Datasheet ADG3308 Datasheet (Analog Devices)

Page 1
Low Voltage, 1.15 V to 5.5 V, 8-Channel

FEATURES

Bidirectional level translation Operates from 1.15 V to 5.5 V Low quiescent current < 1 µA No direction pin

APPLICATIONS

Low voltage ASIC level translation Smart card readers Cell phones and cell phone cradles Portable communication devices Telecommunications equipment Network switches and routers Storage systems (SAN/NAS) Computing/server applications GPS Portable POS systems Low cost serial interfaces

GENERAL DESCRIPTION

The ADG3308 is a bidirectional logic level translator that con­tains eight bidirectional channels. It can be used in multivoltage digital system applications such as data transfer between a low voltage DSP controller and a higher voltage device. The internal architecture allows the device to perform bidirectional logic level translation without an additional signal to set the direction in which the translation takes place.
The voltage applied to V the device, while V operation, V
CCY
must always be less than V
CCA
patible logic signals applied to the A side of the device appear as
-compatible levels on the Y side. Similarly, V
V
CCY
logic levels applied to the Y side of the device appear as V compatible logic levels on the A side.
sets the logic levels on the A side of
CCA
sets the levels on the Y side. For proper
CCY
. The V
-com-
CCA
-compatible
CCY
CCA
-
Bidirectional Logic Level Translator
ADG3308

FUNCTIONAL BLOCK DIAGRAM

V
CCA
A1
A2
A3
A4
A5 Y5
A6 Y6
A7
A8
EN
The enable pin (EN) provides three-state operation on both the A side and the Y side pins. When the EN pin is pulled low, the terminals on both sides of the device are in the high impedance state. The EN pin is referred to the V driven high for normal operation.
The ADG3308 is available in compact 20-lead TSSOP and 20-lead LFCSP packages. It is guaranteed to operate over the
1.15 V to 5.5 V supply voltage range and the extended −40°C to +85°C temperature range.
PRODUCT HIGHLIGHTS
1. Bidirectional level translation.
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.
3. No direction pin.
GND
Figure 1.
V
CCY
Y1
Y2
Y3
Y4
Y7
Y8
supply voltage and
CCY
04865-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
4. 20-lead TSSOP and 20-lead LFCSP packages.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2005 Analog Devices, Inc. All rights reserved.
www.analog.com
Page 2
ADG3308
TABLE OF CONTENTS
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configurations and Function Descriptions ........................... 7
Typical Performance Characteristics ............................................. 8
Test C ir c uit s ..................................................................................... 12
Te r mi n ol o g y .................................................................................... 15
Theory of Operation ...................................................................... 16
Level Translator Architecture ................................................... 16
REVISION HISTORY
1/05—Revision 0: Initial Version
Input Driving Requirements..................................................... 16
Output Load Requirements ...................................................... 16
Enable Operation ....................................................................... 16
Power Supplies ............................................................................ 16
Data Rate ..................................................................................... 17
Applications..................................................................................... 18
Layout Guidelines....................................................................... 18
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 19
Rev. 0 | Page 2 of 20
Page 3
ADG3308
CCA
V
V
CCA
3
3
3
3
3
CCY
1
= 1.15 V to V
3
, V
= 5 V ± 0.5 V
CCY
, V
= 3.3 V ± 0.3 V
CCY
CCY
, GND = 0 V. All specifications T
CCY
V
IHA
IHA
V
ILA
OHA
OLA
C
A
LA, HiZ
V
IHY
ILY
OHY
OLY
LY, HiZ
V
IHEN
V
ILEN
LEN
C
EN
t
EN
V
= 1.15 V V
CCA
V
= 1.2 V to 5.5 V V
CCA
0.4 V
VY = V
VY = 0 V, IOL = 20 µA, Figure 28 0.4 V
f = 1 MHz, EN = 0, Figure 33 9 pF VA = 0 V/V
V
0.4 V VA = V VA = 0 V, IOL = 20 µA, Figure 29 0.4 V f = 1 MHz, EN = 0, Figure 34 6 pF VY = 0 V/V
V
0.4 V VEN = 0 V/V
3 pF RS = RT = 50 Ω, VA = 0 V/V
V
= 0 V/V
Y
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
= RT = 50 Ω, CL = 50 pF, Figure 36
S
6 10 ns 2 3.5 ns 2 3.5 ns 50 Mbps 2 4 ns 3 ns
= RT = 50 Ω, CL = 15 pF, Figure 37
S
4 7 ns 1 3 ns
3 7 ns 50 Mbps 2 3.5 ns 2 ns
= RT = 50 Ω, CL = 50 pF, Figure 36
S
8 11 ns 2 5 ns 2 5 ns 50 Mbps 2 4 ns 4 ns
to T
MIN
, IOH = 20 µA, Figure 28 V
CCY
, EN = 0, Figure 30 ±1 µA
CCA
, IOH = 20 µA, Figure 29 V
CCA
, EN = 0, Figure 31 ±1 µA
CCY
, VA = 0 V, Figure 32 ±1
CCY
(YA), Figure 35
CCY
, unless otherwise noted.
MAX
(AY),
CCA
1 1.8 µs
− 0.3 V
CCA
− 0.4
CCA
− 0.4 V
CCA
− 0.4 V
CCY
− 0.4 V
CCY
− 0.4
CCY
µA

