dBm input power, unless otherwise noted. N.M. indicates that a spur was not measured due to it being at a frequency >6 GHz.

850 MHz SPUR TABLE

Table 3.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 –100 –20.6 –19.2 –15.3 –16.7 –38.4 –26.6 –22.1 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M . 1 –21.6 –5.6 –23. 6 –19. 6 –31.9 –28.7 –46.1 –48.5 –33. 2 N. M. N.M. N. M. N.M. N.M. N. M. N.M. 2 –50.0 –69.2 –50.5 –59.8 –49. 1 –57.5 –51.0 –77.7 –65.8 –60. 8 N.M. N.M. N. M. N.M. N.M. N.M. 3 –74.8 –66.0 –71.8 –68.1 –70. 2 –67.4 –66.9 –70.8 –85.2 –87. 3 –72.2 N. M. N.M. N.M. N.M . N.M. 4 –100 –92.6 –91.6 –96.1 –92.7 –98.7 –90.2 –91.7 –88.8 –100 –100 –91.7 –88.6 N.M. N.M. N.M. 5 –100 –100 –100 –100 –100 –100 –100 –100 –99.5 –100 –100 –100 –100 –100 N.M. N .M. 6 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 N.M.
N
7 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 8 N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 9 N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 10 N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 11 N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 12 N.M. N.M. N.M. N.M. N.M. N. M. –100 –100 –100 –100 –100 –100 –100 –100 –100 –100 13 N.M. N.M. N.M. N.M. N.M. N. M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 –100 14 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 –100 15 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100

1950 MHz SPUR TABLE

M
05615–068
Table 4.
0 –100 –13.1 –32.8 –22.4 N.M. N.M. N. M. N.M . N.M. N.M. N.M. N.M . N.M. N.M. N.M. N. M. 1 –10. 8 –7. 0 –25.3 – 27.7 –33. 9 N.M. N.M. N.M. N.M. N.M. N.M . N.M. N. M. N.M. N. M. N. M. 2 –48. 2 –61. 2 –41. 2 –44.6 –47.0 –74.6 N.M. N.M. N.M. N.M. N. M. N.M . N.M. N.M. N.M. N. M. 3 –72. 3 –71. 4 –83. 6 –64.5 –62.4 –64.3 –83.7 N.M. N. M. N.M. N.M . N.M. N. M. N.M. N. M. N. M. 4 N. M. N.M. –91. 4 –84.2 –78.3 –76.5 –80.0 –92.0 N.M. N. M. N.M. N.M. N.M. N. M. N.M. N.M. 5 N. M. N.M. N.M . –90.8 –82.3 –77.1 –79.5 –83.8 –95.2 N. M. N.M. N.M. N.M. N.M. N.M. N.M. 6 N.M.N.M.N.M.N.M.–100 –100 –93.4 –94.5 –100 –99.2 –100 N.M. N.M. N.M. N. M. N.M.
N
7 N.M.N.M.N.M.N.M.N.M.≤–100 –100 –94.0 –96.4 –100 –100 –100 N.M. N. M. N.M. N.M. 8 N.M.N.M.N.M.N.M.N.M.N.M.–100 –100 –100 –100 –100 –100 –100 N.M . N.M. N.M. 9 N.M.N.M.N.M.N.M.N.M.N.M.N.M.≤–100 ≤–100 ≤–100 ≤–100 ≤–100 ≤–100 ≤–100 N .M. N. M. 10 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 N.M. 11 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 –100 12 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 –100 13 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 –100 –100 14 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100 –100 15 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. –100 –100
0123456789101112131415
M
05615–069
Rev. 0 | Page 4 of 24
ADL5350

ABSOLUTE MAXIMUM RATINGS

Table 5.
Parameter Rating
Supply Voltage, VS 4.0 V RF Input Level 23 dBm LO Input Level 20 dBm Internal Power Dissipation 324 mW θJA 154.3°C/W Maximum Junction Temperature 135°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. 0 | Page 5 of 24
ADL5350

