Datasheet ADG3300 Datasheet (ANALOG DEVICES)

www.BDTIC.com/ADI
Low Voltage 1.15 V to 5.5 V, 8-Channel

FEATURES

Bidirectional level translation Operates from 1.15 V to 5.5 V Low quiescent current <1 µA No direction pin

APPLICATIONS

Low voltage ASIC level translation Smart card readers Cell phones and cell phone cradles Portable communications devices Telecommunications equipment Network switches and routers Storage systems (SAN/NAS) Computing/server applications GPS Portable POS systems Low cost serial interfaces
Bidirectional Logic Level Translator
ADG3300

FUNCTIONAL BLOCK DIAGRAM

V
CCA
A1
A2
A3
A4
A5 Y5
A6
A7
A8
EN
GND
Figure 1.
V
CCY
Y1
Y2
Y3
Y4
Y6
Y7
Y8
05061-001

GENERAL DESCRIPTION

The ADG3300 is a bidirectional logic level translator that con­tains eight bidirectional channels. It can be used in multivoltage digital system applications such as data transfer between a low voltage DSP/controller and a higher voltage device. The internal architecture allows the device to perform bidirectional logic level translation without an additional signal to set the direction of the translation.
The voltage applied to V the device, while V operation, V
CCY
must always be less than V
CCA
patible logic signals applied to the A side of the device appear as
-compatible levels on the Y side. Similarly, V
V
CCY
logic levels applied to the Y side of the device appear as V compatible logic levels on the A side.
The enable pin provides three-state operation of the Y side pins. When the enable pin (EN) is pulled low, the A1 to A8 pins are
sets the logic levels on the A side of
CCA
sets the levels on the Y side. For proper
CCY
. The V
-com-
CCA
-compatible
CCY
CCA
-
internally pulled down by 6 kΩ resistors, while the Y terminals are in the high impedance state. The EN pin is referred to V
CCA
supply voltage and driven high for normal operation.
The ADG3300 is available in a compact 20-lead TSSOP package, and it is guaranteed to operate over the 1.15 V to 5.5 V supply voltage range and extended −40°C to +85°C temperature range.

PRODUCT HIGHLIGHTS

1. Bidirectional level translation.
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.
3. No direction pin.
4. 20-lead TSSOP package.
Rev. 0
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
ADG3300
www.BDTIC.com/ADI
TABLE OF CONTENTS
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics ............................................. 8
Tes t Ci rc u it s ..................................................................................... 12
Te r m in o l o g y .................................................................................... 14
Theory of Operation ...................................................................... 15
Level Translator Architecture.................................................... 15
REVISION HISTORY
4/05—Revision 0: Initial Version
Input Driving Requirements..................................................... 15
Output Load Requirements ...................................................... 15
Enable Operation ....................................................................... 15
Power Supplies ............................................................................ 15
Data Rate ..................................................................................... 16
Applications..................................................................................... 17
Layout Guidelines....................................................................... 17
Outline Dimensions....................................................................... 18
Ordering Guide .......................................................................... 18
Rev. 0 | Page 2 of 20
ADG3300
www.BDTIC.com/ADI
CCA
3
3
3
≤ V
V
1
= 1.15 V to V
CCA
3
3
3
3
, V
CCY
CCY
, V
CCY
CCY
, GND = 0 V. All specifications T
CCY
V
IHA
IHA
V
ILA
VY = V
OHA
VY = 0 V, IOL = 20 µA, Figure 27 0.4 V
OLA
A,HiZ
V
IHY
V
ILY
OHY
OLY
CY
LY, HiZ
V
IHEN
IHEN
V
ILEN
LEN
C
EN
t
EN
V
= 1.15 V V
CCA
V
= 1.2 V to 5.5 V V
CCA
0.4 V
EN = 0 4.2 6 8.4 kΩ
V
0.4 V VA = V VA = 0 V, IOL = 20 µA, Figure 28 0.4 V f = 1 MHz, EN = 0, Figure 31 6 pF VY = 0 V/V
V
= 1.15 V V
CCA
V
= 1.2 V to 5.5 V V
CCA
0.4 V VEN = 0 V/V
3 pF RS = RT = 50 Ω, VA = 0 V/V
CCY
CCA
to T
MIN
, IOH = 20 µA, Figure 27 V
, IOH = 20 µA, Figure 28 V
, EN = 0, Figure 29 ±1 µA
CCY
, VA = 0 V, Figure 30 ±1
CCA
, unless otherwise noted.
MAX
CCA
(A Y),
1 1.8 µs
− 0.3 V
CCA
− 0.4 V
CCA
− 0.4 V
CCA
− 0.4 V
CCY
− 0.4 V
CCY
− 0.3 V
CCA
− 0.4 V
CCA
Figure 32
= 5 V ± 0.5 V
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
= RT = 50 Ω, CL = 50 pF, Figure 33
S
6 10 ns 2 3.5 ns 2 3.5 ns 50 Mbps 2 4 ns 3 ns
= RT = 50 Ω, CL = 15 pF, Figure 34
S
4 7 ns 1 3 ns
3 7 ns 50 Mbps 2 3.5 ns 2 ns
= 3.3 V ± 0.3 V
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
= RT = 50 Ω, CL = 50 pF, Figure 33
S
8 11 ns 2 5 ns 2 5 ns 50 Mbps 2 4 ns 4 ns
µA