SPECIFICATIONS

V
= 1.65 V to 5.5 V, V
CCY
Table 1.
Parameter Symbol Conditions Min Typ2Max Unit
LOGIC INPUTS/OUTPUTS
A Side
Input High Voltage V Input Low Voltage Output High Voltage V Output Low Voltage V Capacitance Leakage Current I
Y Side
Input Low Voltage Input High Voltage3 V Output High Voltage V Output Low Voltage V Capacitance3 CY Leakage Current I
Enable (EN)
Input High Voltage Input Low Voltage Leakage Current I
Capacitance Enable Time
SWITCHING CHARACTERISTICS
3.3 V ± 0.3 V ≤ V AY Level Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
YA Level Translation
Propagation Delay t Rise Time t
Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
1.8 V ± 0.15 V ≤ V AY Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
3
3
3
CCA
Rev. 0 | Page 3 of 20
Page 4
ADG3308
Parameter Symbol Conditions Min Typ2Max Unit
YA Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
1.15 V to 1.3 V ≤ V
CCA
V
, V
= 3.3 V ± 0.3 V
CCY
CCY
AY Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
YA Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
1.15 V to 1.3 V ≤ V
CCA
V
, V
= 1.8 V ± 0.3 V
CCY
CCY
AY Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
YA Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
2.5 V ± 0.2 V ≤ V
CCA
V
, V
= 3.3 V ± 0.3 V
CCY
CCY
AY Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
YA Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
= RT = 50 Ω, CL = 15 pF, Figure 37
S
5 8 ns 2 3.5 ns 2 3.5 ns 50 Mbps 2 3 ns 3 ns
= RT = 50 Ω, CL = 50 pF, Figure 36
S
9 18 ns 3 5 ns 2 5 ns 40 Mbps 2 5 ns 10 ns
= RT = 50 Ω, CL = 15 pF, Figure 37
S
5 9 ns 2 4 ns 2 4 ns 40 Mbps 2 4 ns 4 ns
= RT = 50 Ω, CL = 50 pF, Figure 36
S
12 25 ns 7 12 ns 3 5 ns 25 Mbps 2 5 ns 15 ns
= RT = 50 Ω, CL = 15 pF, Figure 37
S
14 35 ns 5 16 ns
2.5 6.5 ns 25 Mbps 3 6.5 ns
23.5 ns
= RT = 50 Ω, CL = 50 pF, Figure 36
S
7 10 ns
2.5 4 ns 2 5 ns 60 Mbps
1.5 2 ns 4 ns
= RT = 50 Ω, CL = 15 pF, Figure 37
S
5 8 ns 1 4 ns 3 5 ns 60 Mbps 2 3 ns 3 ns
Rev. 0 | Page 4 of 20
Page 5
ADG3308
Parameter Symbol Conditions Min Typ2Max Unit
POWER REQUIREMENTS
Power Supply Voltages V
V Quiescent Power Supply Current I
I
Three-State Mode Power Supply Current I
I
1
Temperature range is as follows: B version: −40°C to +85°C.
2
All typical values are at TA = 25°C, unless otherwise noted.
3
Guaranteed by design; not subject to production test.
CCA
CCY
CCA
CCY
HiZA
HiZY
V
V
CCA
CCY
1.65 5.5 V VA = 0 V/V
= V
V
CCA
VA = 0 V/V V
= V
CCA
V
= V
CCA
V
= V
CCA
, VY = 0 V/V
CCA
= 5.5 V, EN = V
CCY
, VY = 0 V/V
CCA
= 5.5 V, EN = V
CCY
= 5.5 V, EN = 0 0.1 1 µA
CCY
= 5.5 V, EN = 0 0.1 1 µA
CCY
CCY
CCY
,
CCY
,
CCY
1.15 5.5 V
0.17 1 µA
0.27 1 µA
Rev. 0 | Page 5 of 20
Page 6
ADG3308

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 2.
Parameter Rating
V
to GND −0.3 V to +7 V
CCA
V
to GND V
CCY
Digital Inputs (A) −0.3 V to (V Digital Inputs (Y) −0.3 V to (V EN to GND −0.3 V to +7 V Operating Temperature Range
Industrial (B Version) −40°C to +85°C Storage Temperature Range −65°C to +150°C Junction Temperature 150°C θJA Thermal Impedance
20-Lead TSSOP 78°C/W
20-Lead LFCSP 30.4°C/W Lead Temperature, Soldering (10 sec) 300°C IR Reflow, Peak Temperature (< 20 sec) 260°C
to +7 V
CCA
+ 0.3 V)
CCA
+ 0.3 V)
CCY
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 20
Page 7
ADG3308
A