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1RF/IF
2GND2
ADL5350
TOP VIEW
3LOIN
(Not to Scale)
4NC
NC = NO CONNECT
Figure 2. Pin Configuration
8 RF/IF
7NC
6 VPOS
5 GND1
05615-002
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1, 8 RF/IF
RF and IF Input/Output Ports. These nodes are internally tied together. RF and IF port separation is
achieved using external tuning networks. 2, 5, Paddle GND2, GND1, GND Device Common (DC Ground). 3 LOIN LO Input. Needs to be ac-coupled. 4, 7 NC No Connect. Grounding NC pins is recommended. 6 VPOS
Positive Supply Voltage for the Drain of the LO Buffer. A series RF choke is needed on the supply line
to provide proper ac loading of the LO buffer amplifier.
Rev. 0 | Page 6 of 24
ADL5350

TYPICAL PERFORMANCE CHARACTERISTICS

850 MHz CHARACTERISTICS

Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
20
19
18
17
16
15
14
13
SUPPLY CURRENT (mA)
12
11
10
40–200 20406080
TEMPERATURE ( °C)
Figure 3. Supply Current vs. Temperature
10
9
8
7
6
5
4
3
CONVERSION LOSS (dB)
2
1
0
–40 806040200–20
TEMPERATURE ( °C)
Figure 4. Conversion Loss vs. Temperature
28
27
26
25
24
23
22
INPUT IP3 (dBm)
21
20
19
18
–40 806040200–20
TEMPERATURE ( °C)
Figure 5. Input IP3 (IIP3) vs. Temperature
05615-003
05615-004
05615-005
INPUT P1dB (dBm)
22
20
18
16
14
SUPPLY CURRENT (mA)
12
10
7.4
7.2
7.0
6.8
6.6
6.4
CONVERSION LOSS (dB)
6.2
6.0
23
22
21
20
19
18
17
16
15
14
13
–40 806040200–20
TEMPERATURE ( °C)
Figure 6. Input P1dB vs. Temperature
+25°C
–40°C +85°C
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 7. Supply Current vs. Supply Voltage
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 8. Conversion Loss vs. Supply Voltage
+85°C
+25°C
–40°C
05615-006
05615-007
05615-008
Rev. 0 | Page 7 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
28
22
INPUT IP3 (dBm)
INPUT P1dB (dBm)
27
26
25
24
23
22
2.7 3.53.43.33.23.13.02.92.8
23
22
21
20
19
18
17
+85°C
SUPPLY VOLTAGE (V)
Figure 9. Input IP3 vs. Supply Voltage
–40°C
+25°C
+85°C
–40°C
+25°C
20
18
16
14
SUPPLY CURRENT (mA)
12
10
750 975950925900875850825800775
05615-009
–40°C
+25°C
RF FREQUENCY ( MHz)
+85°C
05615-012
Figure 12. Supply Current vs. RF Frequency
7.6
7.4
7.2
7.0
6.8
6.6
6.4
CONVERSION LOSS (dB)
6.2
6.0
+85°C
+25°C
–40°C
NOISE FI GURE (dB)
16
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 10. Input P1dB vs. Supply Voltage
8.0
7.5
7.0
6.5
6.0
5.5
5.0
2.7 3. 53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 11. Noise Figure vs. Supply Voltage
05615-010
05615-011
5.8 750 800 850 900 950
RF FREQUENCY (M Hz)
Figure 13. Conversion Loss vs. RF Frequency
27.0
26.5
INPUT IP3 (dBm)
26.0
25.5
25.0
24.5
24.0
23.5
23.0
22.5
22.0 750 975950925900875850825800775
+85°C
