Datasheet ADATE302-02 Datasheet (ANALOG DEVICES)

Page 1
500 MHz Dual Integrated DCL with Differential
www.BDTIC.com/ADI
Drive/Receive, Level Setting DACs, and Per Pin PMU

FEATURES

Driver
3-level driver with high-Z mode and built-in clamps Precision trimmed output resistance Low leakage mode (typically <10 nA) Voltage range: −2.0 V to +6.0 V
1.0 ns minimum pulse width, 1 V terminated
Comparator
Window and differential comparator >1 GHz input equivalent bandwidth
Load
±12 mA maximum current capability
Per pin PMU
Force voltage range: −2.0 V to +6.0 V 5 current ranges: 25 mA, 2 mA, 200 μA, 20 μA, and 2 μA
Levels
14-bit DAC for DCL levels Typically <±5 mV INL (calibrated) 16-bit DAC for PMU levels Typically <±1.5 mV INL (calibrated) linearity in FV mode
HVOUT output buffer
0 V to 13.5 V output range
84-ball, 9 mm × 9 mm, flip-chip BGA package
1.7 W per channel with no load

APPLICATIONS

Automatic test equipment Semiconductor test systems Board test systems Instrumentation and characterization equipment
ADATE302-02

GENERAL DESCRIPTION

The ADATE302-02 is a complete, single-chip solution that performs the pin electronic functions of the driver, the compa­rator, and the active load (DCL), per pin PMU, and dc levels for ATE applications. The device also contains an HVOUT driver with a VHH buffer capable of generating up to 13.5 V.
The driver features three active states: data high mode, data low mode, and term mode, as well as an inhibit state. The inhibit state, in conjunction with the integrated dynamic clamp, facilitates the implementation of a high speed active termination. The output voltage range is −2.0 V to +6.0 V to accommodate a wide variety of test devices.
The ADATE302-02 can be used as either a dual single-ended drive/receive channel or a single differential drive/receive channel. Each channel of the ADATE302-02 features a high speed window comparator per pin for functional testing as well as a per pin PMU with FV or FI and MV or MI functions. All necessary dc levels for DCL functions are generated by on-chip 14-bit DACs. The per pin PMU features an on-chip 16-bit DAC for high accuracy and contains integrated range resistors to minimize external component counts.
The ADATE302-02 uses a serial bus to program all functional blocks and has an on-board temperature sensor for monitoring the device temperature.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved.
Page 2
ADATE302-02
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Functional Block Diagram .............................................................. 3
Specifications ..................................................................................... 4
Total Function ............................................................................... 4
Driver ............................................................................................. 5
Reflection Clamp .......................................................................... 6
Normal Window Comparator .................................................... 7
Differential Comparator .............................................................. 8
Active Load .................................................................................. 10
PMU ............................................................................................. 11
External Sense (PMUS_CHx) ................................................... 15
DUTGND Input ......................................................................... 16
Serial Peripheral Interface ......................................................... 16
HVOUT Driver ........................................................................... 16
Overvoltage Detector (OVD) ................................................... 17
16-Bit DAC Monitor Mux ......................................................... 17
Absolute Maximum Ratings ......................................................... 18
Thermal Resistance .................................................................... 18
Explanation of Test Levels ......................................................... 18
ESD Caution................................................................................ 18
Pin Configuration and Function Descriptions ........................... 19
Typical Performance Characteristics ........................................... 22
Serial Peripheral Interface Details ................................................ 34
Definition of SPI Word .............................................................. 35
Write Operation.......................................................................... 36
Read Operation........................................................................... 37
Reset Operation .......................................................................... 38
Register Map ................................................................................... 39
Details of Registers ......................................................................... 40
User Information ............................................................................ 42
Details of DACs vs. Levels ......................................................... 43
Recommended PMU Mode Switching Sequences ................. 45
Block Diagrams ............................................................................... 48
Outline Dimensions ....................................................................... 52
Ordering Guide .......................................................................... 52

REVISION HISTORY

6/08—Revision 0: Initial Version
Rev. 0 | Page 2 of 52
Page 3
ADATE302-02
www.BDTIC.com/ADI

FUNCTIONAL BLOCK DIAGRAM

DAC16_MON
MEASOUT01
PMUS_CH0
DATA0P
DATA0N
RCV0P
RCV0N
COMP_VTT0
COMP_Q H0P
COMP_QH0N
COMP_QL0P
COMP_QL0N
MUX
*
CH1
100
100
16-BIT DAC
MUX
50
PMU_FLAG
PMU
*
CH1
VCH
VCL
VH
VT VL
DRV
MUX
VCH VCL
R
(TRIMMED)
OUT
SENSE
OVD
FORCE
OVD_CH0
DUT0
*
WINDOW
DIFF.
*
VHH
*
G
C
C
C
VOH
VOL
OTHER CHANNEL DUT1
HVOUT
SDIN
RST
SCLK
CS
SDOUT
*
SPI
*
ONE PER DEVICE.
IOL
VCOM
14-BIT DAC
IOH
Figure 1. Functional Block Diagram with One of Two Channels Shown
ADATE302-02
TEMPERATURE
SENSOR
*
TEMPSENSE
07278-001
Rev. 0 | Page 3 of 52
Page 4
ADATE302-02
www.BDTIC.com/ADI

SPECIFICATIONS

VDD = 10.0 V, VCC = 3.3 V, VSS = −5.75 V, V defined in Ta b le 3 7. All specified values are at T Temperature coefficients are measured at T analyses, and/or limited bench evaluations. Typical values are not tested or guaranteed. Test levels are specified in the Explanation of Test Levels section.

TOTAL FUNCTION

Table 1.
Parameter Min Typ Max Unit
TOTAL FUNCTION
Output Leakage Current
PE Disable, Range E −20.0 +6.0 +20.0 nA P −2.0 V < V
PE Disable, Range A, B, C, D 7.5 nA CT −2.0 V < V
High-Z Mode −400 +15 +400 nA P −2.0 V < V
Output Capacitance 4 pF S VTERM mode operation DUT Pin Range −2.0 +6.0 V D
POWER SUPPLIES
Total Supply Range, V VPLUS Supply, V Positive Supply, VDD 9.5 10.0 10.5 V D Defines PSRR conditions Negative Supply, VSS −6.0 −5.75 −5.5 V D Defines PSRR conditions Logic Supply, VCC 3.1 3.3 3.5 V D Defines PSRR conditions Comparator Termination, V V
Supply Current, I
PLUS
V
Supply Current, I
PLUS
Logic Supply Current, ICC 1.0 2.7 10.0 mA P Quiescent (SPI is static) Comparator Termination Current,
I
COMP_VTTx
Positive Supply Current, IDD 140.0 190 256.0 mA P Load power down (IOH = IOL = 0 mA)
170.0 231 311.0 mA P Load active off (IOH = IOL = 12 mA) Negative Supply Current, ISS 200.0 272 406.0 mA P Load power down (IOH = IOL = 0 mA)
230.0 311 461.0 mA P Load active off (IOH = IOL = 12 mA) Total Power Dissipation 2.5 3.55 4.0 W P Load power down (IOH = IOL = 0 mA)
3.0 4.2 5.5 W P Load active off (IOH = IOL = 12 mA)
TEMPERATURE MONITORS
Temperature Sensor Gain 10 mV/K CT Temperature Sensor Accuracy Without
Calibration over 25°C to 100°C
VREF INPUT
Reference Input Voltage Range for
DACs (VREF Pin)
Input Bias Current 0.08 100 A P Tested with 5 V applied
to VSS 22.5 23.25 V D Defines PSRR conditions
PLUS
16.25 16.75 17.25 V D Defines PSRR conditions
PLUS
1 1.5 3.3 V D
COMP_VTTx
−1.0 +1.3 +4.0 mA P HVOUT disabled
PLUS
4.0 12.7 17.0 mA P HVOUT enabled, RCVx pins active, no load, VHH = 12 V
PLUS
= 16.75 V, V
PLUS
= 80°C, where TJ corresponds to the internal temperature sensor, unless otherwise noted.
J
= 80°C ± 20°C, unless otherwise noted. Typical values are based on design, simulation
J
COMP_VTTx
= 1.5 V, V
= 5.0 V, V
REF
= 0.0 V. All default test conditions are as
REF_GND
Test Level Conditions/Comments
< +6.0 V; PMU and PE disabled via SPI;
DUTx
VCH = 7.0 V, VCL = −2.5 V
< +6.0 V; PMU and PE disabled via SPI;
DUTx
VCH = 7.0 V, VCL = −2.5 V
< +6.0 V; PMU disabled and PE enabled via
DUTx
SPI; RCVx pins active, VCH = 7.0 V, VCL = −2.5V
40.0 46 70.0 mA P
6 °C CT Temperature voltage available on Pin A1 at all times and
on Pin K1 when selected (see Table 24 and Table 36)
4.95 5 5.05 V D Referenced to V
; not referenced to V
REF_GND
DUTGND
Rev. 0 | Page 4 of 52
Page 5
ADATE302-02
www.BDTIC.com/ADI

DRIVER

VH − VL ≥ 200 mV (to meet dc/ac specifications).
Table 2.
Parameter Min Typ Max Unit
DC SPECIFICATIONS
High-Speed Differential Logic Input
Characteristics (DATAx, RCVx) Input Termination Resistance 92 100 108 P Push 6 mA into xP pins, force 1.3 V on xN pins; measure
Input Voltage Differential 0.2 1.0 V PF Common-Mode Voltage 0.85 2.35 V PF Input Bias Current −20.0 +4.0 +20.0 A P Each pin tested at 2.85 V and 0.35 V, while other high speed
Pin Output Characteristics
Output High Range, VH −1.9 +6.0 V D Output Low Range, VL −2.0 +5.9 V D Output Term Range, VT −2.0 +6.0 V D Functional Amplitude (VH − VL) 0.0 8.0 V D Amplitude can be programmed to VH = VL, accuracy
DC Output Current Limit Source 75 100 120 mA P Driver high, VH = 6.0 V, short DUTx pin to −2.0 V, measure
DC Output Current Limit Sink −120 −100 −75 mA P Driver low, VL = −2.0 V, short DUTx pin to 6.0 V, measure current Output Resistance, ±50 mA 45.0 48.5 51.0 P Source: driver high, VH = 3.0 V, I
ABSOLUTE ACCURACY VH tests done with VL = −2.5 V and VT = −2.5 V;
VH, VL, VT Uncalibrated Accuracy −300 ±75 +300 mV P Error measured at calibration points of 0 V and 5 V VH, VL, VT Offset Tempco ±450 V/°C CT Measured at calibration points VH, VL, VT DNL ±1 mV CT After two-point gain/offset calibration VH, VL, VT INL −10 ±2.5 +10 mV P After two-point gain/offset calibration; measured over driver
VH, VL, VT Resolution 0.6 1 mV PF After two-point gain/offset calibration; range/number of DAC
DUTGND Voltage Accuracy −7 ±1.3 +7 mV P Over ±0.1 V range; measured at end points of VH, VL, and VT
VH, VL, VT Crosstalk ±2 mV CT
Overall Voltage Accuracy ±10 mV CT Sum of INL, crosstalk, DUTGND, and tempco over ±5°C,
VH, VL, VT DC PSRR ±15 mV/V CT Measured at calibration points
AC SPECIFICATIONS
Rise/Fall Times Toggle DATAx pins
0.2 V Programmed Swing 683 ps CB VH = 0.2 V, VL = 0.0 V, terminated; 20% to 80%
1.0 V Programmed Swing 521 ps CB VH = 1.0 V, VL = 0.0 V, terminated; 20% to 80%
1.8 V Programmed Swing 430 524 630 ps P/CB VH = 1.8 V, VL = 0.0 V, terminated; 20% to 80%
2.0 V Programmed Swing 531 ps CB VH = 2.0 V, VL = 0.0 V, terminated; 20% to 80%
3.0 V Programmed Swing 589 ps CB VH = 3.0 V, VL = 0.0 V, terminated; 20% to 80%
3.0 V Programmed Swing 811 ps CB VH = 3.0 V, VL = 0.0 V, unterminated; 10% to 90%
5.0 V Programmed Swing 1105 ps CB VH = 5.0 V, VL = 0.0 V, unterminated; 10% to 90% Rise to Fall Matching 6 ps CB VH = 1.0 V, VL = 0.0 V, terminated; rise to fall within one channel
Test Level
Conditions/Comments
voltage from xP to xN, calculate resistance (V/I)
pin left open
specifications apply when VH − VL ≥ 200 mV
current
= 1 mA and 50 mA;
DUTx
sink: driver low, VL = 0.0 V, I
VL tests done with VH = 7.5 V and VT = 7.5 V; VT tests done with VL = −2.5 V and VH = 7.5 V; unless otherwise specified
output ranges
bits as measured at calibration points of 0 V and 5 V
functional range VL = −2.0 V: VH = −1.9 V 6.0 V, VT = −2.0 V 6.0 V;
VH = 6.0 V: VL = −2.0 V 5.9 V, VT = −2.0 V 6.0 V; VT = 1.5 V: VL = −2.0 V 5.9 V, VH = −1.9 V → 6.0 V; dc crosstalk on VL, VH, VT output level when other driver DACs are varied
after gain/offset calibration
= −1 mA and −50 mA; ∆V
DUTx
DUTx
/∆I
DUTx
Rev. 0 | Page 5 of 52
Page 6
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
Minimum Pulse Width Toggle DATAx pins
2.0 V Programmed Swing 1.2 ns CB VH = 2.0 V, VL = 0.0 V, terminated; timing error ±27 ps
1.2 ns CB VH = 2.0 V, VL = 0.0 V, terminated; less than 10% amplitude
1.0 ns CB VH = 2.0 V, VL = 0.0 V, terminated; less than 20% amplitude
Maximum Toggle Rate 500 MHz CB VH = 2.0 V, VH = 0.0 V, terminated, 18% amplitude degradation
Dynamic Performance, Drive
(VH to VL and VL to VH) Propagation Delay Time 2.1 ns CB VH = 2.0 V, VL = 0.0 V, terminated Propagation Delay Tempco 4.5 ps/°C CT VH = 2.0 V, VL = 0.0 V, terminated Delay Matching VH = 2.0 V, VL = 0.0 V, terminated
Edge to Edge 41 ps CB Rising vs. falling
Channel to Channel ±15 ps CB Rising vs. rising, falling vs. falling Delay Change vs. Duty Cycle ±30 ps CB VH = 3.0 V, VL = 0.0 V, terminated; 5% to 95% duty cycle; 1 MHz Overshoot and Undershoot 48 mV CB VH = 3.0 V, VL = 0.0 V, terminated Settling Time (VH to VL) Toggle DATAx pins
To Within 3% of Final Value 1.2 ns CB VH = 3.0 V, VL = 0.0 V, terminated
To Within 1% of Final Value 14 ns CB VH = 3.0 V, VL = 0.0 V, terminated
Dynamic Performance, VTERM
(VH or VL to VT and VT to VH or VL)
Propagation Delay Time 2.7 ns CB VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated Delay Matching, Edge to Edge 59 ps CB VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; rising vs. falling Propagation Delay Tempco 5.5 ps/°C CT VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated Transition Time, Active to VT,
VT to Active
Dynamic Performance,
Inhibit (VH or VL to/from Inhibit) Propagation Delay Time VH = +1.0 V, VL = −1.0 V, terminated
Active to Inhibit 2.7 ns CB
Inhibit to Active 3.7 ns CB Transition Time VH = +1.0 V, VL = −1.0 V, terminated; 20% to 80%
Active to Inhibit 1.3 ns CB
Inhibit to Active 0.4 ns CB I/O Spike 157 mV CB VH = 0.0 V, VL = 0.0 V, terminated
Toggle DATAx pins
Toggle RCVx pins
0.614 ns CB VH = 3.0 V, VT = 1.5 V, VL = 0.0 V, terminated; 20% to 80%
Toggle RCVx pins
Test Level Conditions/Comments
degradation
degradation