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

1
V
CCA
2
A1
3
A2
ADG3308
4
A3 A4 A5 A6 A7 A8 EN
(Not to Scale)
5
6
7
8
9
10
TOP VIEW
20
V
CCY
19
Y1
18
Y2
17
Y3
16
Y4
15
Y5
14
Y6
13
Y7
12
Y8
11
GND
04865-002
Figure 2. 20-Lead TSSOP Figure 3. 20-Lead LFCSP
Table 3. Pin Function Descriptions
Pin. No.
TSSOP LFCSP Mnemonic Description
1 19 V 2 20 A1
Power Supply Voltage Input for the A1 to A8 I/O Pins (1.15 V ≤ V
CCA
Input/Output A1. Referenced to V 3 1 A2 Input/Output A2. Referenced to V 4 2 A3 Input/Output A3. Referenced to V 5 3 A4 Input/Output A4. Referenced to V 6 4 A5 Input/Output A5. Referenced to V 7 5 A6 Input/Output A6. Referenced to V 8 6 A7 Input/Output A7. Referenced to V 9 7 A8 Input/Output A8. Referenced to V 10 8 EN Active High Enable Input. 11 9 GND Ground. 12 10 Y8 Input/Output Y8. Referenced to V 13 11 Y7 Input/Output Y7. Referenced to V 14 12 Y6 Input/Output Y6. Referenced to V 15 13 Y5 Input/Output Y5. Referenced to V 16 14 Y4 Input/Output Y4. Referenced to V 17 15 Y3 Input/Output Y3. Referenced to V 18 16 Y2 Input/Output Y2. Referenced to V 19 17 Y1 20 18 V
Power Supply Voltage Input for the Y1 to Y8 I/O Pins (1.65 V ≤ V
CCY
Input/Output Y1. Referenced to V
Y C
C
1A2 2A3 3A4 4A5 5A6
1 A
0 2
ADG3308
TOP VIEW
(Not to Scale)
6 7
A
1
C
C
V
V
Y 7
9
8
1
1
1
PIN 1 INDICATOR
9
8
7 8
N
D
A
E
N G
2 Y
6 1
15 Y3 14 Y4 13 Y5 12 Y6 11 Y7
0 1
8 Y
04865-003
The exposed pad can be tied to GND or it can be left floating.
or V
CCA
CCY
.
CCY
).
CCA
CCA
CCA
CCA
CCA
CCA
CCA
CCA
CCY
CCY
CCY
CCY
CCY
CCY
CCY
CCY
Do not tie it to V
< V
CCA
. . . . . . . .
. . . . . . . .
≤ 5.5 V).
CCY
Rev. 0 | Page 7 of 20
Page 8
ADG3308