SPECIFICATIONS

V
= 1.65 V to 5.5 V, V
CCY
Table 1.
Parameter Symbol Conditions Min Typ2Max Unit
LOGIC INPUTS/OUTPUTS
A Side
Input High Voltage V Input Low Voltage Output High Voltage V Output Low Voltage V Three-State Pull-Down Resistance R
Y Side
Input Low Voltage Input High Voltage Output High Voltage V Output Low Voltage V Capacitance Leakage Current I
Enable (EN)
Input High Voltage V Input Low Voltage Leakage Current I
Capacitance Enable Time
SWITCHING CHARACTERISTICS
3.3 V ± 0.3 V ≤ V A Y Level Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
Y A Level Translation
Propagation Delay t Rise Time t
Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
1.8 V ± 0.15 V ≤ V A Y Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
3
3
3
CCA
Rev. 0 | Page 3 of 20
ADG3300
www.BDTIC.com/ADI
Parameter Symbol Conditions Min Typ2Max Unit
Y A Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
1.15 V to 1.3 V ≤ V
CCA
≤ V
, V
= 3.3 V ± 0.3 V
CCY
CCY
A Y Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
Y A Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
1.15 V to 1.3 V≤ V
CCA
≤ V
, V
= 1.8 V ± 0.3 V
CCY
CCY
A Y Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
Y A Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
2.5 V ± 0.2 V ≤ V
CCA
≤ V
, V
= 3.3 V ± 0.3 V
CCY
CCY
A Y Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
Y A Translation
Propagation Delay t Rise Time t Fall Time t Maximum Data Rate D Channel-to-Channel Skew t Part-to-Part Skew t
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
R
P, A-Y
R, A-Y
F, A-Y
MAX, A-Y
SKEW, A-Y
PPSKEW, A-Y
R
P, Y-A
R, Y-A
F, Y-A
MAX, Y-A
SKEW, Y-A
PPSKEW, Y-A
= RT = 50 Ω, CL = 15 pF, Figure 34
S
5 8 ns 2 3.5 ns 2 3.5 ns 50 Mbps 2 3 ns 3 ns
= RT = 50 Ω, CL = 50 pF, Figure 33
S
9 18 ns 3 5 ns 2 5 ns 40 Mbps 2 5 ns 10 ns
= RT = 50 Ω, CL = 15 pF, Figure 34
S
5 9 ns 2 4 ns 2 4 ns 40 Mbps 2 4 ns 4 ns
= RT = 50 Ω, CL = 50 pF, Figure 33
S
12 25 ns 7 12 ns 3 5 ns 25 Mbps 2 5 ns 15 ns
= RT = 50 Ω, CL = 15 pF, Figure 34
S
14 35 ns 5 16 ns
2.5 6.5 ns 25 Mbps 3 6.5 ns
23.5 ns
= RT = 50 Ω, CL = 50 pF, Figure 33
S
7 10 ns
2.5 4 ns 2 5 ns 60 Mbps
1.5 2 ns 4 ns
= RT = 50 Ω, CL = 15 pF, Figure 34
S
5 8 ns 1 4 ns 3 5 ns 60 Mbps 2 3 ns 3 ns
Rev. 0 | Page 4 of 20
ADG3300
www.BDTIC.com/ADI
Parameter Symbol Conditions Min Typ2Max Unit
POWER REQUIREMENTS
Power Supply Voltages V V Quiescent Power Supply Current I
I
Three-State Mode Power Supply Current I I
1
Temperature range is a follows: B version: −40°C to +85°C.
2
All typical values are at TA = 25°C, unless otherwise noted.
3
Guaranteed by design; not subject to production test.
CCA
CCY
CCA
CCY
HiZA
HiZY
V
CCA
≤ V
CCY
1.15 5.5 V
1.65 5.5 V VA = 0 V/V
= V
V
CCA
VA = 0 V/V V
= V
CCA
V
= V
CCA
V
= V
CCA
, VY = 0 V/V
CCA
= 5.5 V, EN = 1
CCY
, VY = 0 V/V
CCA
= 5.5 V, EN = 1
CCY
= 5.5 V, EN = 0 0.1 5 µA
CCY
= 5.5 V, EN = 0 0.1 5 µA
CCY
CCY
CCY
,
,
0.17 5 µA
0.27 5 µA
Rev. 0 | Page 5 of 20
ADG3300
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 2.
Parameter Rating
V
to GND −0.3 V to +7 V
CCA
V
to GND V
CCY
Digtal Inputs (A) −0.3 V to (V Digtal Inputs (Y) −0.3 V to (V EN to GND −0.3 V to +7 V Operating Temperature Range
Industrial (B Version) −40°C to +85°C Storage Temperature Range −65°C to +150°C Junction Temperature 150°C θJA Thermal Impedance (4-Layer Board)
20-Lead TSSOP 78°C/W Lead Temperature, Soldering (10 sec) 300°C IR Reflow, Peak Temperature (<20 sec) 260°C
to +7 V
CCA
+ 0.3 V)
CCA
+ 0.3 V)
CCY
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 6 of 20
ADG3300
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