REFLECTION CLAMP

Clamp accuracy specifications apply when VCH > VCL.
Table 3.
Parameter Min Typ Max Unit
VCH
Range −1.0 +6.0 V D Uncalibrated Accuracy −200 ±45 +200 mV P Driver high-Z, sinking 1 mA; VCH error measured at
Resolution 0.6 0.75 mV PF Driver high-Z, sinking 1 mA; after two-point gain/offset
DNL ±1 mV CT Driver high-Z, sinking 1 mA; after two-point gain/offset
INL −40 ±2 +40 mV P Driver high-Z, sinking 1 mA; after two-point gain/offset
Tempco −0.5 mV/°C CT Measured at calibration points
Rev. 0 | Page 6 of 52
Test Level
Conditions/Comments
calibration points of 0 V and 5 V
calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V
calibration
calibration; measured over VCH range of −1 V to +6 V
Page 7
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
VCL
Range −2 +5.0 V D
Uncalibrated Accuracy −200 ±70 +200 mV P Driver high-Z, sourcing 1 mA; VCL error measured at
Resolution 0.6 0.75 mV PF Driver high-Z, sourcing 1 mA; after two-point gain/offset
DNL ±1 mV CT Driver high-Z, sourcing 1 mA; after two-point gain/offset
INL −40 ±2 +40 mV P Driver high-Z, sourcing 1 mA; after two-point gain/offset
Tempco 0.6 mV/°C CT Measured at calibration points
DC CLAMP CURRENT LIMIT
VCH −120 −83 −60 mA P Driver high-Z, VCH = 0 V, VCL = −2.0 V, V
VCL 60 86 120 mA P Driver high-Z, VCH = 6.0 V, VCL = 5.0 V, V
DUTGND VOLTAGE ACCURACY −7 ±1 +7 mV P Over ±0.1 V range; measured at the end points of VCH

NORMAL WINDOW COMPARATOR

VOH tests done with VOL = −2.0 V, VOL tests done with VOH = 6.0 V, unless other wise specified.
Test Level Conditions/Comments
calibration points of 0 V and 5 V
calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V
calibration
calibration; measured over VCL range of −2 V to +5 V
and VCL functional range
DUTx
DUTx
= 5 V
= 0.0 V
Table 4.
Parameter Min Typ Max Unit
DC SPECIFICATIONS
Input Voltage Range −2.0 +6.0 V D
Differential Voltage Range ±0.1 ±8.0 V D
Comparator Input Offset Voltage
Accuracy, Uncalibrated
Comparator Threshold Resolution 0.61 1 mV PF After two-point gain/offset calibration; range/
Comparator Threshold DNL ±1 mV CT After two-point gain/offset calibration
Comparator Threshold INL −7 ±1.2 +7 mV P After two-point gain/offset calibration; measured
Comparator Input Offset Voltage
Tempco
DUTGND Voltage Accuracy −7 ±0.5 +7 mV P Over ±0.1 V range; measured at end points of VOH
Comparator Uncertainty Range 5.3 mV CB V
DC Hysteresis 0.5 mV CB V
DC PSRR ±5 mV/V CT Measured at calibration points
Digital Output Characteristics
Internal Pull-Up Resistance to
Comparator, COMP_VTTx Pin
V Common-Mode Voltage V
V
Differential Voltage 250 mV CT Measured with 100 Ω differential termination 450 500 550 mV P Measured with no external termination Rise/Fall Time, 20% to 80% 222 ps CB Measured with each comparator leg terminated
Range 1 1.5 3.3 V D
COMP_VTTx
−150 ±30 +150 mV P Offset measured at calibration points of 0 V and 5 V
±200 µV/°C CT Measured at calibration points
46 50 54 P Pull 1 mA and 10 mA from Logic 1 leg and measure
V CT Measured with 100 Ω differential termination
V P Measured with no external termination
COMP_VTTx
COMP_VTTx
− 0.5
COMP_VTTx
− 0.3 V
Test Level
Conditions/Comments
number of DAC bits as measured at calibration points of 0 V and 5 V
over VOH, VOL range of −2.0 V to +6.0 V
and VOL functional range
= 0 V, sweep comparator threshold to
DUTx
determine uncertainty region
= 0 V
DUTx
∆V to calculate resistance; measured ∆V/9 mA; done for both comparator logic states
50 Ω to GND
Rev. 0 | Page 7 of 52
Page 8
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
AC SPECIFICATIONS Input transition time = 600 ps, 10% to 90%;
Propagation Delay, Input to Output 1.4 ns CB V
Propagation Delay Tempco 4 ps/°C CT V
Propagation Delay Matching V
High Transition to Low Transition 39 ps CB High to Low Comparator ±30 ps CB
Propagation Delay Change with
Respect to Slew Rate, 600 ps and 1 ns
(10% to 90%)
Overdrive, 250 mV and 1.0 V 65 ps CB For 250 mV: V
Pulse Width, 1 ns, 5 ns, 10 ns, and
15 ns
Duty Cycle, 5% to 95% 11.8 ps CB V
Minimum Pulse Width 1 ns CB V
Input Equivalent Bandwidth,
Terminated
ERT High-Z Mode, 3 V, 20% to 80% 0.9 ns CB V
19 ps CB V
27 ps CB V
1000 MHz CB V
Test Level Conditions/Comments
measured with each comparator leg terminated 50 Ω to GND; unless otherwise specified
= 0 V to 1.0 V swing, driver VTERM mode,
DUTx
VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V
= 0 V to 1.0 V swing, driver VTERM mode,
DUTx
VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V
= 0 V to 1.0 V swing, driver VTERM mode,
DUTx
VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V
= 0 V to 0.5 V swing, driver VTERM mode,
DUTx
VT = 0.0 V; high-side measurement: VOH = 0.25 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.25 V
= 0 V to 0.5 V swing; for 1.0 V: V 0 V to 1.25 V swing; driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.25 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.25 V; input transition time = 400 ps (10%/90%)
= 0 V to 1.0 V swing @ 32.0 MHz, driver VTERM
DUTx
mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V; input transition time = 400 ps (10%/90%)
= 0 V to 1.0 V swing @ 1.0 MHz, driver VTERM
DUTx
mode, VT = 0.0 V; high-side measurement: VOH = 0.5 V, VOL = −2.0 V; low-side measurement: VOH = 6.0 V, VOL = 0.5 V; input transition time = 400 ps (10%/90%)
= 0 V to 1.0 V swing, driver VTERM mode,
DUTx
VT = 0.0 V; less than 10% amplitude degradation measured by shmoo; input transition time = 400 ps (10%/90%)
= 0 V to 1.0 V swing, driver VTERM mode,
DUTx
VT = 0.0 V; as measured by shmoo; input transition time = 400 ps (10%/90%)
= 0 V to 3.0 V swing, driver high-Z; as measured
DUTx
by shmoo
DUTx
DUTx
=

DIFFERENTIAL COMPARATOR

VOH tests done with VOL = −1.1 V, VOL tests done with VOH = 1.1 V, unless other wise specified.
Table 5.
Parameter Min Typ Max Unit
DC SPECIFICATIONS
Input Voltage Range −1.5 +4.5 V D Operational Differential Voltage
Range Maximum Differential Voltage Range ±8 V D Comparator Input Offset Voltage
Accuracy, Uncalibrated
±0.05 ±1.1 V D
−150 ±25 +150 mV P Offset measured at differential calibration points of
Rev. 0 | Page 8 of 52
Test Level
Conditions/Comments
+1 V and −1 V, with common mode = 0 V
Page 9
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
VOH, VOL Resolution 0.61 1 mV PF After two-point gain/offset calibration; range/number of
VOH, VOL DNL ±1 mV CT After two-point gain/offset calibration; common mode =
VOH, VOL INL −7 ±1.0 +7 mV P After two-point gain/offset calibration; measured over
VOH, VOL Offset Voltage Tempco ±200 µV/°C CT Measured at calibration points Comparator Uncertainty Range 18 mV CB V
DC Hysteresis 0.5 mV CB V CMRR 1 mV/V P Offset measured at common-mode voltage points of
DC PSRR ±15 mV/V CT Measured at calibration points
AC SPECIFICATIONS Input transition time = 600 ps, 10% to 90%, measured
Propagation Delay, Input to Output 1.4 ns CB V
Propagation Delay Tempco 4 ps/°C CT V
Propagation Delay Matching V
High Transition to Low Transition 27 ps CB High to Low Comparator ±32 ps CB
Propagation Delay Change with
V
Respect to
Slew Rate, 400 ps and 1 ns
25 ps CB V
(10% to 90%)
Overdrive, 250 mV and 750 mV 79 ps CB V
Pulse Width, 1 ns, 5 ns, 10 ns, and
56 ps CB V
15 ns
Duty Cycle, 5% to 95% 16 ps CB V
Minimum Pulse Width 1 ns CB V
Input Equivalent Bandwidth,
500 MHz CB V
Terminated
Test Level Conditions/Comments
DAC bits as measured at differential calibration points of +1 V and −1 V, with common mode = 0 V
0 V
VOH, VOL range of −1.1 V to +1.1 V, common mode = 0 V
= 0 V, sweep comparator threshold to determine
DUTx
uncertainty region
= 0 V
DUTx
−1.5 V and +4.5 V, with differential voltage = 0 V
with each comparator leg terminated 50 Ω to GND
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
= 0 V, for 250 mV: V
DUT0
for 750 mV: V
= 0 V to 1.0 V swing, driver VTERM mode,
DUT1
DUT1
VT = 0.0 V; VOH = −0.25 V; repeat for other DUT channel with comparator threshold = 0.25 V
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing @ 32 MHz,
DUT1
driver VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing @ 32 MHz, driver
DUT1
VTERM mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 10% amplitude degradation measured by shmoo; repeat for other DUT channel
DUT0
= 0 V, V
= −0.5 V to +0.5 V swing, driver VTERM
DUT1
mode, VT = 0.0 V; high-side measurement: VOH = 0.0 V, VOL = −1.1 V; low-side measurement: VOH = 1.1 V, VOL = 0.0 V; less than 22% amplitude degradation measured by shmoo; repeat for other DUT channel
= 0 V to 0.5 V swing;
Rev. 0 | Page 9 of 52
Page 10
ADATE302-02
www.BDTIC.com/ADI