TYPICAL PERFORMANCE CHARACTERISTICS

1.0 TA = 25°C
1 CHANNEL
0.9
= 50pF
C
L
0.8
0.7
0.6
(mA)
0.5
CCA
I
0.4
0.3
0.2
0.1
0
0 5 10 15 20 25 30 35 40 45 50
Figure 4. I
10
TA = 25°C 1 CHANNEL
9
= 50pF
C
L
8
7
6
(mA)
5
CCY
I
4
3
2
1
0
0 5 10 15 20 25 30 35 40 45 50
Figure 5. I
3.0 TA = 25°C
1 CHANNEL C
= 15pF
L
2.5
2.0
(mA)
1.5
CCA
I
1.0
0.5
0
0 5 10 15 20 25 30 35 40 45 50
Figure 6. I
V
= 3.3V, V
CCA
V
CCA
DATA RATE (Mbps)
vs. Data Rate (AY Level Translation)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
= 1.8V
CCY
CCY
V
= 3.3V, V
CCA
V
DATA RATE (Mbps)
vs. Data Rate (AY Level Translation)
CCY
CCA
= 5V
CCY
V
= 1.2V, V
CCA
= 1.8V, V
= 1.8V
CCY
V
= 3.3V, V
CCA
V
CCA
DATA RATE (Mbps)
vs. Data Rate (YA Level Translation)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
CCY
= 1.8V
CCY
CCY
= 3.3V
= 3.3V
= 3.3V
04865-004
04865-005
04865-006
3.0 TA = 25°C
1 CHANNEL C
= 15pF
L
2.5
2.0
V
= 3.3V, V
CCA
(mA)
1.5
CCY
I
1.0
0.5
0
0 5 10 15 20 25 30 35 40 45 50
Figure 7. I
vs. Data Rate (YA Level Translation)
CCY
V
DATA RATE (Mbps)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
CCY
= 1.8V
1.6 TA =25°C
1 CHANNEL
1.4
V
= 1.2V
CCA
= 1.8V
V
CCY
1.2
1.0
(mA)
0.8
CCY
I
0.6
0.4
0.2
0
13 23 33 43 53 63 73
CAPACITIVE LOAD (pF)
Figure 8. I
vs. Capacitive Load at Pin Y for AY (1.2 V1.8 V)
CCY
20Mbps
10Mbps
5Mbps
1Mbps
Level Translation
1.0 TA = 25°C
1 CHANNEL
0.9 V
= 1.2V
CCA
V
=1.8V
CCY
0.8
0.7
0.6
(mA)
0.5
CCA
I
0.4
0.3
0.2
0.1
0
13 23 33 43 53
Figure 9. I
vs. Capacitive Load at Pin A for YA (1.8 V1.2 V)
CCA
CAPACITIVE LOAD (pF)
20Mbps
10Mbps 5Mbps
1Mbps
Level Translation
CCY
= 3.3V
04865-007
04865-012
04865-013
Rev. 0 | Page 8 of 20
Page 9
ADG3308
9
TA = 25°C 1 CHANNEL
8
V
= 1.8V
CCA
V
= 3.3V
CCY
7
6
5
(mA)
4
CCY
I
3
2
1
0
13 23 33 43 53 63 73
Figure 10. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin Y for AY (1.8 V3.3 V)
CCY
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
Level Translation
5.0
TA = 25°C 1 CHANNEL
4.5
4.0
3.5
3.0
2.5
(mA)
CCA
I
2.0
1.5
1.0
0.5
Figure 11. I
= 1.8V
V
CCA
= 3.3V
V
CCY
0
13 23 33 43 53
CCA
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for YA (3.3 V1.8 V)
Level Translation
12
TA = 25°C 1 CHANNEL
V
= 3.3V
CCA
10
= 5V
V
CCY
8
6
(mA)
CCY
I
4
2
0
13 23 33 43 53 63 73
Figure 12. I
CCY
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin Y for AY (3.3 V5 V)
Level Translation
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
04865-016
04865-017
04865-020
7
TA = 25°C 1 CHANNEL
= 3.3V
V
6
CCA
= 5V
V
CCY
5
4
(mA)
3
CCA
I
2
1
0
13 23 33 43 53
Figure 13. I
CCA
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for YA (5 V3.3 V)
50Mbps
30Mbps 20Mbps
10Mbps
5Mbps
04865-021
Level Translation
10
TA = 25°C 1 CHANNEL
9
DATA RATE = 50kbps
8
7
6
5
4
RISE TIME(ns)
3
2
1
0
13 23 33 43 53 63 73
V
= 1.2V, V
CCA
V
= 1.8V, V
CCA
V
= 3.3V, V
CCA
CAPACITIVE LOAD (pF)
CCY
= 1.8V
CCY
CCY
= 3.3V
= 5V
04865-023
Figure 14. Rise Time vs. Capacitive Load at Pin Y (AY Level Translation)
4.0 TA = 25°C
1 CHANNEL
3.5
DATA RATE = 50kbps
3.0
2.5
2.0
1.5
FALL TIME (ns)
1.0
0.5
0
13 23 33 43 53 63 73
V
= 1.2V, V
CCA
V
CCA
V
CCA
CAPACITIVE LOAD (pF)
= 1.8V
CCY
= 1.8V, V
= 3.3V, V
CCY
CCY
= 3.3V
= 5V
04865-024
Figure 15. Fall Time vs. Capacitive Load at Pin Y (AY Level Translation)
Rev. 0 | Page 9 of 20
Page 10
ADG3308
10
TA = 25°C 1 CHANNEL
9
DATA RATE = 50kbps
8
7
6
5
4
RISE TIME (ns)
3
2
1
0
13 18 23 28 33 38 43 48 53
Figure 16. Rise Time vs. Capacitive Load at Pin A ( YA Level Translation)
4.0
3.5
3.0
2.5
2.0
1.5
FALL TIME (ns)
1.0
0.5
0
13 18 23 28 33 38 43 48 53
Figure 17. Fall Time vs. Capacitive Load at Pin A (YA Level Translation)
14
12
10
8
6
4
PROPAGATION DELAY (ns)
2
0
13 23 33 43 53 63
V
CCA
= 1.2V, V
= 1.8V
CCY
V
= 1.8V, V
CCA
V
CCA
CAPACITIVE LOAD (pF)
= 3.3V, V
TA = 25°C 1 CHANNEL DATA RATE = 50kbps
V
CCA
= 1.2V, V
= 1.8V
CCY
CAPACITIVE LOAD (pF)
V
CCA
= 1.8V, V
V
CCA
= 3.3V, V
TA = 25°C 1 CHANNEL DATA RATE = 50kbps
V
CCA
CAPACITIVE LOAD (pF)
Figure 18. Propagation Delay (t
= 1.8V, V
CCY
V
V
CCA
CCA
= 1.2V, V
= 3.3V
= 3.3V, V
) vs.
PLH
Capacitive Load at Pin Y (AY Level Translation)
CCY
CCY
CCY
CCY
= 3.3V
CCY
= 3.3V
CCY
= 1.8V
= 5V
= 5V
= 5V
73
04865-025
04865-026
04865-027
12
DATA RATE = 50kbps
A
= 25°C
T 1 CHANNEL
10
8
6
4
PROPAGATION DELAY (ns)
2
0
13 23 33 43 53 63 73
CAPACITIVE LOAD (pF)
Figure 19. Propagation Delay (t
V
CCA
V
= 1.2V, V
CCA
V
CCA
= 1.8V, V
= 3.3V, V
) vs.
PHL
CCY
Capacitive Load at Pin Y (AY Level Translation)
9
TA = 25°C 1 CHANNEL
8
DATA RATE = 50kbps
7
6
5
4
3
V
= 1.8V, V
PROPAGATION DELAY (ns)
CCA
2
1
0
13 18 23 28 33 38 43 48 53
= 3.3V
CCY
CAPACITIVE LOAD (pF)
Figure 20. Propagation Delay (t
V
V
CCA
CCA
= 1.2V, V
= 3.3V, V
PLH
CCY
CCY
) vs.
Capacitive Load at Pin A (YA Level Translation)
9
TA = 25°C 1 CHANNEL
8
DATA RATE = 50kbps
7
6
5
4
V
3
PROPAGATION DELAY (ns)
2
1
0
13 18 23 28 33 38 43 48 53
CCA
CAPACITIVE LOAD (pF)
Figure 21. Propagation Delay (t
= 1.8V, V
V
CCA
V
CCA
= 3.3V
CCY
= 3.3V, V
= 1.2V, V
= 5V
CCY
PHL
CCY
) vs.
Capacitive Load at Pin A (YA Level Translation)
= 1.8V
CCY
CCY
= 1.8V
= 5V
= 1.8V
= 3.3V
= 5V
04865-028
04865-029
04865-030
Rev. 0 | Page 10 of 20
Page 11
ADG3308
TA = 25°C DATA RATE = 25Mbps
= 50pF
C
L
1 CHANNEL
TA = 25°C DATA RATE = 50Mbps
= 15pF
C
L
1 CHANNEL
400mV/DIV
5ns/DIV
04860-037
Figure 22. Eye Diagram at Y Output (1.2 V to 1.8 V Level Translation, 25 Mbps)
200mV/DIV
TA = 25°C DATA RATE = 25Mbps
5ns/DIV
= 50pF
C
L
1 CHANNEL
04860-038
Figure 23. Eye Diagram at A Output (1.8 V to 1.2 V Level Translation, 25 Mbps)
TA = 25°C DATA RATE = 50Mbps
= 50pF
C
L
1 CHANNEL
400mV/DIV
3ns/DIV
04860-040
Figure 25. Eye Diagram at A Output (3.3 V to 1.8 V Level Translation, 50 Mbps)
TA = 25°C DATA RATE = 50Mbps CL = 50pF 1 CHANNEL
1V/DIV
3ns/DIV
04860-041
Figure 26. Eye Diagram at Y Output (3.3 V to 5 V Level Translation, 50 Mbps)
TA = 25°C DATA RATE = 50Mbps C
= 15pF
L
1 CHANNEL
500mV/DIV
3ns/DIV
04860-039
Figure 24. Eye Diagram at Y Output (1.8 V to 3.3 V Level Translation, 50 Mbps)
Rev. 0 | Page 11 of 20
800mV/DIV
3ns/DIV
04860-042
Figure 27. Eye Diagram at A Output (5 V to 3.3 V Level Translation, 50 Mbps)
Page 12
ADG3308