A1
V
CCA
A2 A3 A4 A5 A6 A7 A8
10
EN
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin. No. Mnemonic Description
1 A1 Input/Output A1. Referenced to V 2 V
CCA
Power Supply Voltage Input for the A1 to A8 I/O pins (1.15 V ≤ V 3 A2 Input/Output A2. Referenced to V 4 A3 Input/Output A3. Referenced to V 5 A4 Input/Output A4. Referenced to V 6 A5 Input/Output A5. Referenced to V 7 A6 Input/Output A6. Referenced to V 8 A7 Input/Output A7. Referenced to V 9 A8 Input/Output A8. Referenced to V 10 EN Active High Enable Input. 11 GND Ground. 12 Y8 Input/Output Y8. Referenced to V 13 Y7 Input/Output Y7. Referenced to V 14 Y6 Input/Output Y6. Referenced to V 15 Y5 Input/Output Y5. Referenced to V 16 Y4 Input/Output Y4. Referenced to V 17 Y3 Input/Output Y3. Referenced to V 18 Y2 Input/Output Y2. Referenced to V 19 V
CCY
Power Supply Voltage Input for the Y1 to Y8 I/O pins (1.65 V ≤ V 20 Y1 Input/Output Y1. Referenced to V
1
2
3
ADG3300
4
TOP VIEW
(Not to Scale)
5
6
7
8
9
CCA.
.
CCA
.
CCA
.
CCA
.
CCA
.
CCA
.
CCA
.
CCA
.
CCY
.
CCY
.
CCY
.
CCY
.
CCY
.
CCY
.
CCY
.
CCY
20
Y1
19
V
CCY
18
Y2
17
Y3
16
Y4
15
Y5
14
Y6
13
Y7
12
Y8
11
GND
05061-002
< V
CCA
CCY
).
CCY
≤ 5.5 V).
Rev. 0 | Page 7 of 20
ADG3300
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