RF FREQUENCY (M Hz)
–40°C
+25°C
Figure 14. Input IP3 vs. RF Frequency
05615-013
05615-014
Rev. 0 | Page 8 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
INPUT P1dB (dBm)
23
22
21
20
19
18
17
16
750 975950925900875850825800775
8
–40°C
+25°C
+85°C
RF FREQUENCY (M Hz)
Figure 15. Input P1dB vs. RF Frequency
05615-015
9
8
+25°C
7
6
5
4
3
CONVERSION LOSS (dB)
2
1
0
25 50 75 100 125 150 175 200 225 250
+85°C
–40°C
IF FREQUENCY (MHz)
Figure 18. Conversion Loss vs. IF Frequency
28
05615-018
7
6
5
4
3
NOISE FI GURE (dB)
2
1
0
750 775 800 825 850 875 900 925 950 975
RF FREQ UENCY ( MHz)
Figure 16. Noise Figure vs. RF Frequency
22
20
18
16
14
12
SUPPLY CURRENT (mA)
10
+25°C
+85°C
–40°C
27
–40°C
26
25
INPUT IP3 (dBm)
24
23
22
25 50 75 100 125 150 175 200 225 250
05615-016
+25°C
+85°C
IF FREQUENCY (MHz)
05615-019
Figure 19. Input IP3 vs. IF Frequency
23
22
21
20
19
INPUT P1dB (dBm)
18
17
–40°C
+25°C
+85°C
8
25 50 75 100 125 150 175 200 225 250
IF FREQUENCY (MHz)
Figure 17. Supply Current vs. IF Frequency
05615-017
16
25 50 75 100 125 150 175 200 225 250
IF FREQUENCY (MHz)
Figure 20. Input P1dB vs. IF Frequency
05615-020
Rev. 0 | Page 9 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
NOISE FI GURE (dB)
SUPPLY CURRENT (mA)
10
9
8
7
6
5
4
3
2
1
0
50 350300250200150100
18
16
14
12
10
8
6
4
2
0
–6 121086420–2–4
20
IF FREQUENCY (MHz)
Figure 21. Noise Figure vs. IF Frequency
+85°C
–40°C
+25°C
LO LEVEL (dBm)
Figure 22. Supply Current vs. LO Level
05615-021
05615-022
INPUT IP3 (dBm)
INPUT P1dB (dBm)
27
25
23
21
19
17
15
13
–6 121086420–2–4
22
21
20
19
+85°C
18
17
16
15
–6 121086420–2–4
12
LO LEVEL (dBm)
Figure 24. Input IP3 vs. LO Level
–40°C
+25°C
LO LEVEL (dBm)
Figure 25. Input P1dB vs. LO Level
+25°C
–40°C
+85°C
05615-024
05615-025
NOISE FI GURE (dB)
11
10
9
8
7
6
5
4
–2 1086420
LO LEVEL (dBm)
Figure 26. Noise Figure vs. LO Level
05615-026
18
16
14
12
10
CONVERSION LOSS (dB)
8
6
–6 121086420–2–4
+85°C
–40°C
+25°C
LO LEVEL (dBm)
05615-023
Figure 23. Conversion Loss vs. LO Level
Rev. 0 | Page 10 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 850 MHz, IF frequency = 70 MHz, RF level = 0 dBm, LO level = 4 dBm, TA = 25°C, unless otherwise noted.
IF FEEDT HROUGH (dBc)
13
–14
–15
–16
–17
–18
–19
–20
–21
–40°C
+25°C
+85°C
750 975950925900875850825800775
RF FREQUENCY (M Hz)
Figure 27. IF Feedthrough vs. RF Frequency
15
–20
–25
–30
+25°C
+85°C
05615-027
0
–2
–4
–6
–8
–10
–12
RF LEAKAGE ( dBc)
–14
–16
–18
–20
630 680 730 780 830 880 930
LO FREQUENCY (MHz)
Figure 29. RF Leakage vs. LO Frequency
05615-029
–35
IF FEEDT HROUGH (dBc)
–40
–45
680 905880855830805780755730705
LO FREQUENCY (MHz)
–40°C
05615-028
Figure 28. IF Feedthrough vs. LO Frequency
Rev. 0 | Page 11 of 24
ADL5350