TEST CIRCUITS

V
CCA
0.1µF
A
K1
ADG3308
GND
EN V
CCY
0.1µF
Y
V
CCA
K2
0.1µF
A
ADG3308
EN V
Y
CCY
0.1µF
A
K
I
OH
K2
0.1µF
0.1µF
I
OL
Figure 28. V
V
CCA
A
Figure 29. V
V
CCA
Voltages at Pin A
OH/VOL
ADG3308
GND
Voltages at Pin Y
OH/VOL
ADG3308
EN V
Y
I
CCY
OH
EN V
CCY
0.1µF
K1
0.1µF
GND
04865-043
04865-046
Figure 31. Three-State Leakage Current at Pin Y
V
CCA
0.1µF
A
I
OL
04865-044
ADG3308
GND
V
Y
EN
CCY
0.1µF
K
A
04865-047
Figure 32. EN Pin Leakage Current
V
CCA
ADG3308
EN
V
CCY
A
K
A
GND
Y
CAPACITANCE
METER
04865-045
Figure 30. Three-State Leakage Current at Pin A
A
GND
Figure 33. Capacitance at Pin A
Y
04865-048
Rev. 0 | Page 12 of 20
Page 13
ADG3308
V
CCA
A
ADG3308
GND
EN V
CCY
Y
CAPACITANCE
METER
04865-049
Figure 34. Capacitance at Pin Y
A–Y DIRECTION
SIGNAL SOURCE
R
S
50
0.1µF
+
10µF
K1
Z0 = 50
V
CCA
V
A
V
EN
R
T
50
ADG3308
A
EN
GND
V
Y
50pF
CCY
0.1µF
+
10µF
1M
V
Y
K2
1M
Y–A DIRECTION
V
+
0.1µF
SIGNAL SOURCE
R
S
50
VY/V
10µF
1M
K1
1M
= 50
Z
0
V
EN
VA/V
Y
90% VY/V
A
V
EN
VA/V
Y
A
10%
NOTES
1. t
IS WHICHEVER IS LARGER BETWEEN
EN
IN BOTH A-Y AND Y-A DIRECTIONS.
CCA
V
A
15pF
V
EN
R
T
50
t
EN1
t
EN2
Figure 35. Enable Time
ADG3308
A
EN
GND
t
AND
t
EN1
EN2
V
CCY
0.1µF
Y
V
CCY
0V V
CCA/VCCY
0V V
CCY/VCCA
0V
V
CCY
0V
V
CCA/VCCY
0V V
CCY/VCCA
0V
+
10µF
V
Y
K2
04860-050
Rev. 0 | Page 13 of 20
Page 14
ADG3308
ADG3308
A
GND
t
F,A-Y
SIGNAL
SOURCE
R
50
V
50%
V
90%
50%
10%
S
A
Y
Z0 = 50
0.1µF
V
50
V
CCA
+
10µF
A
R
T
t
P,A-Y
Figure 36. Switching Characteristics (A→Y Level Translation)
t
P,A-Y
t
EN V
0.1µF
R,A-Y
Y
CCY
V
Y
50pF
+
10µF
04865-051
ADG3308
GND
t
P,Y-A
0.1µF
50%
90%
50%
10%
15pF
V
Y
V
A
V
CCA
+
10µF
V
A
Figure 37. Switching Characteristics (Y
t
F,Y-A
EN
V
CCY
+
V R
50
Y
T
t
10µF
Z0 = 50
P,Y-A
0.1µF
YA
t
R,Y-A
SIGNAL
SOURCE
R
S
50
04865-052
A Level Translation)
Rev. 0 | Page 14 of 20
Page 15
ADG3308