1.0 TA = 25°C
1 CHANNEL
0.9
C
= 50pF
L
0.8
0.7
0.6
(mA)
0.5
CCA
I
0.4
0.3
0.2
0.1
0
0 5 10 15 20 25 30 35 40 45 50
Figure 3. I
10
TA = 25°C 1 CHANNEL
9
= 50pF
C
L
8
7
6
(mA)
5
CCY
I
4
3
2
1
0
0 5 10 15 20 25 30 35 40 45 50
Figure 4. I
3.0 TA = 25°C
1 CHANNEL C
= 15pF
L
2.5
2.0
(mA)
1.5
CCA
I
1.0
0.5
0
0 5 10 15 20 25 30 35 40 45 50
Figure 5. I
V
= 3.3V, V
CCA
V
CCA
DATA RATE (Mbps)
vs. Data Rate (A Y Level Translation)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
= 1.8V
CCY
V
= 3.3V, V
CCA
V
DATA RATE (Mbps)
vs. Data Rate (A Y Level Translation)
CCY
CCA
= 5V
CCY
V
= 1.2V, V
CCA
= 1.8V, V
= 1.8V
CCY
V
= 3.3V, V
CCA
V
CCA
DATA RATE (Mbps)
vs. Data Rate (Y A Level Translation)
CCA
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
CCY
= 1.8V
CCY
CCY
CCY
= 3.3V
= 3.3V
= 3.3V
05061-003
05061-004
05061-005
3.0 TA = 25°C
1 CHANNEL C
= 15pF
L
2.5
2.0
V
= 3.3V, V
CCA
(mA)
1.5
CCY
I
1.0
0.5
V
0
0 5 10 15 20 25 30 35 40 45 50
Figure 6. I
vs. Data Rate (Y A Level Translation)
CCY
CCA
DATA RATE (Mbps)
CCY
V
CCA
= 1.2V, V
= 5V
= 1.8V, V
CCY
= 1.8V
1.6 TA =25°C
1 CHANNEL
1.4
V
= 1.2V
CCA
= 1.8V
V
CCY
1.2
1.0
(mA)
0.8
CCY
I
0.6
0.4
0.2
0
13 23 33 43 53 63 73
CAPACITIVE LOAD (pF)
Figure 7. I
vs. Capacitive Load at Pin Y for A Y (1.2 V 1.8 V)
CCY
20Mbps
10Mbps
5Mbps
1Mbps
Level Translation
1.0 TA = 25°C
1 CHANNEL
0.9
0.8
0.7
0.6
(mA)
0.5
CCA
I
0.4
0.3
0.2
0.1
Figure 8. I
= 1.2V
V
CCA
=1.8V
V
CCY
20Mbps
10Mbps 5Mbps
0
13 23 33 43 53
vs. Capacitive Load at Pin A for Y A (1.8 V 1.2 V)
CCA
CAPACITIVE LOAD (pF)
1Mbps
Level Translation
CCY
= 3.3V
05061-006
05061-007
05061-008
Rev. 0 | Page 8 of 20
ADG3300
www.BDTIC.com/ADI
9
TA = 25°C 1 CHANNEL
8
V
= 1.8V
CCA
V
= 3.3V
CCY
7
6
5
(mA)
4
CCY
I
3
2
1
0
13 23 33 43 53 63 73
Figure 9. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin Y for A Y (1.8 V 3.3 V)
CCY
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
Level Translation
5.0
TA = 25°C 1 CHANNEL
4.5
V
= 1.8V
CCA
V
4.0
3.5
3.0
2.5
(mA)
CCA
I
2.0
1.5
1.0
0.5
Figure 10. I
= 3.3V
CCY
0
13 23 33 43 53
CCA
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for Y A (3.3 V 1.8 V)
Level Translation
12
TA = 25°C 1 CHANNEL
V
= 3.3V
CCA
10
= 5V
V
CCY
8
6
(mA)
CCY
I
4
2
0
13 23 33 43 53 63 73
Figure 11. I
CCY
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin Y for A Y (3.3 V 5 V)
Level Translation
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
50Mbps
30Mbps
20Mbps
10Mbps
5Mbps
05061-009
05061-010
05061-011
7
TA = 25°C 1 CHANNEL V
= 3.3V
6
CCA
V
= 5V
CCY
5
4
(mA)
3
CCA
I
2
1
0
13 23 33 43 53
Figure 12. I
CAPACITIVE LOAD (pF)
vs. Capacitive Load at Pin A for Y A (5 V 3.3 V)
CCA
50Mbps
30Mbps 20Mbps
10Mbps
5Mbps
05061-012
Level Translation
10
TA = 25°C 1 CHANNEL
9
DATA RATE = 50kbps
8
7
6
5
4
RISE TIME(ns)
3
2
1
0
13 23 33 43 53 63 73
V
= 1.2V, V
CCA
V
= 1.8V, V
CCA
V
= 3.3V, V
CCA
CAPACITIVE LOAD (pF)
CCY
= 1.8V
CCY
CCY
= 3.3V
= 5V
05061-013
Figure 13. Rise Time vs. Capacitive Load at Pin Y (A Y Level Translation)
4.0 TA = 25°C
1 CHANNEL
3.5
DATA RATE = 50kbps
3.0
2.5
2.0
1.5
FALL TIME (ns)
1.0
0.5
0
13 23 33 43 53 63 73
V