ACTIVE LOAD

See Tab le 2 9 for load control information.
Table 6.
Parameter Min Typ Max Unit
DC SPECIFICATIONS Load active on, RCVx pins active, unless otherwise noted
Input Characteristics
VCOM Voltage Range −1.75 +5.75 V D
V
Range −2.0 +6.0 V D
DUTx
VCOM Accuracy, Uncalibrated −200 ±25 +200 mV P IOH = IOL = 6 mA, VCOM error measured at calibration
VCOM Resolution 0.61 1 mV PF IOH = IOL = 6 mA, after two-point gain/offset
VCOM DNL ±1 mV CT IOH = IOL = 6 mA, after two-point gain/offset calibration
VCOM INL −7 ±2 +7 mV P IOH = IOL = 6 mA, after two-point gain/offset
DUTGND Voltage Accuracy −7 ±1 +7 mV P Over ±0.1 V range; measured at end points of VCOM
Output Characteristics
IOL
Maximum Source Current 12 mA D Uncalibrated Offset −600.0 ±100 +600.0 µA P IOH = 0 mA, VCOM = 1.5 V, V
Uncalibrated Gain −12 ±1 +12 % P IOH = 0 mA, VCOM = 1.5 V, V
Resolution 1.5 2 µA PF IOH = 0 mA, VCOM = 1.5 V, V
DNL ±3.0 µA CT IOH = 0 mA, VCOM = 1.5 V, V
INL −70 ±20 +70 µA P IOH = 0 mA, VCOM = 1.5 V, V
90% Commutation Voltage 0.25 V P IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOL
IOH
Maximum Sink Current 12 mA D Uncalibrated Offset −600.0 ±100 +600.0 µA P IOL = 0 mA, VCOM = 1.5 V, V
Uncalibrated Gain −12 ±1 +12 % P IOL = 0 mA, VCOM = 1.5 V, V
Resolution 1.5 2 µA PF IOL = 0 mA, VCOM = 1.5 V, V
DNL ±3.0 µA CT IOL = 0 mA, VCOM = 1.5V, V
INL −70 ±20 +70 µA P IOL = 0 mA, VCOM = 1.5V, V
90% Commutation Voltage 0.25 V P IOH = IOL = 12 mA, VCOM = 2.0 V, measure IOH
Output Current Tempco ±1.5 µA/°C CT Measured at calibration points
Test Level
Conditions/Comments
points of 0 V and 5 V
calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V
calibration; measured over VCOM range of −1.75 V to +5.75 V
functional range
= 0.0 V, IOL offset
DUTx
calculated from calibration points of 1 mA and 11 mA
= 0.0 V, IOL gain
DUTx
calculated from calibration points of 1 mA and 11 mA
= 0.0 V, after two-point
DUTx
gain/offset calibration; range/number of DAC bits as measured at calibration points of 1 mA and 11 mA
= 0.0 V, after two-
DUTx
point gain/offset calibration
= 0.0 V, after two-
DUTx
point gain/offset calibration; measured over IOL range of 0 mA to 12 mA
reference at V
= 1.75 V, ensure >90% of reference current
V
DUTx
= −1.0 V, measure IOL current at
DUTx
= 3.0 V, IOH offset
DUTx
calculated from calibration points of 1 mA and 11 mA
= 3.0 V, IOH gain
DUTx
calculated from calibration points of 1 mA and 11 mA
= 3.0 V, after two-point
DUTx
gain/offset calibration; range/number of DAC bits as measured at calibration points of 1 mA and 11 mA
= 3.0 V, after two-point
DUTx
gain/offset calibration
= 3.0 V, after two-point
DUTx
gain/offset calibration; measured over IOH range of 0 mA to 12 mA
reference at V
= 2.25 V, ensure >90% of reference current
V
DUTx
= 5.0 V, measure IOH current at
DUTx
Rev. 0 | Page 10 of 52
Page 11
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
AC SPECIFICATIONS Load active on, unless otherwise noted
Dynamic Performance Propagation Delay, Load Active On
to Load Active Off; 50%, 90%
Propagation Delay, Load Active Off
to Load Active On; 50%, 90%
Propagation Delay Matching 6.9 ns CB Toggle RCVx pins, DUTx terminated 50 Ω to GND,
Load Spike 156 mV CB Toggle RCVx pins, DUTx terminated 50 Ω to GND,
Settling Time to 90% 1.6 ns CB Toggle RCVx pins, DUTx terminated 50 Ω to GND,
4.1 ns CB Toggle RCVx pins, DUTx terminated 50 Ω to GND,
11 ns CB Toggle RCVx pins, DUTx terminated 50 Ω to GND,
Test Level Conditions/Comments
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; measured from 50% point of RCVxP − RCVxN to 90% point of final output, repeat for drive low and high
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; active on vs. active off, repeat for drive low and high
IOH = IOL = 0 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM = −1.25 V for IOH; repeat for drive low and high
IOH = IOL = 12 mA, VH = VL = 0 V, VCOM = +1.25 V for IOL and VCOM= −1.25 V for IOH; measured at 90% of final value
PMU
FV = force voltage, MV = measure voltage, FI = force current, MI = measure current, FN = force nothing.
Table 7.
Parameter Min Typ Max Unit
FORCE VOLTAGE (FV)
Current Range A ±25 mA D Current Range B ±2 mA D Current Range C ±200 µA D Current Range D ±20 µA D Current Range E ±2 µA D Force Input Voltage Range at
Output For All Ranges
Force Voltage Uncalibrated
Accuracy for Range C
Force Voltage Uncalibrated
Accuracy for All Ranges
Force Voltage Offset Tempco
for All Ranges
Force Voltage Gain Tempco
for All Ranges
Forced Voltage INL −7 ±2 +7 mV P PMU enabled, FV, Range C, PE disabled, after two-point gain/
Force Voltage Compliance vs.
Current Load
Range A ±4 mV CT Range B to Range E ±1 mV CT
−2.0 +6.0 V D
−100 ±25 +100 mV P PMU enabled, FV, PE disabled, error measured at calibration
±25 mV CT PMU enabled, FV, PE disabled, error measured at calibration
±25 µV/°C CT Measured at calibration points for each PMU current range
±75 ppm/°C CT Measured at calibration points for each PMU current range
PMU enabled, FV, PE disabled, force −2.0 V, measure voltage
Test Level
Conditions/Comments
points of 0 V and 5 V
points of 0 V and 5 V; repeat for each PMU current range
offset calibration; measured over output range of −2.0 V to +6.0 V
while PMU sinking zero- and full-scale current; measure V; force 6.0 V, measure voltage while PMU sourcing zero- and full­scale current; measure V; repeat for each PMU current range
Rev. 0 | Page 11 of 52
Page 12
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
Current Limit, Source and Sink
Range A 108 135 180 % FS P PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx
Range B to Range E 120 140 180 % FS P PMU enabled, FV, PE disabled; sink: force 2.5 V, short DUTx to
DUTGND Voltage Accuracy −7 ±1 +7 mV P Over ±0.1 V range; measured at end points of FV functional
MEASURE CURRENT (MI) V
Measure Current, Pin DUTx
−2.0 +6.0 V D
Voltage Range for All Ranges Measure Current Uncalibrated
Accuracy
Range A ±650 µA CT PMU enabled, FIMI, PE disabled, error at calibration points of
Range B −400 ±20 +400 µA P PMU enabled, FIMI, PE disabled, error at calibration points of
Range C ± 2.00 µA CT PMU enabled, FIMI, PE disabled, error at calibration points of
Range D ±0.20 µA CT PMU enabled, FIMI, PE disabled, error at calibration points of
Range E ±0.02 µA CT PMU enabled, FIMI, PE disabled, error at calibration points of
Measure Current Offset Tempco
Range A ±2.5 µA/°C CT Measured at calibration points
Range B ±125 nA/°C CT Measured at calibration points
Range C ±20 nA/°C CT Measured at calibration points
Range D and Range E ±4 nA/°C CT Measured at calibration points Measure Current Gain Error,
Nominal Gain = 1
Range A −3.5 % CT PMU enabled, FIMI, PE disabled, gain error from calibration
Range B −20 ±2 +20 % P PMU enabled, FIMI, PE disabled, gain error from calibration
Range C to Range E ±2 % CT PMU enabled, FIMI, PE disabled, gain error from calibration
Measure Current Gain Tempco Measured at calibration points
Range A ±300 ppm/°C CT
Range B to Range E ±50 ppm/°C CT Measure Current INL
Range A ±0.05 % FSR CT PMU enabled, FIMI, PE disabled, after two-point gain/offset
Range B −0.02 ±0.005 0.02 % FSR P PMU enabled, FIMI, PE disabled, after two-point gain/
Range B to Range E ±0.005 % FSR CT PMU enabled, FIMI, PE disabled, after two-point gain/offset
FVMI DUT Pin Voltage Rejection −0.01 0.01 % FSR/V P PMU enabled, FVMI, PE disabled, force −1 V and +5 V into load
DUTGND Voltage Accuracy ±2.5 mV CT Over ±0.1 V range; measured at end points of MI functional
Test Level Conditions/Comments
to 6.0 V; source: force 2.5 V, short DUTx to −1.0 V; Range A FS = 25 mA, 108% FS = 27 mA, 180% FS = 45 mA
6.0 V; source: force 2.5 V, short DUTx to −1.0 V; repeat for each PMU current range; example: Range B FS = 2 mA, 120% FS = 2.4 mA, 180% FS = 3.6 mA
range
externally forced to 0.0 V, unless otherwise specified;
DUTx
ideal MEASOUT transfer functions: V
MEASOUT01
I(V
MEASOUT01
[V] = (I
) [A] = (V
× 5/FSR) + 2.5 + V
MEASOUT01
MEASOUT01
−20 mA and 20 mA, error = (I(V
−1.6 mA and 1.6 mA, error = (I(V
±80% FS, error = (I(V
±80% FS, error = (I(V
±80% FS, error = (I(V
MEASOUT01
MEASOUT01
MEASOUT01
points of ±80% FS
points of ±1.6 mA
points of ±80% FS
calibration, measured over FSR output of −25 mA to +25 mA
offset calibration measured over FSR output of −2 mA to +2 mA
calibration; measured over FSR output
of 1 mA; measure I reported at MEASOUT01
range
− V
DUTGND
) − I
) − I
) − I
MEASOUT01
MEASOUT01
DUTx
DUTx
DUTx
DUTGND
− 2.5) × FSR/5
) − I
)
DUTx
) − I
)
DUTx
)
)
)
Rev. 0 | Page 12 of 52
Page 13
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
FORCE CURRENT (FI) V
Force Current, DUTx Pin Voltage
Range for All Ranges
Force Current Uncalibrated
Accuracy Range A −5.0 ±0.5 +5.0 mA P PMU enabled, FIMI, PE disabled, error at calibration points of
Range B −400 ±40 +400 µA P PMU enabled, FIMI, PE disabled, error at calibration points of
Range C −40 ±4 +40 µA P PMU enabled, FIMI, PE disabled, error at calibration points of
Range D −4 ±0.4 +4 µA P PMU enabled, FIMI, PE disabled, error at calibration points of
Range E −400 ±75 +400 nA P PMU enabled, FIMI, PE disabled, error at calibration points of
Force Current Offset Tempco
Range A ±1 µA/°C CT Measured at calibration points Range B ±80 nA/°C CT Measured at calibration points Range C to Range E ±4 nA/°C CT Measured at calibration points
Forced Current Gain Error,
Nominal Gain = 1
Forced Current Gain Tempco Measured at calibration points
Range A −500 ppm/°C CT Range B to Range E ±75 ppm/°C CT
Force Current INL
Range A −0.3 ±0.05 +0.3 % FSR P PMU enabled, FIMI, PE disabled, after two-point gain/offset
Range B to Range E -0.2 ±0.015 0.2 % FSR P PMU enabled, FIMI, PE disabled, after two-point gain/offset
Force Current Compliance vs.
Voltage Load
Range A to Range D −0.6 ±0.06 +0.6 % FSR P Range E −1.0 +±0.1 +1.0 % FSR P
MEASURE VOLTAGE
Measure Voltage Range −2.0 +6.0 V D Measure Voltage Uncalibrated
Accuracy Measure Voltage Offset Tempco ±10 µV/°C CT Measured at calibration points Measure Voltage Gain Error −2 ±0.01 +2 % P PMU enabled, FVMV, Range B, PE disabled, gain error from
Measure Voltage Gain Tempco 25 ppm/°C CT Measured at calibration points Measure Voltage INL −7 ±1 +7 mV P PMU enabled, FVMV, Range B, PE disabled, after two-point
Rejection of Measure V vs. I
−2.0 +6.0 V D
−20 ±4 +20 % P PMU enabled, FIMI, PE disabled, gain error from calibration
PMU enabled, FIMV, PE disabled; force positive full-scale
−25 ±2.0 +25 mV P PMU enabled, FVMV, Range B, PE disabled, error at calibration
−1.5 ±0.1 +1.5 mV P PMU enabled, FVMV, Range D, PE disabled, force 0 V into load
DUTx
Test Level Conditions/Comments
externally forced to 0.0 V, unless otherwise specified
DUTx
Ideal force current transfer function: I
= (PMUDAC − 2.5) × (FSR/5)
FORCE
−20 mA and +20 mA
−1.6 mA and +1.6 mA
±80% FS
±80% FS
±80% FS
points of ±80% FS
calibration; measured over FSR output of
−25 mA to +25 mA
calibration; measured over FSR output
current driving −2.0 V and +6.0 V, measure I @ DUTx pin; force negative full-scale current driving −2.0 V and +6.0 V, measure I @ DUTx pin
points of 0 V and 5 V, error = (V
calibration points of 0 V and 5 V
gain/offset calibration; measured over output range of −2.0 V to +6.0 V
of −10 µA and +10 µA; measure V reported at MEASOUT01
MEASOUT01
− V
DUTx
)
Rev. 0 | Page 13 of 52
Page 14
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
MEASOUT01 DC CHARACTERISTICS
MEASOUT01 Voltage Range −2.0 +6.0 V D DC Output Current 4 mA D MEASOUT01 Pin Output
Impedance
Output Leakage Current When
Tristated
Output Short-Circuit Current −25 +25 mA P PMU enabled, FVMV, PE disabled; source: PMU force 6.0 V,
VOLTAGE CLAMPS
Low Clamp Range (VCL) −2.0 +4.0 V D High Clamp Range (VCH) 0.0 6.0 V D Positive Clamp Voltage Droop −300 +50 +300 mV P PMU enabled, FIMI, Range A, PE disabled, PMU clamps
Negative Clamp Voltage Droop −300 −50 +300 mV P PMU enabled, FIMI, Range A, PE disabled, PMU clamps
Uncalibrated Accuracy −250 ±100 +250 mV P PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled,
INL −70 ±5 +70 mV P PMU enabled, FIMI, Range B, PE disabled, PMU damps enabled,
DUTGND Voltage Accuracy ±1 mV CT Over ±0.1 V range; measured at end points of PMU clamp
SETTLING/SWITCHING TIMES SCAP = 330 pF, FFCAP = 220 pF
Voltage Force Settling Time to
0.1% of Final Value
Range A, 200 pF and
2000 pF Load
Range B, 200 pF and
2000 pF Load
Range C, 200 pF and
2000 pF Load
Range D, 200 pF and
2000 pF Load
Range E, 200 pF and
2000 pF Load
Voltage Force Settling Time to
1.0% of Final Value Range A, 200 pF and
2000 pF Load
Range B, 200 pF and
2000 pF Load
Range C, 200 pF and
2000 pF Load
Range D, 200 pF Load 8.1 µs CB Range D, 2000 pF Load 585 µs CB Range E, 200 pF Load 8.1 µs CB Range E, 2000 pF Load 590 µs CB
25 200 P PMU enabled, FVMV, PE disabled; source resistance: PMU force
−1 +1 µA P Tested at −2.0 V and +6.0 V
PMU enabled, FV, PE disabled, program PMUDAC steps of
15 µs S
20 µs S
124 µs S
1015 µs S
3455 µs S
PMU enabled, FV, PE disabled, start with PMUDAC
8.0 µs CB
8.0 µs CB
8.0 µs CB
Test Level Conditions/Comments
6.0 V and load with 0 mA and 4 mA; sink resistance: PMU force
−2.0 V and load with 0 mA and −4 mA; resistance = V/I at MEASOUT01 pin
short MEASOUT01 to −2.0 V; sink: PMU force −2.0 V, short MEASOUT01 to 6.0 V
enabled, VCH = 5 V, VCL = −1 V, PMU force 1 mA and 25 mA into open; V seen at DUTx pin
enabled, VCH = 5 V, VCL = −1 V, PMU force −1 mA and −25 mA into open; V seen at DUTx pin
PMU force ±1 mA into open; VCH errors at calibration points of 0 V and 5 V; VCL errors at the calibration points of 0 V and 4 V
PMU force ±1 mA into open; after two-point gain/offset calibration; measured over PMU clamp range
functional range
500 mV and 5.0 V; simulation of worst case, 2000 pF load, PMUDAC step of 5.0 V
programmed to 0.0 V, program PMUDAC to 500 mV
Rev. 0 | Page 14 of 52
Page 15
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
Voltage Force Settling Time to
1.0% of Final Value
Range A, 200 pF and
2000 pF Load Range B, 200 pF Load 4.4 µs CB Range B, 2000 pF Load 7.6 µs CB Range C, 200 pF Load 6.3 µs CB Range C, 2000 pF Load 8.1 µs CB Range D, 200 pF Load 130 µs CB Range D, 2000 pF Load 280 µs CB Range E, 200 pF Load 390 µs CB Range E, 2000 pF Load 605 µs CB
Current Force Settling Time to
0.1% of Final Value Range A, 200 pF in Parallel
with 120 Ω Range B, 200 pF in Parallel
with 1.5 kΩ Range C, 200 pF in Parallel
with 15.0 kΩ Range D, 200 pF in Parallel
with 150 kΩ Range E, 200 pF in Parallel
with 1.5 MΩ
Current Force Settling Time to
1.0% of Final Value Range A, 200 pF in Parallel
with 120 Ω Range B, 200 pF in Parallel
with 1.5 kΩ Range C, 200 pF in Parallel
with 15.0 kΩ Range D, 200 pF in Parallel
with 150 kΩ Range E, 200 pF in Parallel
with 1.5 MΩ
INTERACTION AND CROSSTALK
Measure Voltage Channel-to-
Channel Crosstalk
Measure Current Channel-to-
Channel Crosstalk
PMU enabled, FV, PE disabled, start with PMUDAC
4.2 µs CB
PMU enabled, FI, PE disabled, start with PMUDAC
8.2 µs S
9.4 µs S
30 µs S
281 µs S
2668 µs S
PMU enabled, FI, PE disabled, start with PMUDAC
3.3 µs CB
4.4 µs CB
8 µs CB
205 µs CB
505 µs CB
±0.125 % FSR CT PMU enabled, FIMV, PE disabled, Range B, forcing 0 mA into
±0.01 % FSR CT PMU enabled, FVMI, PE disabled, Range E, forcing 0 V into
Test Level Conditions/Comments
programmed to 0.0 V, program PMUDAC to 5.0 V
programmed to 0 current, program PMUDAC to FS current
programmed to 0 current, program PMUDAC to FS current
0 V load; other channel: Range A, forcing a step of 0 mA to 25 mA into 0 V load; report V of MEASOUT01 pin under test;
0.125% × 8.0 V = 10 mV
0 mA current load; other channel: Range E, forcing a step of 0 V to 5 V into 0 mA current load; report V of MEASOUT01 pin under test; 0.01% × 5.0 V = 0.5 mV