TERMINOLOGY

Table 4.
Symbol Description
V
IHA
V
ILA
V
OHA
V
OLA
C
A
I
LA, HiZ
V
IHY
V
ILY
V
OHY
V
OLY
C
Y
I
LY, HiZ
V
IHEN
V
ILEN
C
EN
I
LEN
t
EN
t
P, A-Y
t
R, A-Y
t
F, A-Y
D
MAX, A-Y
t
SKEW, A-Y
t
PPSKEW, A-Y
t
P, Y-A
t
R, Y-A
t
F, Y-A
D
MAX, Y-A
t
SKEW, Y-A
t
PPSKEW, Y-A
V
CCA
V
CCY
I
CCA
I
CCY
I
HiZA
I
HiZY
Logic input high voltage at Pins A1 to A8. Logic input low voltage at Pins A1 to A8. Logic output high voltage at Pins A1 to A8. Logic output low voltage at Pins A1 to A8. Capacitance measured at Pins A1 to A8 (EN = 0). Leakage current at Pins A1 to A8 when EN = 0 (high impedance state at Pins A1 to A8). Logic input high voltage at Pins Y1 to Y8. Logic input low voltage at Pins Y1 to Y8. Logic output high voltage at Pins Y1 to Y8. Logic output low voltage at Pins Y1 to Y8. Capacitance measured at Pins Y1 to Y8 (EN = 0). Leakage current at Pins Y1 to Y8 when EN = 0 (high impedance state at Pins Y1 to Y8). Logic input high voltage at the EN pin. Logic input low voltage at the EN pin. Capacitance measured at EN pin. Enable (EN) pin leakage current. Three-state enable time for Pins A1 to A8 /Y1 to Y8. Propagation delay when translating logic levels in the AY direction. Rise time when translating logic levels in the AY direction. Fall time when translating logic levels in the AY direction. Guaranteed data rate when translating logic levels in the AY direction under the driving and loading conditions
specified in Table 1. Difference between propagation delays on any two channels when translating logic levels in the AY direction. Difference in propagation delay between any one channel and the same channel on a different part (under same
driving/loading conditions) when translating in the A
Y direction.
Propagation delay when translating logic levels in the YA direction. Rise time when translating logic levels in the YA direction. Fall time when translating logic levels in the YA direction. Guaranteed data rate when translating logic levels in the YA direction under the driving and loading conditions
specified in Table 1. Difference between propagation delays on any two channels when translating logic levels in the YA direction. Difference in propagation delay between any one channel and the same channel on a different part (under same
driving/loading conditions) when translating in the Y V
supply voltage.
CCA
V
supply voltage.
CCY
V
supply current.
CCA
V
supply current.
CCY
V
supply current during three-state mode (EN = 0).
CCA
V
supply current during three-state mode (EN = 0).
CCY
A direction.
Rev. 0 | Page 15 of 20
Page 16
ADG3308

THEORY OF OPERATION

The ADG3308 level translator allows the level shifting necessary for data transfer in a system where multiple supply
CCY
and
CCA
-
CCY
T2T1
Y
T3T4
04865-053
voltages are used. The device requires two supplies, V
(V
≤ V
V
CCY
CCA
). These supplies set the logic levels on each
CCY
side of the device. When driving the A pins, the device translates the V
-compatible logic levels to V
CCA
-compatible logic levels
CCY
available at the Y pins. Similarly, since the device is capable of bidirectional translation, when driving the Y pins the V compatible logic levels are translated to the V
-compatible
CCA
logic levels available at the A pins. When EN = 0, the A1 to A8 and Y1 to Y8 pins are three-stated. When EN is driven high, the ADG3308 goes into normal operation mode and performs level translation.