1950 MHz CHARACTERISTICS

Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C, unless otherwise noted.
20
19
18
17
16
15
14
13
SUPPLY CURRENT (mA)
12
11
10
40–200 20406080
TEMPERATURE ( °C)
Figure 30. Supply Current vs. Temperature
10
9
8
7
6
5
4
3
CONVERSION LOSS (dB)
2
1
0 –40–200 20406080
TEMPERATURE ( °C)
Figure 31. Conversion Loss vs. Temperature
28
27
26
25
24
23
22
INPUT IP3 (dBm)
21
20
19
18
–40 –20 0 20 40 60 80
TEMPERATURE (° C)
Figure 32. Input IP3 vs. Temperature
05615-030
05615-031
05615-032
23
22
21
20
19
18
17
INPUT P1dB (dBm)
16
15
14
13
40–200 20406080
TEMPERATURE ( °C)
Figure 33. Input P1dB vs. Temperature
22
+25°C
+85°C
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (mA)
20
18
16
14
12
10
2.7 3.53.43.33.23.13.02.92.8
–40°C
Figure 34. Supply Current vs. Supply Voltage
7.4
7.2
+85°C
+25°C
–40°C
CONVERSION LOSS (dB)
7.0
6.8
6.6
6.4
6.2
6.0
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 35. Conversion Loss vs. Supply Voltage
05615-033
05615-034
05615-035
Rev. 0 | Page 12 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C, unless otherwise noted.
28
27
26
25
INPUT IP3 (dBm)
24
23
+85°C
+25°C
–40°C
22
+25°C
20
18
16
14
SUPPLY CURRENT (mA)
12
+85°C
–40°C
INPUT P1dB (dBm)
NOISE FI GURE (dB)
22
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 36. Input IP3 vs. Supply Voltage
20
19
18
17
16
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 37. Input P1dB vs. Supply Voltage
8.0
7.5
7.0
6.5
6.0
5.5
5.0
2.7 3.53.43.33.23.13.02.92.8
SUPPLY VOLTAGE (V)
Figure 38. Noise Figure vs. Supply Voltage
+85°C
+25°C
–40°C
10
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050
05615-036
RF FREQUENCY (MHz)
05615-039
Figure 39. Supply Current vs. RF Frequency
7.6
7.4
7.2
7.0
6.8
6.6
6.4
CONVERSION LOSS (dB)
6.2
6.0
5.8 1800 2050202520001975195019251900187518501825
05615-037
RF FREQ UENCY ( MHz)
+85°C
+25°C
–40°C
05615-040
Figure 40. Conversion Loss vs. RF Frequency
27.0
26.5
26.0
25.5
25.0
24.5
24.0
INPUT IP3 (dBm)
23.5
23.0
22.5
22.0 1800 2050202520001975195019251900187518501825
05615-038
RF FREQ UENCY ( MHz)
+85°C
+25°C
–40°C
05615-041
Figure 41. Input IP3 vs. RF Frequency
Rev. 0 | Page 13 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C, unless otherwise noted.
23
22
21
–40°C
INPUT P1dB (dBm)
20
19
18
17
16
1800 2050202520001975195019251900187518501825
+85°C
+25°C
RF FREQ UENCY ( MHz)
Figure 42. Input P1dB vs. RF Frequency
10
9
8
7
6
5
4
NOISE FI GURE (dB)
3
2
1
1800 1825 1850 1875 1900 1925 1950 1975 2000 2025 2050
RF FREQUENCY (MHz)
Figure 43. Noise Figure vs. RF Frequency
22
20
+25°C
05615-042
05615-043
9
8
7
6
5
4
3
CONVERSION LOSS (dB)
2
1
0
50 37535030025020015010075 325275225175125
28
27
26
25
INPUT IP3 (dBm)
24
23
22
50 37535030025020015010075 325275225175125
23
22
+85°C
–40°C+25°C
IF FREQUENCY (MHz)
Figure 45. Conversion Loss vs. IF Frequency
+85°C
+25°C
–40°C
IF FREQUENCY (MHz)
Figure 46. Input IP3 vs. IF Frequency
05615-045
05615-046
18
16
14
12
SUPPLY CURRENT (mA)
10
8
50 37535030025020015010075 325275225175125
+85°C
–40°C
IF FREQUE NCY (MHz)
Figure 44. Supply Current vs. IF Frequency
05615-044
21
20
19
INPUT P1dB (dBm)
18
17
16
50 37535030025020015010075 325275225175125
+85°C
IF FREQUENCY (MHz)
Figure 47. Input P1dB vs. IF Frequency
–40°C
+25°C
05615-047
Rev. 0 | Page 14 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C, unless otherwise noted.
12
10
8
6
4
NOISE FI GURE (dB)
27
25
23
21
19
INPUT IP3 (dBm)
17
+25°C
+85°C
–40°C
SUPPLY CURRENT (mA)
CONVERSION LOSS (dB)
2
0
50 350300250200150100
22
20
18
16
14
12
10
8
6
4
2
0
–6 121086420–2–4
20
18
16
+85°C
14
12
10
8
IF FREQUENCY (MHz)
Figure 48. Noise Figure vs. IF Frequency
+25°C
+85°C
–40°C
LO LEVEL (dBm)
Figure 49. Supply Current vs. LO Level
–40°C
+25°C
15
13
–6 121086420–2–4
05615-048
LO LEVEL (dBm)
05615-051
Figure 51. Input IP3 vs. LO Level
25
24
23
22
21
20
19
18
17
INPUT P1dB (dBm)
16
15
14
13
12
–6 121086420–2–4
05615-049
+85°C
–40°C
+25°C
LO LEVEL (dBm)
05615-052
Figure 52. Input P1dB vs. LO Level
12
11
10
9
8
7
NOISE FI GURE (dB)
6
5
6
–6 121086420–2–4
LO LEVEL (dBm)
Figure 50. Conversion Loss vs. LO Level
05615-050
4
–2 1086420
LO LEVEL (dBm)
Figure 53. Noise Figure vs. LO Level
05615-053
Rev. 0 | Page 15 of 24
ADL5350
Supply voltage = 3 V, RF frequency = 1950 MHz, IF frequency = 190 MHz, RF level = −10 dBm, LO level = 6 dBm, TA = 25°C, unless otherwise noted.
8
0
IF FEEDT HROUGH (dBc)
IF FEEDT HROUGH (dBc)
–9
–10
–11
–12
–13
–14
–15
1800 2050202520001975195019251900187518501825
8
–9
–10
–11
–12
–13
–14
–15
–16
–17
–18
1610 186018351785 1810176017351710168516601635
–40°C
+85°C
RF FREQ UENCY ( MHz)
Figure 54. IF Feedthrough vs. RF Frequency
–40°C
+85°C
LO FREQUENCY (MHz)
+25°C
+25°C
05615-054
05615-055
–2
–4
–6
–8
RF LEAKAGE ( dBc)
–10
–12
–14
1560 1610 1660 1710 1760 1810 1860 1910 1960
LO FREQUE NCY (MHz)
Figure 56. RF Leakage vs. LO Frequency
05615-056
Figure 55. IF Feedthrough vs. LO Frequency
Rev. 0 | Page 16 of 24
ADL5350
T
V