= 1.2V, V
CCA
V
CCA
V
CCA
CAPACITIVE LOAD (pF)
= 1.8V
CCY
= 1.8V, V
= 3.3V, V
CCY
CCY
= 3.3V
= 5V
05061-014
Figure 14. Fall Time vs. Capacitive Load at Pin Y (A Y Level Translation)
Rev. 0 | Page 9 of 20
ADG3300
www.BDTIC.com/ADI
10
TA = 25°C 1 CHANNEL
9
DATA RATE = 50kbps
8
7
6
5
4
RISE TIME (ns)
3
2
1
0
13 18 23 28 33 38 43 48 53
Figure 15. Rise Time vs. Capacitive Load at Pin A ( Y A Level Translation)
4.0
3.5
3.0
2.5
2.0
1.5
FALL TIME (ns)
1.0
0.5
0
Figure 16. Fall Time vs. Capacitive Load at Pin A (Y A Level Translation)
14
12
10
8
6
4
PROPAGATION DELAY (ns)
2
0
13 23 33 43 53 63
V
CCA
= 1.2V, V
= 1.8V
CCY
V
= 1.8V, V
CCA
V
CCA
CAPACITIVE LOAD (pF)
= 3.3V, V
CCY
= 3.3V
CCY
= 5V
TA = 25°C 1 CHANNEL DATA RATE = 50kbps
V
= 1.2V, V
CCA
13 18 23 28 33 38 43 48 53
= 1.8V
CCY
CAPACITIVE LOAD (pF)
V
CCA
= 1.8V, V
V
CCA
= 3.3V, V
CCY
= 3.3V
CCY
= 5V
TA = 25°C 1 CHANNEL DATA RATE = 50kbps
V
CCA
CAPACITIVE LOAD (pF)
Figure 17. Propagation Delay (t
= 1.8V, V
CCY
V
CCA
V
CCA
= 1.2V, V
= 3.3V
= 3.3V, V
= 1.8V
CCY
= 5V
CCY
73
) vs.
PLH
Capacitive Load at Pin Y (A Y Level Translation)
05061-015
05061-016
05061-017
12
DATA RATE = 50kbps
A
T
= 25°C
1 CHANNEL
10
8
6
4
PROPAGATION DELAY (ns)
2
0
13 23 33 43 53 63 73
CAPACITIVE LOAD (pF)
Figure 18. Propagation Delay (t
V
CCA
V
V
CCA
CCA
= 1.2V, V
= 1.8V, V
= 3.3V, V
) vs.
PHL
CCY
Capacitive Load at Pin Y (A Y Level Translation)
9
TA = 25°C 1 CHANNEL
8
DATA RATE = 50kbps
7
6
5
4
3
V
= 1.8V, V
PROPAGATION DELAY (ns)
CCA
2
1
0
13 18 23 28 33 38 43 48 53
= 3.3V
CCY
CAPACITIVE LOAD (pF)
Figure 19. Propagation Delay (t
V
V
CCA
CCA
= 1.2V, V
= 3.3V, V
PLH
CCY
CCY
) vs.
Capacitive Load at Pin A (Y A Level Translation)
9
TA = 25°C 1 CHANNEL
8
DATA RATE = 50kbps
7
6
5
4
V
3
PROPAGATION DELAY (ns)
2
1
0
13 18 23 28 33 38 43 48 53
CCA
CAPACITIVE LOAD (pF)
Figure 20. Propagation Delay(t
= 1.8V, V
V
CCA
V
CCA
= 3.3V
CCY
= 3.3V, V
= 1.2V, V
= 5V
CCY
PHL
CCY
) vs.
Capacitive Load at Pin A (Y A Level Translation)
= 1.8V
CCY
CCY
= 1.8V
= 5V
= 1.8V
= 3.3V
= 5V
05061-018
05061-019
05061-020
Rev. 0 | Page 10 of 20
ADG3300
www.BDTIC.com/ADI
TA = 25°C DATA RATE = 25Mbps
= 50pF
C
L
1 CHANNEL
TA = 25°C DATA RATE = 50Mbps C
= 15pF
L
1 CHANNEL
200mV/DIV
5ns/DIV
05061-021
Figure 21. Eye Diagram at Y Output (1.2 V to 1.8 V Level Translation, 25 Mbps)
TA = 25°C DATA RATE = 25Mbps C
= 50pF
L
1 CHANNEL
400mV/DIV
5ns/DIV
05061-022
Figure 22. Eye Diagram at A Output (1.8 V to 1.2 V Level Translation, 25 Mbps)
TA = 25°C DATA RATE = 50Mbps
= 50pF
C
L
1 CHANNEL
400mV/DIV
3ns/DIV
05061-024
Figure 24. Eye Diagram at A Output (3.3 V to 1.8 V Level Translation, 50 Mbps)
TA = 25°C DATA RATE = 50Mbps CL = 50pF 1 CHANNEL
1V/DIV
3ns/DIV
05061-025
Figure 25. Eye Diagram at Y Output (3.3 V to 5 V Level Translation, 50 Mbps)
TA = 25°C DATA RATE = 50Mbps C
= 15pF
L
1 CHANNEL
500mV/DIV
3ns/DIV
05061-023
Figure 23. Eye Diagram at Y Output (1.8 V to 3.3 V Level Translation, 50 Mbps)
Rev. 0 | Page 11 of 20
800mV/DIV
3ns/DIV
05061-026
Figure 26. Eye Diagram at A Output (5 V to 3.3 V Level Translation, 50 Mbps)
ADG3300
www.BDTIC.com/ADI