LEVEL TRANSLATOR ARCHITECTURE

The ADG3308 consists of eight bidirectional channels. Each channel can translate logic levels in either the A→Y or the Y→A direction. It uses a one-shot accelerator architecture, which ensures excellent switching characteristics Figure 38 shows a simplified block diagram of a bidirectional channel.
V
CCA
6k
U2
U1
P
A
Figure 38. Simplified Block Diagram of an ADG3308 Channel
ONE-SHOT GENERATOR
U4
6k
U3
The logic level translation in the AY direction is performed using a level translator (U1) and an inverter (U2), while the translation in the Y
A direction is performed using the inverters
U3 and U4. The one-shot generator detects a rising or falling edge present on either the A side or the Y side of the channel. It sends a short pulse that turns on the PMOS transistors (T1–T2) for a rising edge, or the NMOS transistors (T3–T4) for a falling edge. This charges/discharges the capacitive load faster, which results in fast rise and fall times.
V
N

INPUT DRIVING REQUIREMENTS

To ensure correct operation of the ADG3308, the circuit that drives the input of the ADG3308 channels should have an output impedance of less than or equal to 150 Ω and a minimum current driving capability of 36 mA.

OUTPUT LOAD REQUIREMENTS

The ADG3308 level translator is designed to drive CMOS­compatible loads. If current-driving capability is required, it is recommended to use buffers between the ADG3308 outputs and the load.

ENABLE OPERATION

The ADG3308 provides three-state operation at the A and Y I/O pins by using the enable (EN) pin, as shown in Table 5.
Table 5. Truth Table
EN
0 Hi-Z 1 Normal operation2Normal operation
1
High impedance state.
2
In normal operation, the ADG3308 performs level translation.
Y I/O Pins A I/O Pins
1
Hi-Z
1
2
While EN = 0, the ADG3308 enters into three-state mode. In this mode the current consumption from both the V
supplies is reduced, allowing the user to save power, which
V
CCY
CCA
and
is critical, especially on battery-operated systems. The EN input pin can be driven with V
-compatible logic levels only.
CCY

POWER SUPPLIES

For proper operation of the ADG3308, the voltage applied to the V V sequence is V properly only after both supply voltages reach their nominal values. It is not recommended to use the part in a system where, during power-up, V significant increase in the current taken from the V For optimum performance, the V decoupled to GND as close as possible to the device.
must be always less than or equal the voltage applied to
CCA
. To meet this condition, the recommended power-up
CCY
first and then V
CCY
might be greater than V
CCA
. The ADG3308 operates
CCA
due to a
CCY
CCA
and V
pins should be
CCY
supply.
CCA
The inputs of the unused channels (A or Y) should be tied to their corresponding V
rail (V
CC
CCA
or V
) or to GND.
CCY
Rev. 0 | Page 16 of 20
Page 17
ADG3308

DATA RATE

The maximum data rate at which the device is guaranteed to operate is a function of the V
CCA
and V combination and the load capacitance. It is given by the maximum frequency of a square wave that can be applied to the device, which meets the V
and VOL levels at the output and
OH
does not exceed the maximum junction temperature (see the
Absolute Maximum Ratings section). Table 6 shows the guaranteed data rates at which the ADG3308 can operate in both directions (A and V
supply combinations.
CCY
Y or YA level translation) for various V
Table 6. Guaranteed Data Rate (Mbps)
V
CCA
1.2 V (1.15 V to 1.3 V)
1.8 V (1.65 V to 1.95 V)
2.5 V (2.3 V to 2.7 V)
3.3 V (3.0 V to 3.6 V) 5 V (4.5 V to 5.5 V)
1
The load capacitance used is 50 pF when translating in the AY direction and 15 pF when translating in the YA direction.
supply voltage
CCY
1
1.8 V
(1.65 V to 1.95 V)
25 30 40 40
- 45 50 50
- - 60 50
- - - 50
- - - -
CCA
2.5 V
(2.3 V to 2.7 V)
V
CCY
3.3 V
(3.0 V to 3.6 V)
5 V
(4.5 V to 5.5 V)
Rev. 0 | Page 17 of 20
Page 18
ADG3308