FUNCTIONAL DESCRIPTION

CIRCUIT DESCRIPTION

The ADL5350 is a GaAs pHEMT, single-ended, passive mixer with an integrated LO buffer amplifier. The device relies on the varying drain to source channel conductance of a FET junction to modulate an RF signal. A simplified schematic is shown in
VPOS
LOIN
LO
INPU
The LO signal is applied to the gate contact of a FET-based buffer amplifier. The buffer amplifier provides sufficient gain of the LO signal to drive the resistive switch. Additionally, feedback circuitry provides the necessary bias to the FET buffer amplifier and RF/IF ports to achieve optimum modulation efficiency for common cellular frequencies.
The mixing of RF and LO signals is achieved by switching the channel conductance from the RF/IF port to ground at the rate of the LO. The RF signal is passed through an external band-pass network to help reject image bands and reduce the broadband noise presented to the mixer. The band­limited RF signal is presented to the time-varying load of the RF/IF port, which causes the envelope of the RF signal to be amplitude modulated at the rate of the LO. A filter network applied to the IF port is necessary to reject the RF signal and pass the wanted mixing product. In a down­conversion application, the IF filter network is designed to pass the difference frequency and present an open circuit to the inc ident R F f r e qu e nc y. S i mi l arly, for an up conversion application, the filter is designed to pass the sum frequency and reject the incident RF. As a result, the frequency response of the mixer is determined by the response characteristics of the external RF/IF filter networks.
Figure 57.
V
S
GND1 GND2
Figure 57. Simplified Schematic
RF
INPUT
OR OUTPUT
RF
IF
IF OUTPUT OR INPUT
05615-057