EXTERNAL SENSE (PMUS_CHx)

Table 8.
Parameter Min Typ Max Unit
Voltage Range −2.0 +6.0 V D Input Leakage Current −20 +20 nA P Tested at −2.0 V and +6.0 V
Rev. 0 | Page 15 of 52
Test Level
Conditions/Comments
Page 16
ADATE302-02
www.BDTIC.com/ADI

DUTGND INPUT

Table 9.
Parameter Min Typ Max Unit
Input Voltage Range, Referenced to GND −0.1 +0.1 V D Input Bias Current 1 100 A P Tested at −100 mV and +100 mV

SERIAL PERIPHERAL INTERFACE

Table 10.
Parameter Min Typ Max Unit
Serial Input Logic High 1.8 VCC V PF Serial Input Logic Low 0 0.7 V PF Input Bias Current −10 +1 +10 A P Tested at 0.0 V and 3.3 V SCLK Clock Rate 50 MHz PF SCLK Pulse Width 9 ns CT SCLK Crosstalk on DUTx Pin 8 mV CB PE disabled, PMU FV enabled and forcing 0 V Serial Output Logic High VCC − 0.4 VCC V PF Sourcing 2 mA Serial Output Logic Low 0 0.8 V PF Sinking 2 mA Update Time 10 s D Maximum delay time required for the part to enter
Test Level
Test Level
Conditions/Comments
a stable state after a serial bus command is loaded
Conditions/Comments

HVOUT DRIVER

Table 11.
Parameter Min Typ Max Unit
VHH BUFFER VHH = (VT + 1 V) × 2 + DUTGND
Voltage Range 5.9 V
Output High 13.5 V P VHH mode enabled, RCVx pins active, VHH level = full
Output Low 5.9 V P VHH mode enabled, RCVx pins active, VHH level = zero
Accuracy Uncalibrated −500 ±100 +500 mV P VHH mode enabled, RCVx pins active, V
Offset Tempco 1 mV/°C CT Measured at calibration points Resolution 1.21 1.5 mV PF VHH mode enabled, RCVx pins active, after two-point
INL −30 ±15 +30 mV P VHH mode enabled, RCVx pins active, after two-point gain/
DUTGND Voltage Accuracy ±1 mV CT Over ±0.1 V range; measured at end points of VHH
Output Resistance 1 10 P VHH mode enabled, RCVx pins active, source: VHH = 10.0 V,
DC Output Current Limit Source 60 100 mA P VHH mode enabled, RCVx pins active, VHH = 10.0 V, short
DC Output Current Limit Sink −100 −60 mA P VHH mode enabled, RCVx pins active, VHH = 6.5 V, short
Rise Time (From VL or VH to
VHH)
Fall Time (From VHH to VL or VH) 23 ns CB VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =
Preshoot, Overshoot, and
Undershoot
175 ns CB VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =
±100 mV CB VHH mode enabled, toggle RCVx pins, VHH = 13.5 V, VL =
− 3.25 V D V
PLUS
Rev. 0 | Page 16 of 52
Test Level
Conditions/Comments
= 16.75 V nominal; in this condition,
PLUS
maximum = 13.5 V
V
HVOUT
scale, sourcing 15 mA
scale, sinking 15 mA
error
measured at calibration points of 7 V and 12 V
gain/offset calibration; range/number of DAC bits as measured at calibration points of 7 V and 12 V
offset calibration; measured over VHH range of 5.9 V to 13.5 V
functional range
= 0 mA and 15 mA; sink: VHH = 6.5 V, I
I
HVOUT
and −15 mA; V/I
HVOUT pin to 5.9 V, measure current
HVOUT pin to 14.1 V, measure current
VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low
VH = 3.0 V; 20% to 80%, for DATAx high and DATAx low
VH = 3.0 V; for DATAx high and DATAx low
HVOUT
HVOUT
= 0 mA
Page 17
ADATE302-02
www.BDTIC.com/ADI
Parameter Min Typ Max Unit
VL/VH BUFFER
Voltage Range −0.1 +6.0 V D Accuracy Uncalibrated −500 ±100 +500 mV P VHH mode enabled, RCVx pins inactive, error measured at
Offset Tempco 1 mV/°C CT Measured at calibration points Resolution 0.61 0.75 mV PF VHH mode enabled, RCVx pins inactive, after two-point
INL −20 ±4 +20 mV P VHH mode enabled, RCVx pins inactive, after two-point
DUTGND Voltage Accuracy ±2 mV CT Over ±0.1 V range; measured at end points of VH and VL,
Output Resistance 46 48 50 P VHH mode enabled, RCVx pins inactive, source: VH = 3.0 V,
DC Output Current Limit Source 60 100 mA P VHH mode enabled, RCVx pins inactive, VH = 6.0 V, short
DC Output Current Limit Sink −100 −60 mA P VHH mode enabled, RCVx pins inactive, VL = −0.1 V, short
Rise Time (VL to VH) 10.0 ns CB VHH mode enabled, RCVx pins inactive, VL = 0.0 V,
Fall Time (VH to VL) 11.3 ns CB VHH mode enabled, RCVx pins inactive, VL = 0.0 V,
Preshoot, Overshoot, and
Undershoot
±54 mV CB VHH mode enabled, RCV inactive, VL = 0.0 V, VH = 3.0 V,
Test Level Conditions/Comments
calibration points of 0 V and 5 V
gain/offset calibration; range/number of DAC bits as measured at calibration points of 0 V and 5 V
gain/offset calibration; measured over range of −0.1 V to +6.0 V
functional range
= 1 mA and 50 mA; sink: VL = 2.0 V, I
I
HVOUT
and −50 mA; V/I
HVOUT pin to −0.1 V, DATAx high, measure current
HVOUT pin to 6.0 V, DATAx low, measure current
VH = 3.0 V, toggle DATAx pins; 20% to 80%
VH = 3.0 V, toggle DATAx pins; 20% to 80%
toggle DATAx pins
HVOUT
= −1 mA

OVERVOLTAGE DETECTOR (OVD)

Table 12.
Parameter Min Typ Max Unit
DC CHARACTERISTICS
Programmable Voltage Range −3.0 +7.0 V D Accuracy Uncalibrated −200 +200 mV P OVD offset errors measured at programmed levels of
Hysteresis 112 mV CB
LOGIC OUTPUT CHARACTERISTICS
Off State Leakage 10 1000 nA P Disable OVD alarm, apply 3.3 V to OVD_CHx pin,
Maximum On Voltage @100 A 0.2 0.7 V P Activate alarm, force 100 A into OVD_CHx, measure
Propagation Delay 1.8 s CB For OVD high: DUTx = 0 V to 6 V swing, OVD_CHx high =
Test Level
Conditions/Comments
7.0 V and −3.0 V
measure leakage current
active alarm voltage
3.0 V, OVD_CHx low = −3.0 V; for OVD_CHx low: DUTx = 0 V to 6 V swing, OVD_CHx high = 7.0 V, OVD_CHx low = 3.0 V

16-BIT DAC MONITOR MUX

Table 13.
Parameter Min Typ Max Unit
DC CHARACTERISTICS
Programmable Voltage Range −2.5 +7.5 V D Output Resistance 16 kΩ CT PMUDAC = 0.0 V, FV, I = 0 A, 200 A; V/I
Test Level
Conditions/Comments
Rev. 0 | Page 17 of 52
Page 18
ADATE302-02
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 14.
Parameter Rating
Supply Voltages
Positive Supply Voltage (VDD to GND) −0.5 V to +11.0 V Positive VCC Supply Voltage (VCC to GND) −0.5 V to +4.0 V Negative Supply Voltage (VSS to GND) −6.25 V to +0.5 V Supply Voltage Difference (VDD to VSS) −1.0 V to +16.5 V Reference Ground (DUTGND to GND) −0.5 V to +0.5 V AGND to DGND −0.5 V to +0.5 V VPLUS Supply Voltage (V
to GND) −0.5 V to +17.5 V
PLUS
Input Voltages
Input Common-Mode Voltage V Short-Circuit Voltage High Speed Input Voltage High Speed Differential Input Voltage
1
2
3
to VDD
SS
−3.0 V to +8.0 V 0 to VCC 0 to VCC
VREF −0.5 V to +5.5 V
DUTx I/O Pin Current
DCL Maximum Short-Circuit Current
4
±140 mA
Temperature
Operating Temperature, Junction 125°C Storage Temperature Range −65°C to +150°C
1
RL = 0 Ω, V
clamp modes).
2
DATAxP, DATAxN, RCVxP, RCVxN, under source R = 0 Ω.
3
DATAxP to DATAxN, RCVxP, RCVxN.
4
RL = 0 Ω, V
condition. ADATE302-02 must current limit and survive continuous short circuit.
continuous short-circuit condition (VH, VL, VT, high-Z, VCOM,
DUTx
= −3 V to +8 V; DCL current limit. Continuous short-circuit
DUTx
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 15. Thermal Resistance
Package Type θJA θ
Unit
JC
84-Ball CSP_BGA 31.1 0.51 °C/W

EXPLANATION OF TEST LEVELS

D Definition
S Design verification simulation
P 100% production tested
P
F
Characterized on tester
C
T
C
Characterized on bench
B
Functionally checked during production test

ESD CAUTION

Rev. 0 | Page 18 of 52
Page 19
ADATE302-02
G
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

1098765432
1
HVOUT PMUS_CH0
A
VPLUS
B
FFCAP_0B
C
OVD_CH0
D
FFCAP_0A VSS
E
AGND AGND
F
COMP_Q L0P
VSSO_0
(DRIVE)
SCAP0
AGND
VDD
COMP_QL0N COMP_VTT0
VSS AGND VDD VDD AGND VSS SCAP1
DATA0N VSS
DATA0P
RCV0N
RCV0P
DUT0
VDDO_0 (DRIVE)
VDD VDD VSS DATA1N AGND FFCAP_1B
VDDO_1 (DRIVE)
DUT1
VSSO_1
(DRIVE)
DATA1P VDD OVD_CH1
RCV1N VSS FFCAP_1A
RCV1P AGND AGND
COMP_VTT 1 COMP_Q L1N CO MP_QL1P
PMUS_CH1 TEMPSENSE
VDD/VDD_
TMPSNS
COMP_QH0P COMP_Q H0N AGND
H
AGND AGND
J
K
VREF_GND VREF AGND VCC SCLK SDOUT CS AGND DUTGND
AGND
VSS VDD VDD VSS AGND COMP_QH1N COMP_QH1P
RST SDIN DGND DAC16_MO N AG ND AGND AGND
Figure 2. Pin Configuration, Bottom Side (BGA Balls Are Visible)
Table 16. Pin Function Descriptions
BGA Designator Mnemonic Description
A1 TEMPSENSE Temperature Sense Output A2 PMUS_CH1 PMU External Sense Path Channel 1 A3 VSSO_1 (Drive) Driver Output Supply −5.75 V Channel 1 A4 DUT1 Device Under Test Channel 1 A5 VDDO_1 (Drive) Driver Output Supply +10.0 V Channel 1 A6 VDDO_0 (Drive) Driver Output Supply +10.0 V Channel 0 A7 DUT0 Device Under Test Channel 0 A8 VSSO_0 (Drive) Driver Output Supply −5.75 V Channel 0 A9 PMUS_CH0 PMU External Sense Path Channel 0 A10 HVOUT High Voltage Driver Output B1 VDD/VDD_TMPSNS Temperature Sense Supply +10.0 V B2 SCAP1 PMU Stability Capacitor Connection Channel 1 (330 pF)
Rev. 0 | Page 19 of 52
MEASOUT01/ TEMPSENSE
07278-002
Page 20
ADATE302-02
www.BDTIC.com/ADI
BGA Designator Mnemonic Description
B3 VSS Supply −5.75 V B4 AGND Analog Ground B5 VDD Supply +10.0 V B6 VDD Supply +10.0 V B7 AGND Analog Ground B8 VSS Supply −5.75 V B9 SCAP0 PMU Stability Capacitor Connection Channel 0 (330 pF) B10 VPLUS Supply +16.75 V C1 FFCAP_1B PMU Feedforward Capacitor Connection B Channel 1 (220 pF) C2 AGND Analog Ground C3 DATA1N Driver Data Input (Negative) Channel 1 C4 VSS Supply −5.75 V C5 VDD Supply +10.0 V C6 VDD Supply +10.0 V C7 VSS Supply −5.75 V C8 DATA0N Driver Data Input (Negative) Channel 0 C9 AGND Analog Ground C10 FFCAP_0B PMU Feedforward Capacitor Connection B Channel 0 (220 pF) D1 OVD_CH1 Overvoltage Detection Flag Output Channel 1 D2 VDD Supply +10.0 V D3 DATA1P Driver Data Input (Positive) Channel 1 D8 DATA0P Driver Data Input (Positive) Channel 0 D9 VDD Supply +10.0 V D10 OVD_CH0 Overvoltage Detection Flag Output Channel 0 E1 FFCAP_1A PMU Feedforward Capacitor Connection A Channel 1 (220 pF) E2 VSS Supply −5.75 V E3 RCV1N Receive Data Input (Negative) Channel 1 E8 RCV0N Receive Data Input (Negative) Channel 0 E9 VSS Supply −5.75 V E10 FFCAP_0A PMU Feedforward Capacitor Connection A Channel 0 (220 pF) F1 AGND Analog Ground F2 AGND Analog Ground F3 RCV1P Receive Data Input (Positive) Channel 1 F8 RCV0P Receive Data Input (Positive) Channel 0 F9 AGND Analog Ground F10 AGND Analog Ground G1 COMP_QL1P Low-Side Comparator Output (Positive) Channel 1 G2 COMP_QL1N Low-Side Comparator Output (Negative) Channel 1 G3 COMP_VTT1 Comparator Supply Termination Channel 1 G8 COMP_VTT0 Comparator Supply Termination Channel 0 G9 COMP_QL0N Low-Side Comparator Output (Negative) Channel 0 G10 COMP_QL0P Low-Side Comparator Output (Positive) Channel 0 H1 COMP_QH1P High-Side Comparator Output (Positive) Channel 1 H2 COMP_QH1N High-Side Comparator Output (Negative) Channel 1 H3 AGND Analog Ground H4 VSS Supply −5.75 V H5 VDD Supply +10.0 V H6 VDD Supply +10.0 V H7 VSS Supply −5.75 V H8 AGND Analog Ground H9 COMP_QH0N High-Side Comparator Output (Negative) Channel 0 H10 COMP_QH0P High-Side Comparator Output (Positive) Channel 0 J1 AGND Analog Ground
Rev. 0 | Page 20 of 52
Page 21
ADATE302-02
www.BDTIC.com/ADI
BGA Designator Mnemonic Description
J2 AGND Analog Ground J3 AGND Analog Ground J4 DAC16_MON 16-Bit DAC Monitor Mux Output J5 DGND Digital Ground J6 SDIN Serial Peripheral Interface (SPI) Data In J7 J8 AGND Analog Ground J9 AGND Analog Ground J10 AGND Analog Ground K1 MEASOUT01/TEMPSENSE
K2 DUTGND DUT Ground Reference K3 AGND Analog Ground K4
K5 SDOUT Serial Peripheral Interface (SPI) Data Out K6 SCLK Serial Peripheral Interface (SPI) Clock K7 VCC Supply +3.3 V K8 AGND Analog Ground K9 VREF +5 V DAC Reference Voltage K10 VREF_GND DAC Ground Reference
RST
CS
Serial Peripheral Interface (SPI) Reset
Muxed Output Shared by PMU MEASOUT Channel 0, PMU MEASOUT Channel 1, Temperature Sense and Temperature Sense GND Reference
Serial Peripheral Interface (SPI) Chip Select
Rev. 0 | Page 21 of 52
Page 22
ADATE302-02
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