TEST CIRCUITS

EN
V
CCA
0.1µF
A
K1
ADG3300
GND
V
0.1µF
Y
CCY
V
CCA
K2
0.1µF
A
ADG3300
V
CCY
0.1µF
Y
I
OH
I
OL
Figure 27. V
Voltages at Pin A
OH/VOL
05061-027
A
K
EN
GND
Figure 30. EN Pin Leakage Current
05061-031
EN
V
CCA
0.1µF
K2
A
Figure 28. V
ADG3300
GND
OH/VOL
V
CCY
Y
I
OH
Voltages at Pin Y
0.1µF
EN
V
CCA
A
K1
I
OL
05061-028
ADG3300
GND
Figure 31.Capacitance at Pin Y
V
CCY
Y
CAPACITANCE
METER
05061-033
0.1µF
EN
V
CCA
ADG3300
V
CCY
0.1µF
A
GND
Y
K
A
05061-030
Figure 29. Three-State Leakage Current at Pin Y
Rev. 0 | Page 12 of 20
ADG3300
www.BDTIC.com/ADI
SIGNAL
SOURCE
R
50
S
0.1µF
Z0 = 50
V
50
V
SIGNAL SOURCE
R
S
50
NOTES
+
0.1µF
90%
10%
10µF
K1
Z0 = 50
V
EN
V
A
V
Y
V
EN
V
A
V
Y
1. t
IS WHICHEVER IS LARGER BETWEEN
EN
CCA
A
V
A
V
EN
R
T
50
t
EN1
t
EN2
ADG3300
EN
GND
t
AND
EN1
t
.
EN2
Figure 32. Enable Time
V
EN
V
CCA
+
10µF
A
R
T
ADG3300
CCY
0.1µF
YA
V
Y
50pF
+
10µF
0.1µF
15pF
+
V
A
V
CCA
10µF
V
CCY
+
0.1µF
Y
50pF
V
CCA
0V V
CCA
0V V
CCY
0V
V
CCA
0V V
CCA
0V V
CCY
0V
10µF
1M
V
Y
K2
1M
05061-034
V
EN
ADG3300
CCY
0.1µF
+
10µF
SIGNAL
SOURCE
Z0 = 50
R
YA
V
Y
R
T
50
S
50
GND
V
A
50%
t
P,A-Y
t
R,A-Y
05061-035
90% 50%
10%
t
V
Y
P,A-Y
t
F,A-Y
Figure 33. Switching Characteristics (A Y Level Translation)
Rev. 0 | Page 13 of 20
GND
V
Y
50%
t
P,Y-A
t
F,Y-A
90% 50%
10%
V
A
Figure 34. Switching Characteristics (Y A Level Translation)
t
P,Y-A
t
R,Y-A
05061-036
ADG3300
www.BDTIC.com/ADI

TERMINOLOGY

Table 4.
Symbol Description
V
IHA
V
ILA
V
OHA
V
OLA
R
A,HiZ
V
IHY
V
ILY
V
OHY
V
OLY
C
Y
I
LY, HiZ
V
IHEN
V
ILEN
C
EN
I
LEN
t
EN
t
P, A-Y
t
R, A-Y
t
F, A-Y
D
MAX, A-Y
t
SKEW, A-Y
t
PPSKEW, A-Y
t
P, Y-A
t
R, Y-A
t
F, Y-A
D
MAX, Y-A
t
SKEW, Y-A
t
PPSKEW, Y-A
V
CCA
V
CCY
I
CCA
I
CCY
I
HiZA
I
HiZY
Logic input high voltage at Pins A1 to A8. Logic input low voltage at Pins A1 to A8. Logic output high voltage at Pins A1 to A8. Logic output low voltage at Pins A1 to A8. Pull-down resistance measured at Pins A1 to A8 when EN = 0. Logic input high voltage at Pins Y1 to Y8. Logic input low voltage at Pins Y1 to Y8. Logic output high voltage at Pins Y1 to Y8. Logic output low voltage at Pins Y1 to Y8. Capacitance measured at Pins Y1 to Y8 (EN = 0). Leakage current at Pins Y1 to Y8 when EN = 0 (high impedance state at Pins Y1 to Y8). Logic input high voltage at the EN pin. Logic input low voltage at the EN pin. Capacitance measured at EN pin. Enable (EN) pin leakage curent. Three-state enable time for Pins Y1 to Y8. Propagation delay when translating logic levels in the A Y direction. Rise time when translating logic levels in the A Y direction. Fall time when translating logic levels in the A Y direction. Guaranteed data rate when translating logic levels in the A Y direction under the driving and loading conditions
specified in Table 1. Difference between propagation delays on any two channels when translating logic levels in the A Y direction. Difference in propagation delay between any one channel and the same channel on a different part (under the
same driving/loading conditions) when translating logic levels in the A Propagation delay when translating logic levels in the Y A direction. Rise time when translating logic levels in the Y A direction. Fall time when translating logic levels in the Y A direction. Guaranteed data rate when translating logic levels in the Y A direction under the driving and loading conditions
specified in Table 1. Difference between propagation delays on any two channels when translating logic levels in the Y A direction. Difference in propagation delay between any one channel and the same channel on a different part (under the
same driving/loading conditions) when translating in the Y V
supply voltage.
CCA
V
supply voltage.
CCY
V
supply current.
CCA
V
supply current.
CCY
V
supply current during three-state mode (EN = 0).
CCA
V
supply current during three-state mode (EN = 0).
CCY
Y direction.
A direction.
Rev. 0 | Page 14 of 20
ADG3300
www.BDTIC.com/ADI

THEORY OF OPERATION

The ADG3300 level translator allows the level shifting necessary for data transfer in a system where multiple supply voltages are used. The device requires two supplies, V V
). These supplies set the logic levels on each side of the
CCY
CCA
and V
device. When driving the A pins, the device translates the V compatible logic levels to V
-compatible logic levels available
CCY
CCY
(V
CCA
CCA
at the Y pins. Similarly, since the device is capable of bidirectional translation, when driving the Y pins, the V levels are translated to V
-compatible logic levels available at
CCA
-compatible logic
CCY
the A pins. When EN = 0, the A1 to A8 are internally pulled down with 6 kΩ resistors while Y1 to Y8 pins are three-stated. When EN is driven high, the ADG3300 goes into normal operation mode and performs level translation.