IMPLEMENTATION PROCEDURE

The ADL5350 is a simple single-ended mixer that relies on off-chip circuitry to achieve effective RF dynamic performance. The following steps should be followed to achieve optimum performance (see component designations):
IF
RF
L1
Figure 58. Reference Schematic
C6
C2L2
8765
RF/IF NC VPOS
ADL5350
RF/IF GND2 LOIN NC
1234
C1
1. Tab l e 7 shows the recommended LO bias inductor
values for a variety of LO frequencies. To ensure efficient commutation of the mixer, the bias inductor needs to be properly set. For other frequencies within the range shown, the values can be interpolated. For frequencies outside this range, see the
Applications Information section.
Table 7. Recommended LO Bias Inductor
Desired LO Frequency (MHz)
380 68 750 24 1000 18 1750 3.8 2000 2.1
1
The bias inductor should have a self-resonant frequency greater than
the intended frequency of operation.
Figure 58 for
S
C4
L4
GND1
L3
C3
LO
Recommended LO Bias Inductor, L4
1
(nH)
05615-058
Rev. 0 | Page 17 of 24
ADL5350
2. Tune the LO port input network for optimum return
loss. Typically, a band-pass network is used to pass the LO signal to the LOIN pin. It is recommended to block high frequency harmonics of the LO from the mixer core. LO harmonics cause higher RF frequency images to be downconverted to the desired IF frequency and result in sensitivity degradation. If the intended LO source has poor harmonic distortion and spectral purity, it may be necessary to employ a higher order band-pass filter network.
Figure 58 illustrates a simple LC band­pass filter used to pass the fundamental frequency of the LO source. Capacitor C3 is a simple dc block, while the Series Inductor L3, along with the gate-to-source capacitance of the buffer amplifier, form a low-pass network. The native gate input of the LO buffer (FET) alone presents a rather high input impedance. The gate bias is generated internally using feedback that can result in a positive return loss at the intended LO frequency.
If a better than −10 dB return loss is desired, it may be necessary to add a shunt resistor to ground before the coupling capacitor (C3) to present a lower loading impedance to the LO source. In doing so, a slightly greater LO drive level may be required.
3. Design the RF and IF filter networks.
Figure 58 depicts simple LC tank filter networks for the IF and RF port interfaces. The RF port LC network is designed to pass the RF input signal. The series LC tank has a resonant frequency at 1/(2π√LC). At resonance, the series reactances are canceled, which presents a series short to the RF signal. A parallel LC tank is used on the IF port to reject the RF and LO signals. At resonance, the parallel LC tank presents an open circuit.
It is necessary to account for the board parasitics, finite Q, and self-resonant frequencies of the LC components when designing the RF, IF, and LO filter networks.
Tabl e 8
provides suggested values for initial prototyping.
Table 8. Suggested RF, IF, and LO Filter Networks for Low-Side LO Injection
RF Frequency (MHz) L1 (nH)
450 8.3 10 10 10 10 100 850 6.8 4.7 4.7 5.6 8.2 100 1950 1.7 1.5 1.7 1.2 3.5 100 2400 0.67 1 1.5 0.7 3.0 100
1
The inductor should have a self-resonant frequency greater than the intended frequency of operation. L1 should be a high Q inductor for optimum NF performance.
1
C1 (pF) L2 (nH) C2 (pF) L3 (nH) C3 (pF)
Rev. 0 | Page 18 of 24
ADL5350
V
A
A
S
C
V
A
A

APPLICATIONS INFORMATION

LOW FREQUENCY APPLICATIONS

The ADL5350 can be used in low frequency applications. The circuit in and an IF of 45 MHz using a high-side LO. The series and parallel resonant circuits are tuned for 154 MHz, which is the geometric mean of the desired RF frequencies. The performance of this circuit is depicted in
Figure 59 is designed for an RF of 136 MHz to 176 MHz
Figure 60.
3
4.7µF
LO
IIP3
100nF
100nH
1nF
GND1
05615-061
IF
LL INDUCTO RS RE 0603CS ERIES FROM OILCRAFT
RF
36nH
10nF
27pF36nH
8765
RF/IF NC VPOS
ADL5350
RF/IF GND2 LOIN NC
1234
27pF
Figure 59. 136 MHz to 176 MHz RF Downconversion Schematic
40
35
12
10