0.30
0.5V
0.25
0.20
0.15
VOLTAGE (V)
0.10
0.05
0
024681012141618
0.2V
TIME (ns)
Figure 3. Driver Small Signal Response;
VH = 0.2 V, 0.5 V; VL = 0.0 V; 50 Ω Termination
07278-080
1.8
1.6
1.4
1.2
1.0
0.8
0.6
VOLTAGE (V)
0.4
0.2
0
–0.2
024681012141618
TIME (ns)
Figure 6. 100 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
07278-085
1.6
1.4
1.2
1.0
0.8
0.6
VOLTAGE (V)
0.4
0.2
0
–0.2
0 2 4 6 8 10 12 14 16 18
TIME (ns)
Figure 4. Driver Large Signal Response;
VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V; 50 Ω Termination
6
5
4
3
2
VOLTAGE (V)
1
0
1.6
1.4
1.2
1.0
0.8
0.6
VOLTAGE (V)
0.4
0.2
0
–0.2
07278-079
123456789100
TIME (ns)
7278-084
Figure 7. 300 MHz Driver Response; VH = 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
1.6
1.4
1.2
1.0
0.8
VOLTAGE (V)
0.6
0.4
0.2
–1
024681012141618
TIME (ns)
7278-078
Figure 5. Driver Large Signal Response; VH = 1.0 V, 3.0 V, 5.0 V; VL = 0.0 V;
500 Ω Termination
Rev. 0 | Page 22 of 52
0
0987654321
TIME (ns)
07278-083
Figure 8. 400 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
Page 23
ADATE302-02
www.BDTIC.com/ADI
1.6
1.2
1.4
1.2
1.0
0.8
VOLTAGE (V)
0.6
0.4
0.2
0
0
0.51.01.52.02.53.03.54.04.55.0
TIME (ns)
07278-081
Figure 9. 500 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V, 3.0 V; VL = 0.0 V;
50 Ω Termination
1.0
0.9
0.8
0.7
0.6
0.5
0.4
VOLTAGE (V)
0.3
0.2
0.1
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME (ns)
7278-082
Figure 10. 600 MHz Driver Response; VH = 0.5 V, 1.0 V, 2.0 V; VL = 0.0 V;
50 Ω Termination
1.0
0.8
0.6
0.4
VOLTAGE (V)
0.2
0
–0.2
TIME (ns)
Figure 12. Driver Active (VH/VL) to/from VTERM Transition;
VH = 2.0 V; VT = 1.0 V; VL = 0.0 V
1.6
1.4
1.2
1.0
0.8
0.6
VOLTAGE (V)
0.4
0.2
0
–0.2
TIME (ns)
Figure 13. Driver Active (VH/VL) to/from VTERM Transition;
VH = 3.0 V; VT = 1.5 V; VL = 0.0 V
20181614121086420
7278-076
20181614121086420
07278-077
0.6
0.5
0.4
0.3
VOLTAGE (V)
0.2
0.1
0
024681012141618
TIME (ns)
07278-075
Figure 11. Driver Active (VH/VL) to/from VTERM Transition;
VH = 1.0 V; VT = 0.5 V; VL = 0.0 V
Rev. 0 | Page 23 of 52
10
0
–10
–20
–30
TRAILING EDGE ERROR (ps)
–40
–50
11
PULSE WIDTH (ns)
NEGATIVE PULSE
POSITIVE PULSE
0
07278-063
Figure 14. Driver Minimum Pulse Width;
VH = 0.2 V; VL = 0.0 V
Page 24
ADATE302-02
www.BDTIC.com/ADI
10
10
0
–10
–20
–30
TRAILING EDGE ERROR (ps)
–40
–50
110
NEGATIVE PULSE
PULSE WIDTH (ns)
POSITIVE PULSE
07278-064
Figure 15. Driver Minimum Pulse Width;
0
–10
–20
–30
TRAILING EDGE ERROR (p s)
–40
–50
110
Figure 18. Driver Minimum Pulse Width;
VH = 0.5 V; VL = 0.0 V
10
0
NEGATIVE PULSE
–10
POSITIVE PULSE
–20
TRAILING EDGE ERROR (ps)
–30
110
PULSE WIDTH (ns)
07278-065
Figure 16. Driver Minimum Pulse Width;
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
LINEARITY ERROR (mV)
–2.0
–2.5
–3.0
–1 0 1 2 3 4 56
–2
Figure 19. Driver VH Linearity Error
VH = 1.0 V; VL = 0.0 V
NEGATIVE PULSE
PULSE WIDTH (ns)
VH = 3.0 V; VL = 0.0 V
DRIVER OUTPUT VOLTAGE (V)
POSITIVE PULSE
07278-067
07278-020
10
0
–10
–20
TRAILING EDGE ERRO R (ps)
–30
110
NEGATIVE PULSE
PULSE WIDTH (ns)
POSITIVE PULSE
07278-066
Figure 17. Driver Minimum Pulse Width;
VH = 2.0 V; VL = 0.0 V
Rev. 0 | Page 24 of 52
2.0
1.5
1.0
0.5
0
–0.5
–1.0
LINEARITY ERROR (mV)
–1.5
–2.0
–2.5
–1 0 1 2 3 4 56
–2
DRIVER OUTPUT VOLTAGE (V)
7278-021
Figure 20. Driver VL Linearity Error
Page 25
ADATE302-02
www.BDTIC.com/ADI
2.0
1.5
1.0
0.5
0
–0.5
–1.0
–1.5
LINEARITY ERROR (mV)
–2.0
–2.5
–3.0
2–10123456
DRIVER OUTPUT VOLTAGE (V)
Figure 21. Driver VT Linearity Error
7278-022
INTERACTIO N ERROR (mV)
–0.2
–0.4
–0.6
–0.8
–1.0
–1.2
–1.4
0.2
0
–2
–1 0 1 2 3 4 56
PROGRAMMED VH DAC L EVEL (V)
Figure 24. Driver Interaction Error;
VL = −2.0 V; VH Swept from −1.9 V to +6.0 V
7278-025
1.4
1.2
1.0
0.8
0.6
0.4
0.2
INTERACTIO N ERROR (mV)
0
–0.2
–1 0 1 2 3 4 56
–2
PROGRAMMED VL DAC LEVEL (V)
7278-023
Figure 22. Driver Interaction Error;
53
52
51
50
49
48
DRIVER OUTPUT RESISTANCE ( )
47
–60
–40 –20 0 20 40 60
DRIVER OUTPUT CURRENT (mA)
Figure 25. Driver Output Resistance vs. Output Current
07278-026
VH = 6.0 V; VL Swept from −2.0 V to +5.9 V
0.6
0.5
0.4
0.3
0.2
0.1
INTERACTIO N ERROR (mV)
0
120
100
80
60
40
DRIVER OUTPUT CURRENT (mA)
20
–0.1
2–10123456
PROGRAMMED VH DAC L EVEL (V)
07278-024
Figure 23. Driver Interaction Error;
VT = 1.5 V; VH Swept from −1.9 V to +6.0 V
Rev. 0 | Page 25 of 52
0
–2 –1 0 1 2 3 4 56
V
(V)
DUTx
Figure 26. Driver Output Current Limit;
Driver Programmed to −2.0 V; V
Swept from −2.0 V to +6.0 V
DUTx
07278-027
Page 26
ADATE302-02
www.BDTIC.com/ADI
0
–10
–20
–30
–40
–50
–60
–70
–80
DRIVER OUTPUT CURRENT (mA)
–90
–100
2–10123456
Figure 27. Driver Output Current Limit;
Driver Programmed to 6.0 V; V
16
14
12
10
8
VOLTAGE (V)
6
4
2
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
V
(V)
DUTx
Swept from −2.0 V to +6.0 V
DUTx
TIME (µs)
Figure 28. HVOUT VHH Response;
VHH = 13.5 V
6
4
2
0
–2
–4
–6
LINEARITY ERROR (mV)
–8
–10
–12
07278-028
7 8 9 10 11 12 13 14
6
VHH PROGRAMMED VOLTAGE (V)
07278-038
Figure 30. HVOUT VHH Linearity Error
90
80
70
60
50
40
30
20
HVOUT DRIVER CURRENT (mA)
10
0
07278-086
0 1 2 3 4 56
–1
V
(V)
HVOUT
07278-040
Figure 31. HVOUT VH Current Limit;
VH = −0.1 V; V
Swept from −0.1 V to +6.0 V
HVOUT
3
2
1
0
–1
–2
LINEARITY ERROR (mV)
–3
–4
0123456
VL PROGRAMMED VOLT AGE (V)
07278-037
Figure 29. HVOUT VL Linearity Error
Rev. 0 | Page 26 of 52
100
80
60
40
20
0
–20
–40
HVOUT DRIVER CURRENT (mA)
–60
–80
5 6 7 8 9 10 11 12 13 14 15
V
(V)
HVOUT
Figure 32. HVOUT VHH Current Limit;
VHH = 10.0 V; V
Swept from 5.9 V to 14.1 V
HVOUT
07278-041
Page 27
ADATE302-02
www.BDTIC.com/ADI
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
VOLTAGE (V)
0.3
0.2
0.1
0
–0.1
0 1.2 2.4 3.6 4.8 6.0
INPUT EDGE
TIME (ns)
SHMOO
Figure 33. Comparator Shmoo;
1.0 V Swing; 200 ps (10%/90%)
07278-089
30
INPUT VOLTAGE SWING = 1V COMPARATOR T HRESHOLD = 0. 5V
25
20
INPUT RISING EDGE
15
10
5
PROPAGATI ON DELAY VARI ATION (p s)
0
0.40.60.81.0
INPUT SL EW RATE [ 10%/90%] (n s)
Figure 36.Comparator Slew Rate Dispersion
INPUT FALLING EDGE
07278-087
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
VOLTAGE (V)
0.3
0.2
0.1
0
–0.1
0 1.2 2.4 3.6 4.8 6.0
INPUT EDGE
SHMOO
TIME (ns)
Figure 34. Comparator Shmoo;
7278-090
0.8
0.7
0.6
0.5
0.4
VOLTAGE (V)
0.3
0.2
0.1
0
0
1.38
2.76
Figure 37. Comparator Output Waveform; COMP_QH0P, COMP_QH0N
1.0 V Swing; 200 ps (10%/90%)
10
0
POSITIVE PUL SE
–10
NEGATIVE PULSE
–20
TRAILING EDGE ERROR (p s)
–30
110
PULSE WIDTH (ns)
07278-091
Figure 35. Comparator Minimum Pulse Width Input;
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
–1.0
LINEARITY ERROR (mV)
–1.2
–1.4
–1.6
2–10123456
PROGRAM THRESHOLD VOLTAGE (V)
Figure 38. Comparator Threshold Linearity
1.0 V Swing; 200 ps (10%/90%)
4.14
COMP_QH0P
COMP_QH0N
5.52
6.90
8.28
9.66
TIME (ns)
11.00
12.40
13.80
15.20
16.60
17.90
19.30
07278-088
7278-029
Rev. 0 | Page 27 of 52
Page 28
ADATE302-02
www.BDTIC.com/ADI
0.2
8
0
–0.2
–0.4
–0.6
–0.8
DIFFERENTIAL COMPARATOR OFFSET (mV)
–1.0
–1 0 1 2 3 45
–2
INPUT COMMON-MODE VOLTAGE (V)
Figure 39. Differential Comparator CMRR
3
DRIVER ACTIVE LOW (VL) TO/FRO M FULL LOAD CURRENT
0
–3
–6
–9
LOAD CURRENT (mA)
–12
FULL LO AD CURRENTTO/ FROM
–15
0 102030405
DRIVER ACTIVE LOW (VL)
TIME (ns)
Figure 40. Active Load Response
7278-030
0
07278-092
6
4
2
0
–2
LINEARITY ERROR (µA)
–4
–6
0
2 4 6 8 10 12
ACTIVE LO AD CURRENT (mA)
Figure 42. Active Load Current Linearity
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
LINEARITY ERROR (mV)
–0.8
–1.0
–1.2
2–10123456
VCOM VOLTAGE (V)
Figure 43. Active Load VCOM Linearity
7278-032
07278-033
15
10
5
0
–5
LOAD CURRENT (mA)
–10
–15
2–10123456
V
(V)
DUTx
07278-031
Figure 41. Active Load Commutation Response;
VCOM = 2.0 V; IOH = IOL = 12 mA
Rev. 0 | Page 28 of 52
5.5
5.0
4.5
(nA)
4.0
DUTx
I
3.5
3.0
2.5 –2–10123456
V
(V)
DUTx
Figure 44. DUTx Pin Leakage Current in Low Leakage Mode
07278-034
Page 29
ADATE302-02
www.BDTIC.com/ADI
6
4
2
(nA)
0
DUTx
I
–2
–4
–6
–2 –1 0 1 2 3 4 56
V
(V)
DUTx
Figure 45. DUTx Pin Leakage Current in High-Z Mode
07278-035
30
20
10
0
–10
–20
–30
–40
LINEARITY ERROR (µA)
–50
–60
–70
–30
–20 –10 0 10 20 30
PMU OUTPUT CURRENT (mA)
Figure 48. PMU Force Current Range A Linearity
07278-043
LINEARITY ERROR (µA)
LINEARITY ERROR (µA)
0.5
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
–0.5
–1.5 –1.0 –0. 5 0 0.5 1.0 1.5 2.0
–2.0
PMU OUTPUT CURRENT (mA)
Figure 49. PMU Force Current Range B Linearity
0.04
0.03
0.02
0.01
0
–0.01
–0.02
–0.03
–0.04
–0.05
–0.15 –0.10 –0.05 0 0.05 0.10 0.15 0.20
–0.20
PMU OUTPUT CURRENT (mA)
Figure 50. PMU Force Current Range C Linearity
07278-044
07278-045
0.5
0.4
0.3
0.2
0.1
0
ERROR VOLT AGE (mV)
–0.1
–0.2
–0.3
–0.15 –0.10 –0.05 0 0.05 0.10 0.15 0.20
–0.20
ERROR (mV)
07278-039
Figure 46. DUTGND Voltage Effects
0.4
0.2
0
–0.2
–0.4
–0.6
LINEARITY ERROR (mV)
–0.8
–1.0
–1.2
–2 –1 0 1 2 3 4 5 67
–3
PMU OUTPUT V OLTAGE (V)
7278-042
Figure 47. PMU Force Voltage Linearity
Rev. 0 | Page 29 of 52
Page 30
ADATE302-02
www.BDTIC.com/ADI
0.004
0.003
0.002
0.001
0
–0.001
–0.002
LINEARITY ERROR (µA)
–0.003
–0.004
–0.005
–0.020 –0.015 –0. 010 –0.005 0 0.005 0.010 0.015 0.020
PMU OUTPUT CURRENT ( mA)
Figure 51. PMU Force Current Range D Linearity
7278-046
0.5
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
PMU VOLTAGE ERROR (mV)
–0.4
–0.5
–0.6
–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
I
(mA)
DUTx
07278-049
Figure 54. PMU Force Voltage Range B Output Voltage Error at −2.0 V vs.
Output Current
0.0004
0.0002
0
–0.0002
–0.0004
LINEARITY ERROR (µA)
–0.0006
–0.0008
–0.0020 –0.0015 –0.0010 –0.0005 0 0.0005 0.0010 0. 0015 0. 0020
PMU OUTPUT CURRENT (mA)
Figure 52. PMU Force Current Range E Linearity
0.6
0.4
0.2
0
4
3
2
1
0
–1
–2
PMU VOLTAG E ERROR (mV)
–3
–4
–25
–20 –15 –10 –5 0 5 10 15 20 25
I
07278-047
DUTx
(mA)
07278-050
Figure 55. PMU Force Voltage Range A Output Voltage Error at 6.0 V vs.
Output Current
4
3
2
1
0
–0.2
PMU VOLTAGE ERROR (mV)
–0.4
–0.6
–2.0
–1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0
I
(mA)
DUTx
07278-048
Figure 53. PMU Force Voltage Range B Output Voltage Error at 6.0 V vs.
Output Current
Rev. 0 | Page 30 of 52
–1
–2
PMU VOLTAG E ERROR (mV)
–3
–4
–25 –20 –15 –10 –5 0 5 10 15 20 25
I
(mA)
DUTx
Figure 56. PMU Force Voltage Range A Output Voltage Error at −2.0 V vs.
Output Current
07278-051
Page 31
ADATE302-02
www.BDTIC.com/ADI
2
1.0
0
–2
–4
–6
PMU CURRENT ERROR (µ A)
–8
–10
2–10123456
V
(V)
DUTx
07278-052
Figure 57. PMU Force Current Range A Output Current Error at −25 mA vs.
Output Voltage
10
0
–10
–20
–30
–40
PMU CURRENT ERROR (µA)
–50
0.8
0.6
0.4
0.2
0
PMU CURRENT ERROR ( µA)
–0.2
–0.4
–2
–1 0 1 2 3 4 56
V
(V)
DUTx
Figure 60. PMU Force Current Range B Output Current Error at 2 mA vs.
Output Voltage; Output Voltage Is Pulled Externally
0.004
0.003
0.002
0.001
0
PMU CURRENT ERROR (µ A)
–0.001
07278-055
–60
2–10123456
V
(V)
DUTx
Figure 58. PMU Force Current Range A Output Current Error at 25 mA vs.
Output Voltage; Output Voltage Is Pulled Externally
1.0
0.8
0.6
0.4
0.2
0
–0.2
PMU CURRENT ERROR (µA)
–0.4
–0.6
2–10123456
V
(V)
DUTx
Figure 59. PMU Force Current Range B Output Current Error at −2 mA vs.
Output Voltage; Output Voltage Is Pulled Externally
–0.002
2–10123456
V
(V)
07278-053
DUTx
07278-056
Figure 61. PMU Force Current Range E Output Current Error at −2 μA vs.
Output Voltage; Output Voltage Is Pulled Externally
0.0035
0.0030
0.0025
0.0020
0.0015
0.0010
0.0005
PMU CURRENT ERROR (µA)
0
–0.0005
–0.0010
2–10123456
V
(V)
07278-054
DUTx
07278-057
Figure 62. PMU Force Current Range E Output Current Error at 2 μA vs.
Output Voltage; Output Voltage Is Pulled Externally
Rev. 0 | Page 31 of 52
Page 32
ADATE302-02
V
www.BDTIC.com/ADI
40
0.20
30
20
10
0
–10
PMU CURRENT (mA)
–20
–30
–40
2–10123456
V
(V)
DUTx
07278-058
Figure 63. PMU Range A Internal Current Limit, Programmed to Force 2.5 V;
Swept from −2.0 V to +6.0 V
V
DUTx
0.003
0.002
0.001
0
–0.001
PMU CURRENT (mA)
–0.002
0.15
0.10
0.05
0
LINEARITY ERROR (µA)
–0.05
–0.10
–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2. 0
I
(mA)
DUTx
Figure 66. PMU Range B Measure Current Linearity
0.7
0.6
0.5
0.4
0.3
0.2
PMU VOLTAG E ERROR (mV)
0.1
07278-061
–0.003
2–10123456
V
(V)
DUTx
07278-059
Figure 64. PMU Range E Internal Current Limit, Programmed to Force 2.5 V;
V
Swept from −2.0 V to +6.0 V
DUTx
0.05
0.04
0.03
0.02
0.01
0
–0.01
LINEARITY ERROR (mV)
–0.02
–0.03
–0.04
2–10123456
V
(V)
DUTx
07278-060
Figure 65. PMU Range B Measure Voltage Linearity
0
2–1012345
V
(V)
DUTx
Figure 67. PMU Measure Current CMRR, Externally Pulling 1 mA, FVMI;
Error of MI vs. External 1 mA
100mV/DI
1ns/DIV
07278-068
Figure 68. Eye Diagram, 200 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
07278-062
Rev. 0 | Page 32 of 52
Page 33
ADATE302-02
V
V V
V V
V
www.BDTIC.com/ADI
100mV/DI
500ps/DIV
Figure 69. Eye Diagram, 400 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
199.5mV/DI
500ps/DIV
Figure 70. Eye Diagram, 400 Mbps, PRBS31;
VH = 2.0 V; VL = 0.0 V
199.5mV/DI
07278-069
200ps/DIV
07278-072
Figure 72. Eye Diagram, 800 Mbps, PRBS31;
VH = 2.0 V; VL= 0.0 V
100mV/DI
07278-070
200ps/DIV
07278-073
Figure 73. Eye Diagram, 1000 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
100mV/DI
200ps/DIV
07278-071
Figure 71. Eye Diagram, 800 Mbps, PRBS31;
VH = 1.0 V; VL = 0.0 V
Rev. 0 | Page 33 of 52
199.5mV/DI
200ps/DIV
07278-074
Figure 74. Eye Diagram, 1000 Mbps, PRBS31;
VH = 2.0 V; VL = 0.0 V
Page 34
ADATE302-02
www.BDTIC.com/ADI