LEVEL TRANSLATOR ARCHITECTURE

The ADG3300 consists of eight bidirectional channels. Each channel can translate logic levels in either the A Y or the Y A direction. It uses a one-shot accelerator architecture, which ensures excellent switching characteristics. Figure 35 shows a simplified block diagram of a bidirectional channel.
V
CCA
6k
U2
U1
P
A
ONE-SHOT GENERATOR
V
CCY
T2T1
N
Y
-

INPUT DRIVING REQUIREMENTS

To ensure correct operation of the ADG3300, the circuit that drives the input of an ADG3300 channels should have an output impedance of less than or equal to 150 Ω and a minimum current driving capability of 36 mA.

OUTPUT LOAD REQUIREMENTS

The ADG3300 level translator is designed to drive CMOS­compatible loads. If current driving capability is required, it is recommended to use buffers between the ADG3300 outputs and the load.

ENABLE OPERATION

The ADG3300 provides three-state operation at the Y I/O pins by using the enable (EN) pin as shown in Table 5.
Table 5. Truth Table
EN
0 Hi-Z 1 Normal operation2Normal operation
1
High impedance state.
2
In normal operation, the ADG3300 performs level translation.
When EN = 0, the ADG3300 enters into three-state mode. In this mode the current consumption from both the V V
supplies is reduced, allowing the user to save power, which
CCY
is critical, especially for battery-operated systems. The EN input pin can be driven with either V levels.
Y I/O Pins A I/O Pins
1
6 kΩ pull-down to GND
CCA
- or V
-compatible logic
CCY
CCA
2
and
U3
6k
Figure 35. Simplified Block Diagram of an ADG3300 Channel
U4
T3T4
05061-037
The logic level translation in the A Y direction is performed using a level translator (U1) and an inverter (U2), and the translation in the Y
A direction is performed using the inverters
U3 and U4. The one-shot generator detects a rising or falling edge present on either the A side or the Y side of the channel. It sends a short pulse that turns on the PMOS transistors (T1–T2) for a rising edge, or the NMOS transistors (T3–T4) for a falling edge. This charges/discharges the capacitive load faster, which results in fast rise and fall times.
The inputs of the unused channels (A or Y) should be tied to their corresponding V
rail (V
CC
CCA
or V
) or to GND.
CCY
Rev. 0 | Page 15 of 20

POWER SUPPLIES

For proper operation of the ADG3300, the voltage applied to the V to V sequence is V properly only after both supply voltages reach their nominal values. It is not recommended to use the part in a system where V nificant increase in the current taken from the V optimum performance, the V decoupled to GND as close as possible to the device.
must always be less than or equal to the voltage applied
CCA
. To meet this condition, the recommended power-up
CCY
first and then V
CCY
might be greater than V
CCA
. The ADG3300 operates
CCA
during power-up due to a sig-
CCY
CCA
and V
pins should be
CCY
supply. For
CCA
ADG3300
www.BDTIC.com/ADI

DATA RATE

The maximum data rate at which the device is guaranteed to operate is a function of the V
CCA
and V combination and the load capacitance. It is given by the maximum frequency of a square wave that can be applied to the device, which meets the V
and VOL levels at the output and
OH
does not exceed the maximum junction temperature (see Tabl e 2) . Ta b le 6 sho w s t h e g u ar a nte e d d a ta r ate s at w hic h th e ADG3300 can operate in both directions (A translation) for various V
CCA
and V
CCY
Table 6. Guaranteed Data Rate (Mbps)
V
CCA
1.2 V (1.15 V to 1.3 V) 25 30 40 40
1.8 V (1.65 V to 1.95 V) - 45 50 50
2.5 V (2.3 V to 2.7 V) - - 60 50
3.3 V (3.0 V to 3.6 V) - - - 50 5 V (4.5 V to 5.5 V) - - - -
1
The load capacitance used is 50 pF when translating in the A Y direction and 15 pF when translating in the Y A direction.
supply voltage
CCY
Y and Y A level
supply combinations.
1
1.8 V
(1.65 V to 1.95 V)
2.5 V
(2.3 V to 2.7 V)
V
CCY
3.3 V
(3.0 V to 3.6 V)
5 V
(4.5 V to 5.5 V)
Rev. 0 | Page 16 of 20
ADG3300
www.BDTIC.com/ADI