HIGH FREQUENCY APPLICATIONS

The ADL5350 can be used at extended frequencies with some careful attention to board and component parasitics. Figure 61 is an example of a 2560 MHz to 2660 MHz down­conversion using a low-side LO. The performance of this circuit is depicted in values are very small, especially for the RF and IF ports. Above
2.5 GHz, it is necessary to consider alternate solutions to avoid unreasonably small inductor and capacitor values.
Figure 61. 2560 MHz to 2660 MHz RF Downconversion Schematic
Figure 62. Note that the inductor and capacitor
3
4.7µF
+
100pF
3.0nH
LO
LL INDUCTO RS
RE 0302CS SERIES FROM COILCRAFT
35
IF
1nF
0.7pF1.5nH
8765
RF/IF NC VPOS
ADL5350
RF/IF GND2 LOIN NC
1234
0.67nH
RF
1pF
2.1nH
100pF
GND1
5615-062
14
30
25
IP1dB, IIP3 (dBm)
20
15
10
136 176166156146
RF FREQUENCY (M Hz)
LOSS
IP1dB
Figure 60. Measured Performance for Circuit in
Using High-Side LO Injection and 45 MHz IF
Figure 59
8
6
4
CONVERSION LOSS (dB)
2
0
05615-065
30
25
20
15
IP1dB, IIP3 (dBm)
10
5
0
2560 26602580 2600 2620 2640
IIP3
IP1dB
LOSS
RF FREQUENCY (MHz)
Figure 62. Measured Performance for Circuit in
Figure 61
13
12
11
10
9
CONVERSION LOSS (dB)
8
7
05615-066
Using Low-Side LO Injection and 374 MHz IF
The typical networks used for cellular applications below
2.6 GHz use band-select and band-reject networks on the RF and IF ports. At higher RF frequencies, these networks are not easily realized by using lumped element components. As a result, it is necessary to consider alternate filter network topologies to allow more reasonable values for inductors and capacitors.
Rev. 0 | Page 19 of 24
ADL5350
V
A
A
S
C
Figure 63 depicts a crossover filter network approach to provide isolation between the RF and IF ports for a downconverting application. The crossover network essentially provides a high­pass filter to allow the RF signal to pass to the RF/IF node (Pin 1 and Pin 8), while presenting a low-pass filter (which is actually a band-pass filter when considering the dc blocking capacitor, C
). This allows the difference component (fRF − fLO) to be
AC
passed to the desired IF load.
3
IF
LL
INDUCTORS
RE 0302CS ERIES FROM OILCRAFT
RF
3.5nH
C2
1.8pF
L2
1.5nH
8765
RF/IF NC VPOS
RF/IF GND2 LOI N NC
1234
C1
1.2pF
L1
C
AC
100pF
4.7µF
+
ADL5350
LO
100pF
3.8nH
2.2nH
100pF
GND1
05615-064
Figure 63. 3.3 GHz to 3.8 GHz RF Downconversion Schematic
When designing the RF port and IF port networks, it is important to remember that the networks share a common node (the RF/IF pins). In addition, the opposing network presents some loading impedance to the target network being designed.
Classic audio crossover filter design techniques can be applied to help derive component values. However, some caution must be applied when selecting component values. At high RF frequencies, the board parasitics can significantly influence the final optimum inductor and capacitor component selections. Some empirical testing may be necessary to optimize the RF and IF port filter networks. The performance of the circuit depicted in is provided in
30
25
20
15
IP1dB, IIP3 (dBm)
10
Figure 64.
IIP3
IP1dB
LOSS
5
0 3300 38003700360035003400
Figure 64. Measured Performance for Circuit in
Using Low-Side LO Injection and 800 MHz IF
RF FREQUENCY (M Hz)
Figure 63
14
12
10
8
6
CONVERSION LOSS (dB)
4
2
05615-067
Figure 63
Rev. 0 | Page 20 of 24
ADL5350
V
V
A