SERIAL PERIPHERAL INTERFACE DETAILS

t
CH
SCLK
t
CL
t
CSHD
t
CSSD
t
CSW
CS
t
CSHA
t
CSSA
t
t
DS
DH
SDIN
SDOUT
DO_15
DATA[14]DATA[15]
LAST
DO_14
LAST
CH[1] R/W
DO_13
LAST
t
DO
DO_12
LAST
ADDR[1] ADDR[0]
DO_2
LAST
DO_1
LAST
DO_0
LAST
Figure 75. SPI Timing Diagram
Table 17. Serial Peripheral Interface Timing Requirements
Symbol Parameter Min Max Unit
tCH SCLK minimum high 9.0 ns tCL SCLK minimum low 9.0 ns t
CSHA
t
CSSA
t
CSHD
t
CSSD
t
SDIN hold 3.0 ns
DH
t
SDIN setup 3.0 ns
DS
t
SDOUT Data Out 15.0 ns
DO
t
CSW
t
CSTP
assert hold
CS
assert setup
CS
deassert hold
CS
deassert setup
CS
1
minimum between assertions
CS
minimum directly after a read request
CS Minimum delay after CS
stopped (not shown in ); this allows any internal
is deasserted before SCLK can be
Figure 75
3.0
3.0
3.0
3.0
ns ns ns ns
2 SCLK cycles 3
SCLK cycles
16 SCLK cycles
operations to complete
1
Extra cycle is needed after read request to prime read data into SPI shift register.
07278-003
Rev. 0 | Page 34 of 52
Page 35
ADATE302-02
5
www.BDTIC.com/ADI

DEFINITION OF SPI WORD

The SPI can take variable length words, depending on the operation. At most, the word is 24 bits longs: 16 bits of data, two channel selects, one R/W selector, and a 5-bit address.
Depending on the operation, the data can be smaller (or nonexistent in the case of a read operation).

Example 1

Write 16 bits of data to a register or DAC; unused MSBs are ignored. For example, Bit 15 and Bit 14 are ignored, while Bit 13 through Bit 0 are applied to the 14-bit DAC.
DATA[15:0] CH[1:0] R/W ADDR[4:0]
Figure 76.
07278-004

Example 2

Write 14 bits of data to the DAC.
DATA[13:0] CH[1:0] R/W ADDR[4:0]
Figure 77.
07278-00

Example 3a

Write two bits of data to the 2-bit register.
DATA[1:0] CH[1:0] R/W ADDR[4:0]
Figure 78.
07278-006

Example 3b

Write two bits of data to the 2-bit register. Bit 15 through Bit 2 are ignored, while Bit 1 through Bit 0 are applied to the register.
DATA[15:0] CH[1:0] R/W ADDR[4:0]
Figure 79.
07278-007

Example 4

Read request and follow with a 2nd instruction (could be NOP) to clock out the data.
CH[1:0] R/W = 0 ADDR[4:0]
DATA[15:0] CH[1:0] R/W ADDR[4:0]
Figure 80.
07278-008
Table 18. Channel Selection
Channel 1 Channel 0 Channel Selected
0 0 NOP (no channel selected, no register changes) 0 1 Channel 0 selected 1 0
Channel 1 selected
1 1 Channel 0 and Channel 1 selected
Table 19. R/W Definition
R/W Description
0 Current register specified by address is shifted out of SDOUT on next shift operation 1 Current data is written to register specified by address and channel select
Rev. 0 | Page 35 of 52
Page 36
ADATE302-02
www.BDTIC.com/ADI

WRITE OPERATION

CS
INPUT
SCLK
INPUT
SDIN
INPUT
SDOUT
OUTPUT
R/W = 1
DATA[15] DATA[14] DATA[13]
0 232221201918171615141312 24 25
DATA[2] DATA[1] DATA[0] CH[ 1] C H[0 ]
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
X
XR/W
07278-009
Figure 81. 16-Bit SPI Write
CS
INPUT
SCLK
INPUT
SDIN
INPUT
SDOUT
OUTPUT
R/W = 1
DATA[1] DATA[0 ] C H[1 ] CH[ 0] ADDR[4 ] ADDR[3] ADDR[2] ADD R[1] ADDR[0 ]R/W
0 1110987654123
X
Figure 82. 2-Bit SPI Write
X
07278-010
Rev. 0 | Page 36 of 52
Page 37
ADATE302-02
www.BDTIC.com/ADI

READ OPERATION

The read operation is a two-stage operation. First, a word is
CS
shifted in, specifying which register to read. three clock cycles, and then a second word is shifted in to get the readback data. This second word can be either another operation or an NOP address. If another operation is shifted in, it needs to shift in at least eight bits of data to read back the
CS
INPUT
SCLK
INPUT
is deasserted for
previous specified data. The NOP address can be used for this read if there is no need to write/read another register. It is strongly recommended that the NOP address be used for all reads for clarity of operations.
Any register read that is less than 16 bits has zeros filled in the top bits to make it a 16-bit word.
SDIN
INPUT
SDOUT
OUTPUT
X READ DAT A X
XXREAD INSTRUCTI ON NOP
07278-011
Figure 83. SPI Read Overview
CS
INPUT
SCLK
INPUT
SDIN
INPUT
SDOUT
OUTPUT
DATA[15:0], VALUE IS A DON’ T CARE
0 2524232221201918171615141312
CH[1]
X
ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]
R/WCH[ 0]
X
7278-012
Figure 84. SPI Read—Details of Read Request
CS
INPUT
SCLK
INPUT
SDIN
INPUT
SDOUT
OUTPUT
RDATA IS THE REG ISTER VALUE BEING READ.
DATA[15:0], VAL UE IS A DON’T CARE
0 2524232221201918171615141312
RDATA[15]
RDATA[14]
CH[1]
RDATA[2] RDATA[1] RDATA[0]
Figure 85. SPI Read—Details of Read Out
Rev. 0 | Page 37 of 52
CH[0]
R/W = 1
ADDR[4:0] = 0x00 (NOP )
X
X
07278-013
Page 38
ADATE302-02
K
www.BDTIC.com/ADI

