Timing and AC Characteristics
Unless otherwise specified, the following specifications apply: VIN = -1dBFS, AGND = DGND = DRGND = 0V, VA = VD = +3.3V,
VDR = +1.8V, Internal V
REF
= +1.0V, f
CLK
= 170 MHz, VCM = VRM, CL = 5 pF/pin, Single-Ended Clock Mode, Offset Binary Format.
Typical values are for TA = 25°C. Timing measurements are taken at 50% of the signal amplitude. Boldface limits apply for
T
MIN
≤ TA ≤ T
MAX
. All other limits apply for TA = 25°C (Notes 7, 8, 9)
Symbol Parameter Conditions
Typical
(Note 10)
Limits
Units
(Limits)
Maximum Clock Frequency 170 MHz (max)
Minimum Clock Frequency 5 MHz (min)
t
CH
Clock High Time 2.7
ns
t
CL
Clock Low Time
2.7 ns
Conversion Latency 7 Clock Cycles
t
OD
Output Delay of CLK to DATA Relative to falling edge of CLK 2.0 ns
t
DV
Data Output Setup Time
Time output data is valid before the
output edge of DRDY (Note 15)
1.9 1.35 ns (min)
t
DNV
Data Output Hold Time
Time till output data is not valid after the
output edge of DRDY (Note 15)
1.9 1.35 ns (min)
t
AD
Aperture Delay 0.5 ns
Aperture Jitter 0.08 ps rms
Power Down Recovery Time
0.1 µF on pins 43, 44; 10 µF and 0.1 µF
between pins 43, 44; 0.1 µF and 10 µF
on pins 45, 46
3.0 ms
Sleep Recovery Time
0.1 µF on pins 43, 44; 10 µF and 0.1 µF
between pins 43, 44; 0.1 µF and 10 µF
on pins 45, 46
100 µs
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is
guaranteed to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under
the listed test conditions. Operation of the device beyond the maximum Operating Ratings is not recommended.
Note 2: All voltages are measured with respect to GND = AGND = DGND = DRGND = 0V, unless otherwise specified.
Note 3: When the input voltage at any pin exceeds the power supplies (that is, VIN < AGND, or VIN > VA), the current at that pin should be limited to ±5 mA. The
±50 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of ±5 mA to 10.
Note 4: The maximum allowable power dissipation is dictated by T
J,max
, the junction-to-ambient thermal resistance, (θJA), and the ambient temperature, (TA), and
can be calculated using the formula P
D,max
= (T
J,max
- TA )/θJA. The values for maximum power dissipation listed above will be reached only when the device is
operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such
conditions should always be avoided.
Note 5: Human Body Model is 100 pF discharged through a 1.5 kΩ resistor. Machine Model is 220 pF discharged through 0 Ω
Note 6: Reflow temperature profiles are different for lead-free and non-lead-free packages.
Note 7: The inputs are protected as shown below. Input voltage magnitudes above VA or below GND will not damage this device, provided current is limited per
(Note 3). However, errors in the A/D conversion can occur if the input goes above 2.6V or below GND as described in the Operating Ratings section.
20209211
Note 8: To guarantee accuracy, it is required that |VA–VD| ≤ 100 mV and separate bypass capacitors are used at each power supply pin.
Note 9: With the test condition for V
REF
= +1.0V (2V
P-P
differential input), the 12-Bit LSB is 488.3 µV.
Note 10: Typical figures are at TA = 25°C and represent most likely parametric norms at the time of product characterization. The typical specifications are not
guaranteed.
Note 11: Integral Non Linearity is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive and negative
full-scale.
Note 12: The input capacitance is the sum of the package/pin capacitance and the sample and hold circuit capacitance.
Note 13: Optimum performance will be obtained by keeping the reference input in the 0.9V to 1.1V range. The LM4051CIM3-ADJ (SOT-23 package) is
recommended for external reference applications.
Note 14: IDR is the current consumed by the switching of the output drivers and is primarily determined by load capacitance on the output pins, the supply voltage,
VDR, and the rate at which the outputs are switching (which is signal dependent). IDR=VDR(C0 x f0 + C1 x f1 +....C11 x f11) where VDR is the output driver power
supply voltage, Cn is total capacitance on the output pin, and fn is the average frequency at which that pin is toggling.
Note 15: This test parameter is guaranteed by design and characterization.
9 www.national.com
ADC12C170