EVALUATION BOARD

An evaluation board is available for the ADL5350. The evaluation board has two halves: a low band board designated as Board A and a high band board designated as Board B. The schematic for the evaluation board is shown in
POS-
C5-A
IF-A
C6-A
+
C4-A
C2-AL2-A
L4-A
IF-B
C6-B
C2-BL2-B
Figure 65.
POS-B
C5-B
+
C4-B
L4-B
8765
RF/IF NC VPOS
U1-B
ADL5350
RF/IF GND2 LOIN NC
1234
C1-B
L1-B
LO-B
L3-B
C3-B
GND1
05615-059
RF-A
8765
RF/IF NC VPOS
U1-A
ADL5350
RF/IF GND2 LOIN NC
1234
C1-A
L1-A
LO-A
L3-A
C3-A
GND1
RF-B
Figure 65. Evaluation Board
Table 9. Evaluation Board Configuration Options
Component Function Default Conditions
C4-A, C4-B, C5-A, C5-B
Supply Decoupling. C4-A and C4-B provide local bypassing of the supply. C5-A and C5-B are used to filter the ripple of a noisy supply line. These are not
C4-A = C4-B = 100 pF, C5-A = C5-B = 4.7 μF
always necessary.
L1-A, L1-B, C1-A, C1-B
RF Input Network. Designed to provide series resonance at the intended RF frequency.
L1-A = 6.8 nH (0603CS from Coilcraft), L1-B = 1.7 nH (0302CS from Coilcraft), C1-A = 4.7 pF, C1-B = 1.5 pF
L2-A, L2-B, C2-A, C2-B, C6-A, C6-B
IF Output Network. Designed to provide parallel resonance at the geometric mean of the RF and LO frequencies.
L2-A = 4.7 nH (0603CS from Coilcraft), L2-B = 1.7 nH (0302CS from Coilcraft), C2-A = 5.6 pF, C2-B = 1.2 pF, C6-A = C6-B = 1 nF
L3-A, L3-B, C3-A, C3-B
LO Input Network. Designed to block dc and optimize LO voltage swing at LOIN.
L3-A = 8.2 nH (0603CS from Coilcraft), L3-B = 3.5 nH (0302CS from Coilcraft), C3-A = C3-B = 100 pF
L4-A, L4-B
LO Buffer Amplifier Choke. Provides bias and ac loading impedance to LO buffer amplifier.
L4-A = 24 nH (0603CS from Coilcraft), L4-B = 3.8 nH (0302CS from Coilcraft)
Rev. 0 | Page 21 of 24
ADL5350
R

OUTLINE DIMENSIONS

3.25
3.00
PIN 1
INDICATO
1.00
0.85
0.80
SEATING
1.95
1.75
1.55
PLANE
12° MAX
2.75
TOP VIEW
2.95
2.75
2.55
0.30
0.23
0.18
0.80 MAX
0.65 TYP
2.25
2.00
1.75
0.20 REF
0.60
0.45
0.30
0.50 BSC
0.05 MAX
0.02 NOM
Figure 66. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
2 mm × 3 mm Body, Very Thin, Dual Lead
(CP-8-1)
Dimensions shown in millimeters
1.89
1.74
1.59
58
BOTTOM VIEW
EXPOSED PAD
4 1
*
0.25
0.20
0.15
0.15
0.10
0.05
0.55
0.40
0.30

ORDERING GUIDE

Package
Model Temperature Range Package Description
Option
Branding
ADL5350ACPZ-R71−40°C to +85°C 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] CP-8-1 08 3000, Reel ADL5350ACPZ-WP1−40°C to +85°C 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] CP-8-1 08 50, Waffle Pack ADL5350-EVALZ
1
Z = RoHS Compliant Part.
1
Evaluation Board
Ordering Quantity
Rev. 0 | Page 22 of 24
ADL5350
NOTES
Rev. 0 | Page 23 of 24
ADL5350
NOTES
©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05615-0-2/08(0)
Rev. 0 | Page 24 of 24
Loading...