RESET OPERATION

The ADATE302-02 contains an asynchronous reset feature. The ADATE302-02 can be reset to the default values shown in Tab l e 20 by
RST
utilizing the
pin. To initiate the reset operation, deassert the
of two SCLK cycles.
RST
CS
SCL
MINIMUM O F TWO S CLK EDGES AFTER ASSERTI NG RST BEFO RE RESUMING NORMAL OPERATION.
RST
pin for a minimum of 100 ns and deassert the CS pin for a minimum
100ns
MINIMUM
Figure 86. Reset Operation
07278-093
Rev. 0 | Page 38 of 52
Page 39
ADATE302-02
www.BDTIC.com/ADI

REGISTER MAP

The ADDR[4:0] bits determine the destination register of the data being written to the ADATE302-02.
Table 20. Register Selection
DATA[15:0] CH[1:0] R/W ADDR[4:0] Register Selected Reset State
N/A N/A N/A 0x00 NOP N/A DATA[13:0] CH[1:0] R/W 0x01 VH DAC level 4096d DATA[13:0] CH[1:0] R/W 0x02 VL DAC level 4096d DATA[13:0] CH[1:0] R/W 0x03 VT/VCOM DAC level 4096d DATA[13:0] CH[1:0] R/W 0x04 VOL DAC level 4096d DATA[13:0] CH[1:0] R/W 0x05 VOH DAC level 4096d DATA[13:0] CH[1:0] R/W 0x06 VCH DAC level 4096d DATA[13:0] CH[1:0] R/W 0x07 VCL DAC level 4096d DATA[13:0] CH[1:0] R/W 0x08 V(IOH ) DAC level 4096d DATA[13:0] CH[1:0] R/W 0x09 V(IOL ) DAC level 4096d DATA[13:0] CH[1] R/W 0x0A OVD high level 4096d DATA[13:0] CH[0] R/W 0x0A OVD low level 4096d DATA[15:0] CH[1:0] R/W 0x0B PMUDAC level 16384d DATA[2:0] CH[1:0] R/W 0x0C PE/PMU enable 000b DATA[2:0] CH[1:0] R/W 0x0D Channel state 000b DATA[9:0] CH[1:0] R/W 0x0E PMU state 0d DATA[2:0] CH[1:0] R/W 0x0F PMU measure enable 000b DATA[0] CH[1:0] R/W 0x10 Differential comparator enable 0b DATA[1:0] CH[1:0] R/W 0x11 16-bit DAC monitor 00b DATA[1:0] CH[1:0] R/W 0x12 OVD_CHx alarm mask 01b DATA[2:0] CH[1:0] R 0x13 OVD_CHx alarm state N/A N/A N/A N/A 0x14 to 0x1F Reserved N/A
Rev. 0 | Page 39 of 52
Page 40
ADATE302-02
www.BDTIC.com/ADI

DETAILS OF REGISTERS

Table 21. PE/PMU Enable (ADDR[4:0] = 0x0C)
Bit Name Description
DATA[2] PMU enable
DATA[1] Force VT
DATA[0] PE disable
Table 22. Channel State (ADDR[4:0] = 0x0D)
Bit Name Description
DATA[2] HVOUT mode select
DATA[1] Load enable
DATA[0] Driver high-Z/VT
0 = disable PMU force output and clamps, place PMU in MV mode 1 = enable PMU force output When set to 0, the PMU State bits are ignored, except for PMU Sense Path (DATA[7]).
0 = normal driver operation 1 = force driver to VT See Tab le 29 for complete functionality of this bit.
0 = enable driver functions 1 = disable driver (low leakage) See Tab le 29 for complete functionality of this bit.
0 = HVOUT driver in low impedance 1 = enable HVOUT driver
This bit affects Channel 0 only. Ensure that Channel 0 bit in SPI write is active. Channel 1 bit in SPI write is don’t care.
0 = disable load 1 = enable load See Tab le 29 for complete functionality of this bit.
0 = enable driver high-Z function 1 = enable driver VTERM function See Tab le 29 for complete functionality of this bit.
Table 23. PMU State (ADDR[4:0] = 0x0E)
Bit Name Description
DATA[9:8] PMU input selection
DATA[7] PMU sense path
DATA[6] Reserved DATA[5] PMU clamp enable
DATA[4] PMU measure V/I
DATA[3] PMU force V/I
DATA[2:0] PMU range
1
Note that when the ADDR[4:0] = 0x0C PMU enable bit (DATA[2]) = 0, the PMU force outputs and clamps are disabled, and the PMU is placed into measure voltage
mode. DATA[9:8] and DATA[6:0] of the PMU state register are ignored, and only DATA[7], the PMU sense path bit, is valid.
2
X = don’t care.
1, 2
00 = V 01 = 2.5 V + V 1X = PMUDAC
0 = internal sense 1 = external sense
0 = disable clamps 1 = enable clamps
0 = measure voltage mode 1 = measure current mode
0 = force voltage mode 1 = force current mode
0XX = Range E (2 A) 100 = Range D (20 A) 101 = Range C (200 A) 110 = Range B (2 mA) 111 = Range A (25 mA)
(calibrated for 0.0 V voltage reference)
DUTGND
(calibrated for 0.0 A current reference)
DUTGND
Rev. 0 | Page 40 of 52
Page 41
ADATE302-02
www.BDTIC.com/ADI
Table 24. PMU Measure Enable (ADDR[4:0] = 0x0F)1
Bit Name Description
DATA[2:1] MEASOUT01 select
DATA[0] MEASOUT01 output enable
1
This register is written to or read from if either of the CH[1:0] bits is 1.
Table 25. Differential Comparator Enable (ADDR[4:0] = 0x10)1
Bit Name Description
DATA[0] Differential comparator enable
1
This register is written to or read from if either of the CH[1:0] bits is 1.
Table 26. DAC16_MON (16-Bit DAC Monitor) (ADDR[4:0] = 0x11)1
Bit Name Description
DATA[1] 16-bit DAC mux enable 0 = 16-bit DAC mux is tristated
DATA[0] 16-bit DAC mux select
1
This register is written to or read from if either of the CH[1:0] bits is 1.
00 = PMU MEASOUT Channel 0 01 = PMU MEASOUT Channel 1 10 = Temp sensor ground reference 11 = Temp sensor
0 = MEASOUT01 is tristated 1 = MEASOUT01 is enabled
0 = differential comparator is disabled, Channel 0 normal window comparator (NWC) outputs are on Channel 0 1 = differential comparator is enabled, the differential comparator outputs are on Channel 0
1 = 16-bit DAC mux is enabled 0 = 16-bit DAC Channel 0
1 = 16-bit DAC Channel 1
Table 27. OVD_CHx Alarm Mask (ADDR[4:0] = 0x12)
Bit Name Description
DATA[1] PMU mask
DATA[0] OVD mask
0 = disable PMU alarm flag 1 = enable PMU alarm flag
0 = disable OVD alarm flag 1 = enable OVD alarm flag
Table 28. OVD_CHx Alarm State (ADDR[4:0] = 0x13)1
Bit Name Description
DATA[2] PMU clamp flag
DATA[1] OVD high flag
DATA[0] OVD low flag
1
This register is a read-only register.
0 = PMU not clamped 1 = PMU clamped
0 = DUT voltage < OVD high voltage 1 = DUT voltage > OVD high voltage
0 = DUT voltage > OVD low voltage 1 = DUT voltage < OVD low voltage
Rev. 0 | Page 41 of 52
Page 42
ADATE302-02
www.BDTIC.com/ADI

USER INFORMATION

Table 29. Driver and Load Truth Table1
Registers Signals
PE Disable DATA[0] ADDR[4:0] = 0x0C
1 X X X X X
0 1 X X X X VT Power-down 0 0 0 0 0 0 VL Power-down 0 0 0 0 0 1
0 0 0 0 1 0 VH Power-down 0 0 0 0 1 1
0 0 0 1 0 0 VL Power-down 0 0 0 1 0 1 VT Power-down 0 0 0 1 1 0 VH Power-down 0 0 0 1 1 1 VT Power-down 0 0 1 0 0 0 VL Active off 0 0 1 0 0 1
0 0 1 0 1 0 VH Active off 0 0 1 0 1 1
0 0 1 1 0 0 VL Active on 0 0 1 1 0 1
0 0 1 1 1 0 VH Active on 0 0 1 1 1 1
1
X = don’t care.
Force VT DATA[1] ADDR[4:0] = 0x0C
Load Enable DATA[1] ADDR[4:0] = 0x0D
Driver High-Z/VT DATA[0] ADDR[4:0] = 0x0D
DATAx RCVx
Driver State Load State
High-Z without
Power- down
clamps
High-Z with
Power- down
clamps
High-Z with
Power- down
clamps
High-Z with
Active on
clamps
High-Z with
Active on
clamps
High-Z with
Active on
clamps
High-Z with
Active on
clamps
Table 30. HVOUT Truth Table1
HVOUT Mode Select DATA[2] ADDR[4:0] = 0x0D
Channel 0 RCV
Channel 0 DATA HVOUT Driver Output
1 1 X VHH mode; VHH = (VT + 1 V) × 2 + DUTGND (Channel 0 VT DAC) 1 0 0 VL (Channel 0 VL DAC) 1 0 1 VH (Channel 0 VH DAC) 0 X X Disabled (HVOUT pin set to 0 V low impedance)
1
X = don’t care.
Table 31. Comparator Truth Table
Differential Comparator Enable
DATA[0] ADDR[4:0] = 0x10 COMP_QH0 COMP_QL0 COMP_QH1 COMP_QL1
0 Normal window mode
Logic high: VOH0 < V Logic low: VOH0 > V
DUT0
DUT0
1 Differential comparator mode
Logic high: VOH0 < V Logic low: VOH0 > V
DUT0
DUT0
− V
− V
Normal window mode Logic high: VOL0 < V Logic low: VOL0 > V Differential comparator mode Logic high: VOL0 < V
DUT1
Logic low: VOL0 > V
DUT1
Rev. 0 | Page 42 of 52
DUT0
DUT0
DUT0
DUT0
− V
− V
Normal window mode Logic high: VOH1 < V Logic low: VOH1 > V Normal window mode Logic high: VOH1 < V
DUT1
Logic low: VOH1 > V
DUT1
Normal window mode Logic high: VOL1 < V
DUT1
Logic low: VOL1 > V
DUT1
Normal window mode Logic high: VOL1 < V
DUT1
Logic low: VOL1 > V
DUT1
DUT1
DUT1
DUT1
DUT1
Page 43
ADATE302-02
www.BDTIC.com/ADI

DETAILS OF DACs vs. LEVELS

There are ten 14-bit DACs per channel. These DACs provide levels for the driver, comparator, load currents, VHH buffer, OVD, and clamp levels. There are three versions of output levels:
−2.5 V to +7.5 V; tracks DUTGND. Controls VH, VL,
VT/VCOM/VHH, VOH, VOL, VCH, and VCL levels.
−3.0 V to +7.0 V; tracks DUTGND. Controls OVD levels.
−2.5 V to +7.5 V; does not track DUTGND. Controls IOH
and IOL levels.
Table 32. Level Transfer Functions
DAC Transfer Function
V
= 2.0 × (V
OUT
Code = [V V
= 4.0 × (V
OUT
Code = [V V
= 2.0 × (V
OUT
Code = [V I
= [2.0 × (V
OUT
Code = [(I V
= 2.0 × (V
OUT
Code = [V I
= [2.0 × (V
OUT
Code = [(I I
= [2.0 × (V
OUT
Code = [(I I
= [2.0 × (V
OUT
Code = [(I I
= [2.0 × (V
OUT
Code = [(I I
= [2.0 × (V
OUT
Code = [(I
− V
REF
− V
OUT
DUTGND
− V
REF
− V
OUT
DUTGND
− V
REF
− V
OUT
DUTGND
− V
REF
× (5.0/0.012)) + 0.5 × (V
OUT
− V
REF
− V
OUT
DUTGND
− V
REF
× (5.0/0.050)) + 2.5 + 0.5 × (V
OUT
− V
REF
× (5.0/0.004)) + 2.5 + 0.5 × (V
OUT
− V
REF
× (5.0/0.0004)) + 2.5 + 0.5 × (V
OUT
− V
REF
× (5.0/0.00004)) + 2.5 + 0.5 × (V
OUT
− V
REF
× (5.0/0.000004)) + 2.5 + 0.5 × (V
OUT
) × (Code/(214)) − 0.5 × (V
REF_GND
+ 0.5 × (V
REF_GND
− V
REF
) × (Code/(214)) − 1.0 × (V
− 2.0 + 1.0 × (V ) × (Code/(214)) − 0.6 × (V
REF_GND
+ 0.6 × (V
) × (Code/(214)) − 0.5 × (V
REF_GND
REF_GND
+ 0.5 × (V
) × (Code/(216)) − 0.5 × (V
REF_GND
) × (Code/(216)) − 0.5 × (V
REF_GND
) × (Code/(216)) − 0.5 × (V
REF_GND
) × (Code/(216)) − 0.5 × (V
REF_GND
) × (Code/(216)) − 0.5 × (V
REF_GND
− V
REF
REF
) × (Code/(216)) − 0.5 × (V
− V
REF
REF
)] × [(214)/(2.0 × (V
REF_GND
− V
REF_GND
)] × [(214)/(2.0 × (V
REF_GND
− V
REF_GND
)] × [(216)/(2.0 × (V
REF_GND
− V
REF
− V
REF
− V
REF
− V
REF
− V
REF
− V
REF
REF_GND
REF
− V
REF
REF_GND
)] × [(214)/(4.0 × (V
− V
REF
REF_GND
REF
− V
REF
REF_GND
)] × [(214)/(2.0 × (V
− V
REF
REF_GND
REF
− V
REF
REF_GND
)] × [(216)/(2.0 × (V
REF_GND
− V
REF
REF_GND
)] × [(216)/(2.0 × (V
REF_GND
− V
REF
REF_GND
)] × [(216)/(2.0 × (V
REF_GND
− V
REF
REF_GND
)] × [(216)/(2.0 × (V
REF_GND
− V
REF
REF_GND
)] × [(216)/(2.0 × (V
REF_GND
) + V
− V
) + 2.0 + V
) + V
− V
)] × (0.012/5.0)
REF
) + V
− V
) − 2.5] × (0.050/5.0)
) − 2.5] × (0.004/5.0)
) − 2.5] × (0.0004/5.0)
) − 2.5] × (0.00004/5.0)
) − 2.5] × (0.000004/5.0)
There is one 16-bit DAC per channel. This DAC provides the levels for the PMU. The output level is:
−2.5 V to +7.5 V; tracks DUTGND. Controls PMU levels.
Programmable Range
1
(All 0s to All 1s) Levels
DUTGND
REF_GND
− V
REF
DUTGND
REF_GND
))]
DUTGND
REF_GND
))]
))]
−2.5 V to +7.5 V
VH, VL, VT/VCOM, VOL, VOH, VCH, VCL
−3.0 V to +17.0 V VHH
−3.0 V to +7.0 V OVD
−6 mA to +18 mA IOH, IOL
− V
DUTGND
REF_GND
REF_GND
))]
− V
REF
− V
REF
REF
REF
REF
− V
− V
− V
))]
REF_GND
REF_GND
REF_GND
REF_GND
REF_GND
−2.5 V to +7.5 V PMUDAC
−50 mA to +50 mA
))]
−4 mA to +4 mA
))]
−400 A to +400 A
))]
−40 A to +40 A
))]
−4 A to +4 A
))]
PMUDAC (PMU FI Range A)
PMUDAC (PMU FI Range B)
PMUDAC (PMU FI Range C)
PMUDAC (PMU FI Range D)
PMUDAC (PMU FI Range E)
1
Programmable range includes margin outside of specified part performance, allowing for offset/gain calibration.
Table 33. Load Transfer Functions
Load Level Transfer Function
1
IOL V(IOL)/5 V × 12 mA IOH V(IOH)/5 V × 12 mA
1
V(IOH), V(IOL) DAC levels are not referenced to DUTGND.
Table 34. PMU Transfer Functions
PMU Mode Transfer Function
Force Voltage V Measure Voltage V Force Current I Measure Current V
1
R = 20 Ω for Range A; 250 Ω for Range B; 2.5 kΩ for Range C; 25 kΩ for Range D; 250 kΩ for Range E.
= PMUDAC
OUT
= V
MEASOUT01
= [PMUDAC − (V
OUT
= (V
MEASOUT01
(internal sense) or V
DUTx
/2)]/(R1 × 5)
REF
/2) + V
REF
DUTGND
Rev. 0 | Page 43 of 52
+ (I
× 5 × R1)
DUTx
MEASOUT01
= V
(external sense)
PMUS_CH x
Page 44
ADATE302-02
www.BDTIC.com/ADI
Table 35. PMU User Required Capacitors
Capacitor Location
220 pF Across Pin C10 (FFCAP_0B) and Pin E10 (FFCAP_0A) 220 pF Across Pin C1 (FFCAP _1B) and Pin E1 (FFCAP_1A) 330 pF Between GND and Pin B9 (SCAP0) 330 pF Between GND and Pin B2 (SCAP1)
Table 36. Temperature Sensor
Temperature Output
0 K 0 V 300 K 3 V x K (x K) × 10 mV/K
Table 37. Default Test Conditions
Name Default Test Condition
VH DAC Level 2.0 V VL DAC Level 0.0 V VT/VCOM DAC Level 1.0 V VOL DAC Level −2.0 V VOH DAC Level 6.0 V VCH DAC Level 7.5 V VCL DAC Level −2.5 V IOH DAC Level 0.0 A IOL DAC Level 0.0 A OVD Low DAC Level −2.5 V OVD High DAC Level 6.5 V PMUDAC DAC Level 0.0 V PE/PMU Enable 0x0000: PMU disabled, not force VT, PE enabled Channel State 0x0000: HVOUT mode disabled, load disabled, VTERM inactive PMU State 0x0000: input of DUTGND, internal sense, clamps disabled, FVMV, Range E PMU Measure Enable 0x0000: MEASOUT01 pin tristated Differential Comparator Enable 0x0000: normal window comparator mode 16-Bit DAC Monitor 0x0000: DAC16_MON tristated OVD_CHx Alarm Mask 0x0000: disable alarm functions Data Input Logic low Receive Input Logic low DUTx Pin Unterminated Comparator Output Unterminated
Rev. 0 | Page 44 of 52
Page 45
ADATE302-02
www.BDTIC.com/ADI