APPLICATIONS

The ADG3308 is designed for digital circuits that operate at different supply voltages; therefore, logic level translation is required. The lower voltage logic signals are connected to the A pins, and the higher voltage logic signals to the Y pins. The ADG3308 can provide level translation in both directions from
Y or YA on all eight channels, eliminating the need for a
A level translator IC for each direction. The internal architecture allows the ADG3308 to perform bidirectional level translation without an additional signal to set the direction in which the translation is made. It also allows simultaneous data flow in both directions on the same part, for example, when two channels translate in A→Y direction while the other two translate in Y→A direction. This simplifies the design by eliminating the timing requirements for the direction signal and reduces the number of ICs used for level translation.
Figure 39 shows an application where a 3.3 V microprocessor can read or write data to and from a 1.8 V peripheral device using an 8-bit bus.
100nF
V
3.3V
MICROPROCESSOR/
MICROCONTROLLER/
DSP
GND
I/OH1
I/O
I/O
I/OH4
I/OH5
I/O
I/OH7
I/OH8
2
H
3
H
6
H
CCY
Y1
Y2
Y3
Y4
ADG3308
Y5
Y6
Y7
EN GND
Figure 39. 1.8 V to 3.3 V 8-Bit Level Translation Circuit
When the application requires level translation between a microprocessor and multiple peripheral devices, the ADG3308 I/O pins can be three-stated by setting EN = 0. This feature
100nF
V
CCA
A1
A2
A3
A4
A5
A6
A7
A8Y8
I/OL1
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
2
L
3
L
4
L
PERIPHERAL
5
L
6
L
7
L
8
L
1.8V
DEVICE
allows the ADG3308 to share the data buses with other devices without causing contention issues. Figure 40 shows an application where a 3.3 V microprocessor is connected to 1.8 V peripheral devices using the three-state feature.
100nF 100nF
V
V
CCY
ADG3308
CCY
ADG3308
V
GND
CCA
A1 A2 A3 A4 A5 A6 A7 A8
CCA
A1 A2 A3 A4 A5 A6 A7 A8
I/OL1 I/O I/O I/O I/O I/O I/O I/O GND
I/OL1 I/O I/O I/O I/O I/O I/O I/O GND
2
L
3
L
4
L
5
L
6
L
7
L
8
L
2
L
3
L
4
L
5
L
6
L
7
L
8
L
1.8V
PERIPHERAL
DEVICE 1
1.8V
PERIPHERAL
DEVICE 2
04860-055
3.3V
MICROPROCESSOR/
MICROCONTROLLER/
DSP
GND
CS
1
I/O
H
I/OH2 I/O
3
H
I/O
4
H
I/O
5
H
6
I/O
H
7
I/O
H
8
I/O
H
100nF 100nF
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 EN GND
V Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 EN
Figure 40. 1.8 V to 3.3 V Level Translation Circuit
Using the Three-State Feature

LAYOUT GUIDELINES

As with any high speed digital IC, the printed circuit board layout is important in the circuit overall performance. Care should be taken to ensure proper power supply bypass and return paths for the high speed signals. Each V
) should be bypassed using low effective series resistance
V
CCY
pin (V
CC
(ESR) and effective series inductance (ESI) capacitors placed as
04860-055
close as possible to the V
CCA
and V
pins. The parasitic induc-
CCY
tance of the high speed signal track might cause significant overshoot. This effect can be reduced by keeping the length of the tracks as short as possible. A solid copper plane for the return path (GND) is also recommended.
CCA
and
Rev. 0 | Page 18 of 20
Page 19
ADG3308

OUTLINE DIMENSIONS

6.60
6.50
6.40
0.60
MAX
0.60
MAX
0.75
0.55
0.35
COPLANARITY
0.08
16
15
11
10
EXPOSED
(BOTTOM VIEW)
PIN 1
INDICATOR
20
PAD
5
6
0.30
0.23
0.18
1
2.25
2.10 SQ
1.95
0.25 MIN
PIN 1
0.15
0.05
COPLANARITY
0.10
20
1
0.65
BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153AC
1.20 MAX
11
10
SEATING PLANE
4.50
4.40
4.30
6.40 BSC
0.20
0.09
Figure 41. 20-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-20)
Dimensions shown in millimeters
4.00
BSC SQ
PIN 1
INDICATOR
1.00
8° 0°
0.75
0.60
0.45
0.85
0.80
SEATING
PLANE
TOP
VIEW
12° MAX
0.80 MAX
0.65 TYP
0.50 BSC
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1
0.20 REF
3.75
BCS SQ
0.05 MAX
0.02 NOM
Figure 42. 20-Lead Lead Frame Chip Scale Package [LFCSP]
(CP-20)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
ADG3308BRUZ ADG3308BRUZ-REEL ADG3308BRUZ-REEL7 ADG3308BCPZ ADG3308BCPZ-REEL ADG3308BCPZ-REEL7
1
Z = Pb-free part.
1
1
1
1
1
1
−40°C to +85°C 20-Lead Thin Shrink Small Outline Package RU-20
−40°C to +85°C 20-Lead Thin Shrink Small Outline Package RU-20
−40°C to +85°C 20-Lead Thin Shrink Small Outline Package RU-20
−40°C to +85°C 20-Lead Lead Frame Chip Scale Package CP-20
−40°C to +85°C 20-Lead Lead Frame Chip Scale Package CP-20
−40°C to +85°C 20-Lead Lead Frame Chip Scale Package CP-20
Rev. 0 | Page 19 of 20
Page 20
ADG3308
NOTES
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
D04865–0–1/05(0)
Rev. 0 | Page 20 of 20
Loading...