APPLICATIONS

The ADG3300 is designed for digital circuits that operate at different supply voltages; therefore, logic level translation is required. The lower voltage logic signals are connected to the A pins, and the higher voltage logic signals are connected to the Y pins. The ADG3300 can provide level translation in both directions from A
Y and Y A on all eight channels, eliminating
the need for a level translator IC for each direction. The internal architecture allows the ADG3300 to perform bidirectional level translation without an additional signal to set the direction of the translation. It also allows simultaneous data flow in both directions on the same part, for example, four channels translate in the A Y direction while the other four translate in the Y A direction. This simplifies the design by eliminating the timing requirements for the direction signal and reduces the number of ICs used for level translation.
Figure 36 shows an application where a 1.8 V microprocessor can read or write data to or from a 3.3 V peripheral device using an 8-bit bus.
100nF
Y1
V
CCY
Y2
Y3
Y4
Y5
Y6
Y7
Y8A8
I/OH1
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
2
H
3
H
4
H
PERIPHERAL
5
H
6
H
7
H
8
H
3.3V
DEVICE
1.8V
MICROPROCESSOR/
MICROCONTROLLER/
DSP
GND
Figure 36. 1.8 V to 3.3 V 8-Bit Level Translation Circuit
I/OL1
I/O
I/O
I/O
I/OL5
I/O
I/O
I/O
100nF
A1 V
CCA
2
L
3
L
4
L
6
L
7
L
8
L
A2
A3
A4
ADG3300
A5
A6
A7
EN GND
When the application requires level translation between a microprocessor and multiple peripheral devices, the ADG3300 Y I/O pins (Y1 to Y8) can be three-stated by setting EN = 0. This feature allows the ADG3300 to share the data buses with
05061-038
other devices without causing contention issues. Figure 37 shows an application where a 3.3 V microprocessor is connected to
1.8 V peripheral devices using the three-state feature.
100nF 100nF
3.3V
MICROPROCESSOR/
MICROCONTROLLER/
DSP
GND
CS
I/O
1
H
I/OH2 I/O
3
H
I/O
4
H
5
I/O
H
I/O
6
H
I/O
7
H
8
I/O
H
100nF 100nF
Y1 V
CCY
Y2 Y3
ADG3300
Y4 Y5 Y6 Y7 Y8
Y1 V
CCY
Y2 Y3
ADG3300
Y4 Y5 Y6 Y7 Y8 GND
A1
V
CCA
A2 A3 A4 A5 A6 A7 A8
ENGND
A1
V
CCA
A2 A3 A4 A5 A6 A7 A8 EN
I/OL1
I/O I/O I/O I/O I/O I/O I/O GND
I/OL1
I/O I/O I/O I/O I/O I/O I/O GND
2
L
3
L
4
L
5
L
6
L
7
L
8
L
2
L
3
L
4
L
5
L
6
L
7
L
8
L
1.8V
PERIPHERAL
DEVICE 1
1.8V
PERIPHERAL
DEVICE 2
Figure 37. 1.8 V to 3.3 V Level Translation Circuit
Using the Three-State Feature

LAYOUT GUIDELINES

As with any high speed digital IC, the printed circuit board layout is important in the overall circuit performance. Care should be taken to ensure proper power supply bypass and return paths for the high speed signals. Each V V
) should be bypassed using low effective series resistance
CCY
pin (V
CC
(ESR) and effective series inductance (ESI) capacitors placed as close as possible to the V
CCA
and V
pins. The parasitic induc-
CCY
tance of the high speed signal track might cause significant overshoot. This effect can be reduced by keeping the length of the tracks as short as possible. A solid copper plane for the return path (GND) is also recommended.
CCA
and
05061-039
Rev. 0 | Page 17 of 20
ADG3300
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

6.60
6.50
6.40
PIN 1
0.15
0.05
COPLANARITY
0.10
20
1
0.65
BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153AC
1.20 MAX
11
10
SEATING PLANE
4.50
4.40
4.30
6.40 BSC
0.20
0.09 8°
0.75
0.60
0.45
Figure 38 . 20-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-20)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
ADG3300BRUZ ADG3300BRUZ-REEL ADG3300BRUZ-REEL7
1
Z = Pb-free part.
1
1
−40°C to +85°C TSSOP RU-20
−40°C to +85°C TSSOP RU-20
1
−40°C to +85°C TSSOP RU-20
Rev. 0 | Page 18 of 20
ADG3300
www.BDTIC.com/ADI
NOTES
Rev. 0 | Page 19 of 20
ADG3300
www.BDTIC.com/ADI
NOTES
© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
D05061–0–4/05(0)
Rev. 0 | Page 20 of 20
Loading...