RECOMMENDED PMU MODE SWITCHING SEQUENCES

To minimize any possible aberrations and voltage spikes on the DUT output, specific mode switching sequences are recommended for the following transitions:
PMU disable to PMU enable
PMU force voltage mode to PMU force current mode
PMU force current mode to PMU force voltage mode.

PMU Disable to PMU Enable

Step 1: See Tab l e 3 8 for state of registers in PMU disabled mode.
Table 38.
Register Bit Setting
PE/PMU Enable Register, ADDR[4:0] = 0x0C DATA[2] 0 PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] XX
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] X DATA[2:0] XXX
Step 2: Write to Register ADDR[4:0] = 0x0E (see Tabl e 39).
Table 39.
Register Bit Setting Comments
PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] 1X or 00 Set desired input selection
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 0
DATA[2:0] XXX Set desired range
Step 3: Write to Register ADDR[4:0] = 0x0C (see Tab l e 40).
Table 40.
Register Bit Setting Comments
PE/PMU Enable Register, ADDR[4:0] = 0x0C DATA[2] 1 PMU is now enabled in force voltage mode
This bit must be set to force voltage mode to reduce aberrations
Rev. 0 | Page 45 of 52
Page 46
ADATE302-02
www.BDTIC.com/ADI

PMU Force Voltage Mode to PMU Force Current Mode

Step 1: See Tabl e 41 for state of registers in force voltage mode.
Table 41.
Register Bit Setting
PE/PMU Enable Register, ADDR[4:0] = 0x0C DATA[2] 1 PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] XX
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 0 DATA[2:0] XXX
Step 2: Write to Register ADDR[4:0] = 0x0E (see Tab l e 42).
Table 42.
Register Bit Setting Comments
PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] 01 Set 2.5 V + V
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 1 Set to force current mode DATA[2:0] 0XX 2 A range has the minimum offset current
input selection
DUTGND
Step 3: Write to Register ADDR[4:0] = 0x0B (see Tab l e 43).
Table 43.
Register Bit Setting Comments
PMUDAC Level, ADDR[4:0] = 0x0B DATA[15:0] X
Step 4: Write to Register ADDR[4:0] = 0x0E (see Tab l e 44).
Table 44.
Register Bit Setting Comments
PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] 1X PMUDAC input selection
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 1 Set to force current mode DATA[2:0] XXX Set to the desired current range
Update the PMUDAC level register to the desired value
Rev. 0 | Page 46 of 52
Page 47
ADATE302-02
www.BDTIC.com/ADI

Transition from PMU Force Current Mode to PMU Force Voltage Mode

Step 1: See Tab l e 4 5 for state of registers in force current mode.
Table 45.
Register Bits Setting
PE/PMU Enable Register, ADDR[4:0] = 0x0C DATA[2] 1 PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] XX
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 1 DATA[2:0] XXX
Step 2: Write to Register ADDR[4:0] = 0x0E (see Tabl e 46).
Table 46.
Register Bits Setting Comments
PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] 00 Set DUTGND input selection
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 0 Set to force voltage mode DATA[2:0] XXX Set to the desired current range
Step 3: Write to Register ADDR[4:0] = 0x0B (see Tab l e 47).
Table 47.
Register Bits Setting Comments
PMUDAC Level, ADDR[4:0] = 0x0B DATA[15:0] X
Step 4: Write to Register ADDR[4:0] = 0x0E (see Tabl e 48).
Table 48.
Register Bits Setting Comments
PMU State Register, ADDR[4:0] = 0x0E DATA[9:8] 1X PMUDAC input selection
DATA[7] X DATA[6] X DATA[5] X DATA[4] X DATA[3] 0 Force voltage mode DATA[2:0] XXX
Update the PMUDAC level register to the desired value
Rev. 0 | Page 47 of 52
Page 48
ADATE302-02
V
www.BDTIC.com/ADI

BLOCK DIAGRAMS

VCL VCH
VH
VL
DATA
VT
DRIVER HIGH-Z /VT DATA[0]
(ADDR[4:0] = 0x0D)
VT BUFFER WHEN 1
HIGH-Z BUFF ER WHEN 0
RCV
FORCE VT DAT A[1] (ADDR[4:0] = 0x0C)
OVERRIDES T HE RCV PIN AND FORCE S
TERM MODE ON THE DRIVER AND LOAD
POWER-DOW N MODE
DRIVER
VCOM
V(IOH)
V(IOL)
LOAD ENABLE DAT A[1] (ADDR[4:0] = 0x0D) FORCES SW ITCHES OPE N AND POWERS DOWN LOAD W HEN 0
Figure 87. Driver and Load Block Diagram
PE DISABLE DAT A[0] (ADDR[4:0] = 0x0C) FORCES SWITCH OPEN WHEN 1
R
= 47
OUT
(TRIMMED)
DUT
07278-014
VHH = (VT + 1V) × 2 + DUTGND
VH
RCV (SHOWN IN
RCV = 0 STATE)
DATA
VL
~5
48
HV MODE SELECT DATA[2] (ADDR [4:0] = 0x0D) DISABLES HV DRIVER AND FORCES 0V ON HVOUT WHEN 0
HVOUT
07278-015
Figure 88. HVOUT Driver Output Stage
Rev. 0 | Page 48 of 52
Page 49
ADATE302-02
V
www.BDTIC.com/ADI
DUT0
DUT1
DIFFERENTIAL
BUFFER
NOTES
1. DIFFE RENTIAL CO MPARATOR ONL Y ON CHANNEL 0.
DUT0
DUT0–
DUT1
DUT1
OH0
VOL0
VOH0
VOL0
VOH NWC
+
+
VOL
NWC
VOH DMC
+
+
VOL
DMC
COMP_QH0
2:1
MUX
DIFFERENTIAL COMPARATOR ENABL E DATA[0] (ADDR[4:0] = 0x10)
COMP_QL0
2:1
MUX
07278-016
Figure 89. Comparator Block Diagram
COMP_VTT
COMP_Q P
5050
COMP_Q N
10mA
07278-017
Figure 90. Comparator Output Scheme
Rev. 0 | Page 49 of 52
Page 50
ADATE302-02
A
www.BDTIC.com/ADI
MEASOUT01 SEL ECT DATA[2:1]
(ADDR[4:0] = 0x0F)
MEASURE OUT
MEASOUT01 OUTPUT
ENABLE DATA[0]
(ADDR[4:0] = 0x0F )
ONE PER DEVICE
PMU INPUT SELECTION DATA[9:8]
2.5V + DUTGND
DUTGND
PMU MEASURE V/I DATA[4]
(ADDR[4:0] = 0x0E)
CH[1] PMU V/I TEMP SENSE
GND REF
MUX
(ADDR[4:0] = 0x0E)
VIN
TEMP SENSE
MUX
PMU SENSE P
(ADDR[4:0] = 0x0E)
MEASURE V
MEASURE I
MUX
PMU FORCE V/ I DATA[3]
(ADDR[4:0] = 0x0E)
MUX
PMU CLAMP ENABLE DATA[5]
(ADDR[4:0] = 0x0E)
VCH
TH DATA[7]
MUX
EXTERNAL DUT SENSE PIN
IN-AMP G = 5
REF
2µA 20µA 200µA 2mA
330pF SCAP (EXTERNAL)
2.5 + DUTGND
225k
25mA BUFFER
22.5k 2.25k
10k
DUT
250
FFCAP_A FFCAP_B
CRA = 220pF
20
MV
MEASURE V
(AT OUTPUT OF
SENSE MUX)
NOTES
1. SWITCHES CONNECTED W ITH DOT TED LINES REPRESENT PMU RANGE DATA[2:0] (ADDR[4:0] = 0x0E); WHEN PMU ENABLE D ATA[2] = 0 (ADDR[4:0] = 0x0C), ALL SWITCHES OPEN AND PMU POW ERS DOWN.
2. THE EXTERNAL SENSE PATH MUST CLOS E THE LOOP TO ENABL E THE CLAMPS TO OPERAT E CORRECTL Y.
3. 25mA RANGE HAS IT S OWN OUT PUT BUFFER.
4. 25mA BUFFER WILL BE TRISTATED WHEN NOT I N USE.
VCL
25mA
Figure 91. PMU Block Diagram
07278-018
Rev. 0 | Page 50 of 52
Page 51
ADATE302-02
www.BDTIC.com/ADI
1
DAC (ADDR[4:0] = 0x0A, CH[1] )
OVD HIGH LE VEL
6.5V
DUT
(ADDR[4:0] = 0x12) DAT A[0] OVD MASK ENABLES OVD FLAGS TO ALARM OVD_CHx PIN
SHORT CIRCUIT
CURRENT = 100µ A
OVD_CHx
ADATE302-02
1
PMU
V/I CLAMP
FLAG
–2.5V
(ADDR[4:0] = 0x13)
(ADDR[4:0] = 0x12) DAT A[1] PMU MASK ENABLES P MU V/I FLAG TO ALARM OVD_CHx PIN
2
DATA[2] DATA[1] DATA[0]
07278-019
DAC (ADDR[4:0] = 0x0A, CH[0] )
1
THE OVD HIG H/LOW LEVEL DAC IS SHARED BY EACH CHANNEL; THE REFORE, O NLY ONE O VD HIGH/LOW VOL TAGE LEVEL CAN BE SET PER CHIP. THE OVD DACs PRO VIDE A VOL TAGE RANGE OF –3V TO +7V. THE RECOMMENDED HIGH/LO W SETT INGS ARE +6. 5V/–2.5V. (THESE VAL UES NEED TO BE PROGRAMMED BY THE USER UPO N STARTUP/RE SET.)
2
THIS IS A READ ONLY REGI STER THAT AL LOWS T HE USER TO DET ERMINE THE CAUSE OF THE ACTIVE OVD FLAG.
OVD LOW LEVEL
Figure 92. OVD Block Diagram
Rev. 0 | Page 51 of 52
Page 52
ADATE302-02
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

A1 BALL
CORNER
9.10
9.00 SQ
8.90
TOP VIEW
6.731
REF SQ
7.20
BSC SQ
0.80
BSC
0.90 REF
987654 231
10
BOTTOM VIEW
A
B
C
D
E
F
G
H
J
K
A1 BALL CORNER
*
1.20
1.09
1.00
DETAIL A
DETAIL A
0.36 REF
0.38
0.33
0.28
SEATING
PLANE
*
COMPLIANT TO JEDEC STANDARDS MO-219 WI TH EXCEPTIO N TO PACKAGE HEIGHT.
0.305 REF
0.53
0.48
0.43
BALL DIAMET ER
0.83
0.76
0.69
COPLANARITY
0.12
022708-A
Figure 93. 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-84-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model Temperature Range Package Description Package Option
ADATE302-02BBCZ
1
Z = RoHS Compliant Part.
1
−40°C to +85°C 84-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-84-2
©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07278-0-6/08(0)
Rev. 0 | Page 52 of 52
Loading...